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• The linear Assignment Problem (AP).

• Using the Assignment Problem:
1. Optimization global constraints.

• Using the Assignment Problem:
2. Discrepancy-based additive bounding techniques.



(1)

• We are given n machines 
and n jobs, and a square 
matrix c such that:

• cij is the cost associated 
with job j if performed on 
machine i

• A graph theoretic model 
involves a bipartite, directed 
graph 
with costs associated with arcs

G = (S T;A)

machines S jobs T



(2)

• A feasible solution is a 
perfect matching

• An optimal solution is the 
least-cost perfect matching 



(3)

i2S

xij = 1 8j 2 T

j 2T

xij = 1 8i 2 S

minZ =
i2S j 2T

cijxij
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(4)

• The AP is a linear program, thus can be solved with 
general purpose techniques as the simplex method.

• However, AP has a rather special structure and there are 
efficient special purpose algorithms to solve it.

• In particular, we will make use of the so-called Hungarian 
algorithm which is a primal-dual method which can be 
implemented to run in O(n3) time.

• We will point out all over the talk why solving the problem 
through a combinatorial algorithm is so important.



• Global Constraints for optimization problems:

• global constraints in CP;

• global constraints with an optimization component:

• the cost-based domain filtering technique.

• Computational results on TSP and TSPTW.



• Global Constraints: 
• capture sub-problems that frequently constitute a sub-
structure of more general problems;

• include propagation algorithms which perform pruning on 
domain variables on the basis of feasibility reasoning.

• Global Constraints for optimization problems: 
• we need a pruning based on optimality reasoning;
• we embed an optimization component, i.e., a software 
component which solves to optimality a relaxation of the 
problem represented by the global constraint;
• the relaxation depends on the objective function.



• The optimization component is typically based on effective 
OR algorithms, thus a mapping between CP variables and the 
OR model is needed.  

• The optimization component must provide:
•• LBLB: the optimal solution value of the relaxation;

•• x*x*: the optimal solution of the relaxation in the OR model;

•• grad(X,v)grad(X,v): a gradient function estimating the additional 
cost of variable-value assignments.
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• Lower Bound-based propagation:
from LB towards objective function Z::[Zmin..Zmax]: LB < Zmax

• cost-based propagation:
from the gradient function towards decision variables:

for each Xi::[v1,v2,…,vm] and vj there is a gradient function 
grad(Xi,vj) measuring the additional cost to pay if Xi = vj

if LB + grad(Xi,vj) Zmax then    Xi vj

which is the classic OR variable fixing.

(1)



• Finally, the optimal solution of the relaxation in the OR model 
may help, through the mapping, to guide the search.

• The simplest example of gradient function are the linear 
programming reduced costs which can be computed for some 
special cases by combinatorial algorithms. 

• We consider in the following:
the Assignment Problem as a relaxation of the path 
constraint, and the Hungarian Algorithm as (combinatorial) 
optimization component.  

(2)



(1)

X0::D0, X1::D1,..., Xk::Dk

path([X0,X1,…,Xk])

Given a directed graph G=(V,A) with |V| = n, and associated 
with each node i a variable Xi whose domain contains the 
next possible nodes in a path, the CP path constraint:

holds if and only if the assignment of variables X0,X1,…,Xk
defines a simple path involving all nodes 0,…,k.



(2)

If a cost is associated to each arc, and we want to model the 
Asymmetric Traveling Salesman Problem (ATSP), we can 
use the path constraint as follows:

• one of the node, say 0, is duplicated generating node n;
• node n reaches only node 0 with zero cost, while it is 
reached from each node (but 0) with the same cost paid to 
reach node 0;
• the constraint path([X0,X1,…,Xn]) is imposed.

AP can then be used as optimization component for path().



Mapping

Xi = vj
path ([X0, X1, ….., Xn])

Ci=c ij

xij=1
(A) + (B)
cij iff xij=1

CP- Model:
Xi::[v1,v2,…,vn] i=0..n-1

path([X0,X1,…,Xn])

Ci::[ci1,ci2,…,cin]i=0..n-1

Cn = 0; Xn = 0;

C0+…+Cn-1 = Z

minimize(Z)

IP- Model
min Z = cij xij

xij = 1  j V (A)

xij = 1  i V (B)

xij 1 S V S

xij 0 and integer

relaxed in



(4)

• The connectivity constraints are relaxed, and by the Hungarian 
algorithm we obtain a lower bound value ZAP, an integer solution 
x*, and the reduced costs. In addition the Hungarian algorithm is 
incremental (O(n3) first solution, O(n2) each re-computation).

• However, the bound could be very poor, mainly for pure 
problems as TSP, and a classical OR method for improving it is 
cutting planes generation.

• The simplest cutting planes are the Subtour Elimination 
Constraints (SECs) whose separation is polynomially solvable.
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min cTx
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LP solver
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• The cut generator is again a black-box in the global constraints, 
but the optimization component is now a general LP solver (the 
AP structure is lost), whereas the cost-based propagation remains 
unchanged.



• The drawback of using a general LP solver (not incremental, 
not integer solution) can be partially overcome by dualizing in 
Lagrangean fashion the generated cuts.
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• Algorithm:
• optimally solve the original structured relaxation LBAP;
• repeat

generate violated cuts;
add cuts to the current formulation;
solve the corresponding LP;

• until a given point (e.g., the end of the root node) LBr;
• extract the dual values associated to tight cuts: 

they are the optimal Lagrangean multipliers of the cuts;
• dualize tight cuts and update the cost matrix;
• solve the structured relaxation LBAPm.

Through duality theory: LBAP LBr = LBAPm



vs

• AP + cuts + Lagrangean Relaxation:
+ still an AP, i.e. a structured problem;
+ O(n2) incrementally;
+ x* is integer;
- are optimal only at root node;
- dynamically purging trivially satisfied cuts.

• AP + cuts:
+ LB always accurate;
- resulting LPs may be huge;
- only partially incremental.



• Although CP is not competitive to cope with problems 
like TSP and ATSP, the addition of an optimization 
component allows the solution of bigger-size instances.

TSP and ATSP instances 
pure AP AP + Lagrangean relaxation of cuts Instance 
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• Pure CP gets stuck even on problems of this size.



(TSPTW)

• On less pure problems it is possible to exploit the 
flexibility of CP.

• TSPTW is the TSP variant in which the visit of each 
city must be done within a prefixed Time Window.

• TSPTW has two main components:
• a routing component which is basically 
optimization, i.e. find the tour of minimum cost;
• a scheduling component which is mainly a 
feasibility issue. 



TSPTW: aggregated experimental results

• symmetric TSPTW:
• outperforming state of the art methods Pesant et 
al. 1998
• Lagrangean relaxation of cuts is very effective

• asymmetric TSPTW
• competitive results with state of the art branch-
and-cut methods Ascheuer, et al. 2001
• Lagrangean relaxation does not pay off since AP 
bound already effective



• Discrepancy-based additive bounding:

• limited discrepancy search;

• additive bounding techniques;

• speeding up the proof of optimality.

• Computational results.



• Explores the most promising branches of a search tree first
– At each node a heuristic recommends a branch
– Tolerate a maximum number of discrepancies from the 

heuristic’s recommendation

• Limited Discrepancy Search (LDS) is effective to rapidly 
identify good solutions

• LDS has no real incentive to accelerate the proof of optimality

Limited discrepancy search



• Introduced by Milano and 
van Hoeve at CP 2002

• First split the domain of 
each variable into:
– a Good set containing the 

promising values
– a Bad set containing the rest 

of the values.

• Perform LDS with these sets
– At each node a discrepancy is 

counted if a variable takes a 
value in its Bad set.

Discrepancy based search



• Introduce a Discrepancy Constraint in the model of any 
problem solved via the Discrepancy Based Search (DBS)
– X is the vector of finite domain variables
– ßV is the bad set of variable V
– k is the current accepted level of discrepancy
– Discrepancy_Cst(X,ß,k)

kX
iX

Ni
i )(

Discrepancy constraint



• The reduced costs computed as a result of the solution of a 
linear program:
– Associated with a variable V
– Represent the cost to add to the optimal solution if the 

variable V becomes basic at value 1
– Denoted here by: cV

• If for a given problem:
– More than one “bound” is available: B1,…,Bnr

– Each bound takes as input a cost vector: Bk(ck-1)
– All bounds return a value LBk

– All bounds output a reduced cost vector: ck

Reduced costs



• The Additive Bounding Procedure (ABP) is:
– Compute: LB1 = B1(c0) where c0 is the original cost 

vector
– for all k:2,…,nr : LBk = Bk(ck-1)
– LB = LB1+ LB2+ ,…,+ LBnr

Additive Bounding Procedure (1)



Additive Bounding Procedure (2)

• This remarkable technique has been introduced by 
Fischetti & Toth as a general framework and successfully 
applied in the context of the Traveling Salesman Problem.

• Enhancing LDS proof of optimality by improving the quality 
of the bounds.

• Additional motivation: use ABP in conjunction with DBS to 
establish a stronger link between search and bound.



ABP and DBS

Combinatorial Problem
solved via DBS

Relaxation solved 
via a specialized 

algorithm

Reduced
Cost

Relaxation based on 
Discrepancy 
Constraint

+Lower Bound Lower Bound

Combined Bound



ABP and DBS: what is to be gained

K=1 K=2K=0 K=N

K=1 K=2K=0

Discrepancy
Bound



Discrepancy-Based Additive Bounding
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Discrepancy-Based Additive Bounding 
A first additive bound
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Discrepancy-Based Additive Bounding 
A first additive bound
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Discrepancy-Based Additive Bounding 
Linear Model
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Discrepancy-Based Additive Bounding 
a second (general) bound
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with every CP variable

• Sum the k minimum 
reduced costs selected



Discrepancy-Based Additive Bounding
Generality of the method

• The technique has been applied in conjunction with the 
AP but it is obviously independent on it.

• More precisely, the framework can be applied with any 
(combinatorial) relaxation providing the reduced cost 
vector or, even more likely, with a sequence of 
relaxations.

• “Combinatorial relaxation” means that a special purpose 
algorithm is used to solve the relaxation, thus the 
framework does not affect the structure of the relaxation 
itself.
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Discrepancy-Based Additive Bounding 
Further exploiting the structure: AllDifferent

it is also a relaxation 
of the previous 

model
(since c1

ij = 0)

it is known as the k-
Assignment problem and 

can be solved in 
polynomial time

use of a second bound

Incorporate more 
information than just the 
discrepancy constraint
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Lower Assignment 
Problem (LAP)

Didactic but NP-hard 
and very hard to solve
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NP-hard to solve



Experimental Results

• For all benchmarks we generated 60 test problems using 
structured cost matrices of the DIMACS ATSP instances.

• Size of the problem was set to N = 25.

• For LAP, L is 110% the AP relaxation value.
• For RCAP, first solve AP using R as cost vector, then M is 

set 4 times this value.

• Ilog Solver 5.2. on a Intel 1.5 GHz Centrino laptop.
• Time limit (TL) for each run is 3,600 CPU seconds.
• Variable selection based on first fail (min. domain size).
• Value selection based on minimum reduced cost.



Aggregated experimental results (1)

49%39%39%31%ATSP

23%30%23%25%RCAP

58%56%57%55%LAP

BTTimeBTTimeProblem

K assignmentCounting
%reduction

5.16

5.68

4.38

counting

5.10

5.63

4.35

K-assignment

23.91

26.00

24.75

normal DBS 

ATSP

RCAP

LAP

Problem

average k



Aggregated experimental results (2)

• Taking search into account in the bounding procedures
seems to be particularly effective.

• This is a general (and easy) approach which can be 
widely used when an efficient algorithm for a relaxation 
provides reduced costs.

• Further exploiting a problem structure can improve the 
behavior of discrepancy-based additive bounding.



k-discrepancy: Full Integration via LP

• Fully integrate the 
Discrepancy Constraint 
with the lower bound 
– Use the linear 

relaxation as a lower 
bound

– Not as efficient since 
an LP is solved at 
each node

– Maximum use of 
discrepancy 
information
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Partial Integration via 
Lagrangean Relaxation

• Partially integrate the 
Discrepancy Constraint via 
Lagrangean Relaxation
– Only some information on 

discrepancy is used
– At each node an 

assignment problem is 
solved instead of a linear 
program

Solve the 
Linear Relaxation

Once per discrepancy

Lagrangean
Relaxation of the
Discrepancy Constraint
with optimum multiplier

Solve the Modified
Assignment Problem

During Search

Drawback:
the Lagrangean multiplier 
used is not anymore optimal
during search



Additional experimental results
• More integrated is the Discrepancy Constraint, less 

discrepancy level is needed to prove optimality, i.e. in 
terms of the value of the bound we have:

Additive Bounding < Lagr. Relaxation < Linear Relaxation

• LP and Lagrangean relaxations are less effective both in 
terms of computing time and number of backtracks (they 
also solve less problems in TL):
– LPs are more time consuming
– Lagrangean multiplier deteriorates
– Cost-based propagation in pure AP case is more 

effective



• The AP is extensively used as a relaxation for different 
purposes.

• On the other hand, the techniques shown in this talk do 
not depend on the AP.

• The key issue is the use of a combinatorial relaxation, 
i.e., a relaxation which models a linear program but can 
be solved with a special purpose technique.

• This is often the case with graph theory models!!! 
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