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Abstract We are interested in wire-driven parallel robot with four wires and at least
two distinct attachment points on the end-effector. Such type of robot is non redun-
dant, it exhibits 4 d.o.f. and can be used as a crane. This paper addresses the inverse
and forward kinematics problem, taking into account the mechanical equilibrium
equations. We show that surprisingly the forward kinematics can be solved, either
for determining all solutions or in a real-time context, but that the inverse kinematics
is still an open issue.

1 Introduction

We are interested in a parallel robot whose end-effector is driven by 4 wires, without
any additional constraining mechanism [10]. We denote by Bi the location of the
attachment points on the end-effector, by Ai the location of the attachment points on
the base and byC the center of the platform. Such robot exhibits various interesting
configurations (figure 1):

• planar motion with only a single attachment point on the end-effector (a): the
robot exhibits 2 translational d.o.f. and has a degree of redundancy of 2

• planar motion with 2 to 4 distinct attachment points on the end-effector (b): the
robot exhibits 3 d.o.f. and has a degree of redundancy of 1

• non planar motion with only a single attachment point on the end-effector (c):
the robot exhibits 3 translational d.o.f. and has a degree of redundancy of 1

• non planar motion with at least two distinct attachment points on the end-effector
(d): the robot exhibits 4 d.o.f. and is not redundant
The two first categories offer interesting applications (such as fast pick-and place,

windows washing). We are however more interested in the two categories exhibiting
spatial motions, which can be used as a crane e.g. for rehabilitation or patient lifting
at home or in hospitals.
The kinematics of the three first categories is mastered for robots having rigid

legs and can be managed for wire legs for which we have to ensure that the tension
are always positive [1, 2, 3, 5, 6, 7, 8, 12]. As for the fourth category it appears that
to the best of our knowledge the kinematic problems have never been addressed.
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Fig. 1 4 different configurations of a wire-driven parallel robot with 4 wires

2 Forward kinematics

In this problem the lengths ρi of the 4 wires are known and we have to determine
the pose of the end-effector. We will study this problem for a crane configuration,
assuming that the end-effector is only submitted to a load consisting of a mass at-
tached at the centerC of the platform, which is supposed to be the center of mass of
the platform.
Without loss of generality we will assume that the end-effector has 4 distinct at-

tachment points for the wires and that these points are coplanar, threem of them
at least being distinct. Under this assumption a pose of the platform may be
parametrized by the coordinates of 3 attachments points in an arbitrary reference
frame with origin O. The choice of these 3 points being also arbitrary (provided
that they are not collinear) we will use as parameters the 9 coordinates of points
B1,B2,B3. For a planar platform we know that there exist 3 constants λ1,λ2,λ3 such
that:

OB4 = λ1OB1+λ2OB2+λ3OB3 (1)

Furthermore we have the following 3 constraint equations on the unknowns:

||B1B2|| = d12 ||B1B3|| = d13 ||B3B2|| = d32 (2)

where di j denotes the known distance between the attachment points Bi and Bj.
Note also that the coordinates of the Ai points are supposed to be known in the

same reference frame and that the square of the wire lengths is obtained as:

ρ2i = ||AiBi||2 (3)

Decomposing AiBi as AiBi =OBi−OAi we get 4 equations:

ρ21 = ||OB1−OA1||2 ρ22 = ||OB2−OA2||2 ρ23 = ||OB3−OA3||2 (4)
ρ24 = ||λ1OB1+λ2OB2+λ3OB3−OA4||2

We have then to consider that the system is in mechanical equilibrium. Let τi denotes
the tension in the i-th wire, τ be the 4 wires tension vector,F be the wrench exerted



Kinematic analysis of a parallel crane 3

on the end-effector (here reduced to 0,0,−mg,0,0,0), where m is the load mass)
and J−T be the transpose of the inverse jacobian matrix of the robot. Assuming no
mass for the wires we have

F = J−Tτ (5)

Note that the inverse jacobian matrix is a 4× 6 matrix whose formulation is well
known. The above relation defines 6 equations having as unknowns the coordinates
x j,y j,z j of B1,B2,B3 and the 4 tensions in the wires. The set of equations (2,4,5)
define a square system of 13 equations in the 13 unknowns (the four τi and the
9 coordinates of the OBi). We may also solve the four first mechanical equilibrium
equations in the τi, thereby obtaining a reduced system of 9 equations in 9 unknowns.
Note that the initial equations (5) involves the mass m of the load but there is a linear
relationship between m and the τi’s which indicates that we may assign an arbitrary
mass to the load, solve the system and then apply a scaling factor to calculate the τi
corresponding to the real mass of the load.

2.1 Computing all solutions

This system is much more complicated than the forward kinematics of more clas-
sical parallel robots because of the involvement of the static equilibrium equations.
For determining the possible solutions we may however try to use similar solv-
ing methods than for robot with rigid legs. As we are interested in certified solu-
tions we may rely only on the Groebner basis [4] and interval analysis approaches.
Drawbacks of the Groebner basis approach is that it requires to have only alge-
braic equations with rational coefficients and has a complexity that is exponen-
tial in terms of the number of unknowns. It is unclear if we will be able to ob-
tain the Groebner basis for the system. On the other hand the interval analysis ap-
proach may still be tried as its exponential complexity is valid only in the worst
case, while its practical complexity is quite often much lower, as soon as bounds
may be determined for the unknowns. Such bounds may easily be obtained in that
case: if xaj ,yaj ,zaj are the coordinates of Aj and if di j denotes the distance between
Bi,Bj , then x j ∈ [Max(xaj − ρ j,xai − ρi − di j),Min(xaj + ρ j,xai + ρi + di j), i $= j],
y j ∈ [Max(yaj −ρ j,yai −ρi−di j),Min(yaj +ρ j,yai +ρi+di j), i $= j], z j ∈ [zaj −ρ j,zaj ]
(we are interested only in the poses where the end-effector is under the base). We
need also bounds for the τi: a lower bound is 0 as we want the wires to be in tension
and the upper bound may be reasonably set to twice the value of mg.

2.2 Real-time algorithm

Forward kinematics is a key point for the real-time control of parallel robot. The
problem is here somewhat different from the one of computing all solutions, as
forward kinematics is computed at each sampling time of the controller. Usually the
Newton-Raphson scheme (NR) is used with as initial guess the solution obtained at
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the previous sampling time. This is a dangerous process as the NR scheme may not
converge, or, worse, converge to a solution that is not the one corresponding to the
current pose of the robot. However we have already designed a certified NR method
that uses both interval analysis and the classical NR method to provide the right
solution [9]. This method may be used as well for the wire-driven robot.

2.3 Example

We consider the robot with the Ai,Bi points defined as:

A1 = (185.6,0.6) A2 = (199.4,105.9) A3 = (14.7,119.4) A4 = (0.6,14.5)
B1 = (0.6,−5.25) B2 = (0.6,5.25) B3 = (−0.6,5.25) B4 = (−0.6,−5.25)

The wire lengths are:

ρ1 = 138.471017 ρ2 = 149.42176 ρ3 = 145.908576 ρ4 = 143.793263

The forward kinematics has 4 solutions, shown on figure 2, that are computed in
about 13 minutes on a DELL D620 laptop. Note that the reduced system that has
only 9 equations requires more computation time as the two last of the equations
of the system are quite complex. It must be noted that solutions 2 and 4 exhibit
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Fig. 2 The four solutions of the forward kinematics. The wire wi j is the wire j for solution i.

a crossing of the wires and a normal to the platform that is pointed downward:
such solution should not be retained. As for the certified NR scheme the average
computation time is less than 0.1 ms.
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3 Inverse kinematics

For the spatial configuration we have a 4 d.o.f. robot and hence we have motion
constraints between the 6 d.o.f. of the end-effector. We will first investigate these
motion constraints.

3.1 Motion constraints

Equations (5, 2) define a set S of 9 equations in 13 unknowns (the 9 coordinates
of B1,B2,B3 and the 4 joint forces τi). Hence as expected we have four degrees of
freedom.We may also parametrize the pose of the end-effector by the 3 coordinates
xc,yc,zc of C and three orientation angles (e.g. the Euler angles ψ ,θ ,φ ) in which
case we have 10 unknowns and the 6 equations (5). Hence we have a coupling be-
tween the pose parameters and we may determine a constraint equations as follows.
Consider the first four equations of (5) as a linear system in τ and solve this system;
then we substitute the result in the last two equations of (5) which lead to two con-
straints equationsS1,S2 in the unknowns xc,yc,zc,ψ ,θ ,φ which have respectively
degree 2, 2, 2 and 2, 3, 1 in xc,yc,zc. Hence we may solve the second equation in
zc and substitute the result in the first constraint equation to get a single constraint
equation relating xc,yc,ψ ,θ ,φ which is of degree 5 in xc and 6 in yc.
In a crane application the first priority may be to be able to reach a desired lo-

cation for the center C of the platform and we will be interested in determining a
single constraint equation involving only the rotation angles. For that purpose we
use the Weierstrass substitution to transform the two constraint equations S1,S2
into algebraic constraints involving T1 = tan(ψ/2),T2 = tan(θ/2),T3 = tan(φ/2).
The degrees of these equations are respectively 2, 6, 6 and 4, 6, 6 in T1,T2,T3. We
then compute the resultant in T1 of these two equations to get a single constraint
equation in T2,T3. This resultant factors out in two expressions respectively of de-
gree 8, 8 and 24, 20 in T2,T3, that are represented in figure 3. Note that we may
expect a symmetry in the constraint curve as if a triplet (ψ0,θ0,φ0) is a solution of
the two constraint equations, then the triplet (ψ0−π ,−θ0,φ0+π) is also a solution.
It must also be mentioned that not all solutions of the constraint equations lead to a
feasible end-effector orientation as we must also check that the tensions in the wires
are positive.
Note that equation ( 5) indicates that the wire lines and the vertical lines going

trough C belong to a linear complex and hence that the infinitesimal motion at a
pose is an helical motion whose axis and pitch can be calculated [11].

3.2 Finding an end-effector orientation

For the crane application we have to find at least one orientation that allows to reach
a given location in a mechanical equilibrium. We use the following algorithm:
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Fig. 3 The allowed region in the T2,T3 space

1. compute the wire lengths for the desired pose assuming rigid legs
2. compute the pose of the end-effector with the forward kinematics
3. if the distance between the current pose and the desired one is lower than a given
threshold, then exit

4. let ΔX be the difference vector between the desired pose and the current one (no
correction is applied for the orientation part). Compute a correction Δρ of the
wire lengths as J−1ΔX, goto step 2

Although this algorithm is quite efficient we may consider that we may use the
fourth d.o.f. to determine the ρ such that the obtained orientation is ”close” in some
sense to a desired orientation of the end-effector. However a major problem is to
define an appropriate metric to measure the ”closeness” between two orientations.
We propose to use as closeness index C the sum of the distances between the

location of the points Bd1 ,Bd2 ,Bd3 at the desired orientation and the location of these
points at an orientation that is compatible with the constraint equationsS1,S2:

C =
j=3

∑
j=1

||Bj−Bdj ||

Determining this minimum is however a difficult task as it amounts to solve a con-
strained optimization problem. It may be solved by using the Lagrange multipliers
method. We define H as

H = C + l1S1+ l2S2

where l1, l2 are the Lagrange multipliers. The minimum of C must satisfy

∂H
∂ψ

=
∂H
∂θ

=
∂H
∂φ

=
∂H
∂ l1

=
∂H
∂ l2

= 0 (6)
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The two first equations are linear in l1, l2 and the result substituted in the third equa-
tions. Consequently we get a system of 3 equations in ψ ,θ ,φ . This system is rela-
tively large but may still be solved with interval analysis in about 8 minutes, which is
however incompatible with a real time use. However as soon a good initial estimate
of the solution is known the certified NR scheme is working efficiently. Hence if we
assume that the task should be performed with an orientation that is close to a given
one we may determine the best orientation at the beginning of the task and main-
tains its value through the NR scheme during the task, which requires to calculate
the best orientation only once, at the start of the task. We propose to use a continu-
ation method [13] for getting this initial guess. The solutions of the system S1,S2
is determined for a given θ = θ0 in the range [0,π/2]: only a positive θ is needed as
the solutions are symmetrical with respect to that variable and we limit this angle to
π/2 as we want to have the normal of the platform oriented upward. Starting from
these solutions we use the NR scheme to determine the solutions for θ = θ0+Δθ ,
where Δθ is a small increment that is automatically determined by the algorithm.
For each solution we calculate the wire tensions and, if they are positive, the close-
ness index. The solution presenting the lowest closeness is retained as initial guess.
As an example we choose the following coordinates for C: 90, 60, -80 and gives as
desired orientation ψ = θ = φ = 0. Figure 4 presents the closeness index curve that
are obtained. The initial guess is obtained asψ = 1.853rd,θ = 0.103rd,φ = 4.427rd
that leads to a closeness index of 0.0616, which is almost optimal. This scheme is
relatively fast: about 1 minute is necessary to compute the initial guess.

Fig. 4 The closeness index as a function of θ and a close view of the minimum.

4 Conclusion

In this paper we have addressed the difficult problem of the kinematic analysis of a
four wire-driven spatial parallel crane. This analysis shows that both the geometrical
relations and the static equilibrium have to be taken into account. It appears that the
forward kinematics, although difficult as for any parallel robot, may still be managed
in real-time.
Surprisingly the inverse kinematics still remains an open issue. We have identi-

fied the relationship between the pose parameters and have proposed some strategies
for computing the joint variables in specific cases but a generic solution still has to
be developed.
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