The Assignment Problem in Constraint Programming

Andrea Lodi DEIS, University of Bologna *alodi@deis.unibo.it*

based on joint work with:

- Filippo Focacci, ILOG, France
- Michela Milano, University of Bologna, Italy
- Louis-Martin Rousseau, CRT Montréal, Canada

Outline

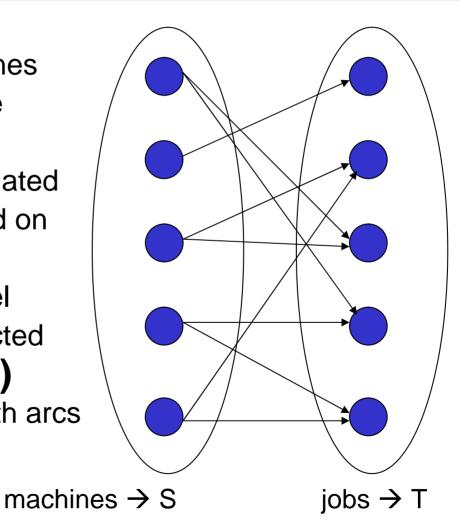
• The linear Assignment Problem (AP).

Using the Assignment Problem:
1. Optimization global constraints.

- Using the Assignment Problem:
 - 2. Discrepancy-based additive bounding techniques.

The Assignment Problem (1)

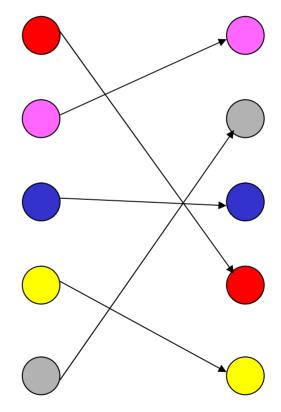
- We are given *n* machines and *n* jobs, and a square matrix *c* such that:
 - *c_{ij}* is the cost associated with job *j* if performed on machine *i*
- A graph theoretic model involves a bipartite, directed graph G = (S ∪ T; A) with costs associated with arcs



The Assignment Problem (2)

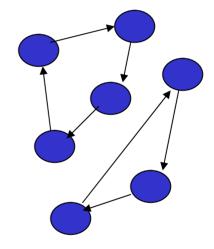
• A feasible solution is a perfect matching

• An optimal solution is the least-cost perfect matching



The Assignment Problem (3)

$$\begin{split} \mbox{min Z} = &\sum_{i \ge S} \sum_{j \ge T} C_{ij} X_{ij} \\ &\sum_{i \ge S} x_{ij} = 1 \quad 8j \ge T \\ &\sum_{i \ge S} x_{ij} = 1 \quad 8i \ge S \\ &\sum_{j \ge T} x_{ij} \ge 0; x_{ij} \quad integer \end{split}$$



 $x_{ij} \geq 0; \textbf{x}_{ij} \text{ integer } \forall i \in S; j \in T$

The Assignment Problem (4)

• The AP is a linear program, thus can be solved with general purpose techniques as the simplex method.

• However, AP has a rather special structure and there are efficient special purpose algorithms to solve it.

• In particular, we will make use of the so-called Hungarian algorithm which is a primal-dual method which can be implemented to run in $O(n^3)$ time.

• We will point out all over the talk why solving the problem through a combinatorial algorithm is so important.

1: Optimization global constraints

- Global Constraints for optimization problems:
 - global constraints in CP;
 - global constraints with an *optimization component:*
 - the cost-based domain filtering technique.
- Computational results on *TSP* and *TSPTW*.

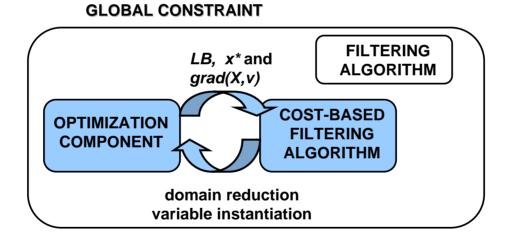
Global Constraints

- Global Constraints:
 - capture sub-problems that frequently constitute a substructure of more general problems;
 - include *propagation* algorithms which perform pruning on domain variables on the basis of *feasibility reasoning*.
- Global Constraints for optimization problems:
 - we need a pruning based on *optimality reasoning*;
 - we embed an *optimization component*, i.e., a software component which solves to optimality a relaxation of the problem represented by the global constraint;
 - the relaxation depends on the *objective function*.

Global Constraints for Optimization Problems

- The optimization component is typically based on effective OR algorithms, thus a mapping between CP variables and the OR model is needed.
- The optimization component must provide:
 - *LB*: the optimal solution value of the relaxation;
 - **x***: the optimal solution of the relaxation in the OR model;
 - **grad(X,v)**: a gradient function estimating the additional cost of variable-value assignments.

Global Constraints for Optimization Problems



Optimization Constraints (1)

- Lower Bound-based propagation: from LB towards objective function Z::[Z_{min}..Z_{max}]: LB < Z_{max}
- cost-based propagation: from the gradient function towards decision variables:

for each $X_i::[v_1, v_2, ..., v_m]$ and v_j there is a gradient function $grad(X_i, v_j)$ measuring the additional cost to pay if $X_i = v_j$

if $LB + grad(X_i, v_j) \ge Z_{max}$ then $X_i \ne v_j$

which is the classic OR *variable fixing*.

Optimization Constraints (2)

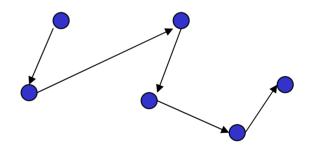
- Finally, the optimal solution of the relaxation in the OR model may help, through the mapping, to guide the search.
- The simplest example of gradient function are the linear programming *reduced costs* which can be computed for some special cases by combinatorial algorithms.
- We consider in the following:
 - the Assignment Problem as a relaxation of the path constraint, and the Hungarian Algorithm as (combinatorial) optimization component.

Path constraint: an optimization component (1)

Given a directed graph G=(V,A) with |V| = n, and associated with each node *i* a variable X_i whose domain contains the next possible nodes in a path, the CP path constraint:

$$X_0::D_0, X_1::D_1, ..., X_k::D_k$$

path([X₀,X₁,...,X_k])



holds if and only if the assignment of variables X_0, X_1, \dots, X_k defines a simple path involving all nodes $0, \dots, k$.

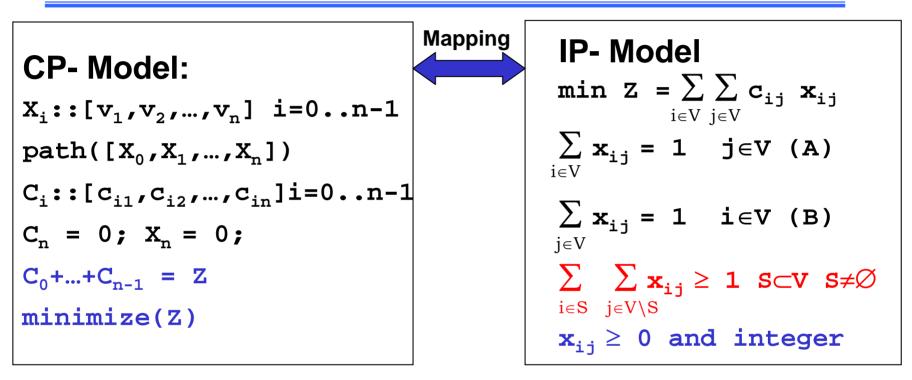
Path constraint: an optimization component (2)

If a *cost* is associated to each arc, and we want to model the **Asymmetric Traveling Salesman Problem** (ATSP), we can use the path constraint as follows:

- one of the node, say **0**, is duplicated generating node **n**;
- node *n* reaches only node *0* with zero cost, while it is reached from each node (but *0*) with the same cost paid to reach node *0*;
- the constraint **path([X₀, X₁,...,X_n])** is imposed.

AP can then be used as *optimization component* for **path()**.

Mapping

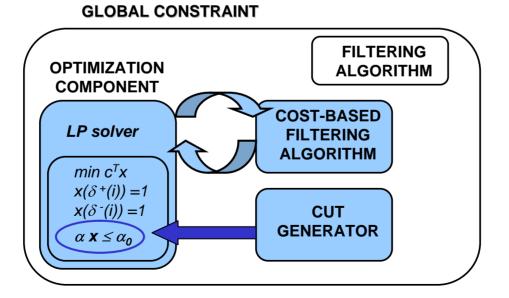


Path constraint: an optimization component (4)

- The connectivity constraints are relaxed, and by the Hungarian algorithm we obtain a lower bound value Z_{AP} , an **integer** solution x^* , and the reduced costs. In addition the Hungarian algorithm is incremental ($O(n^3)$ first solution, $O(n^2)$ each re-computation).
- However, the bound could be very poor, mainly for pure problems as TSP, and a classical OR method for improving it is **cutting planes** generation.
- The simplest cutting planes are the Subtour Elimination Constraints (SECs) whose separation is polynomially solvable.

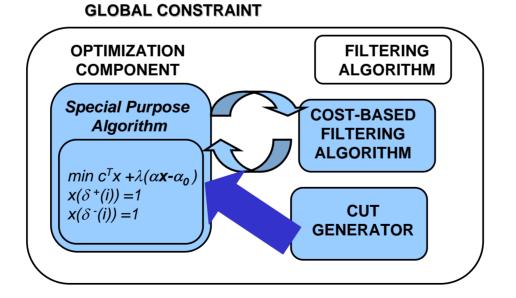
Cutting planes in global constraints

• The cut generator is again a black-box in the global constraints, but the optimization component is now a general LP solver (the AP structure is lost), whereas the cost-based propagation remains unchanged.



Lagrangean relaxation of cuts

• The drawback of using a general LP solver (not incremental, not integer solution) can be partially overcome by dualizing in Lagrangean fashion the generated cuts.



Lagrangean multipliers

- Algorithm:
 - optimally solve the original structured relaxation $\rightarrow LB_{AP}$;
 - repeat

generate violated cuts;

add cuts to the current formulation;

solve the corresponding LP;

- until a given point (e.g., the end of the root node) $\rightarrow LB_r$;
- extract the dual values associated to tight cuts: they are the optimal Lagrangean multipliers of the cuts;
- dualize tight cuts and update the cost matrix;
- solve the structured relaxation $\rightarrow LB_{APm}$.

Through duality theory: $LB_{AP} \leq LB_r = LB_{APm}$

AP+Lagrangean vs AP+cuts

- AP + cuts + Lagrangean Relaxation:
 - + still an AP, i.e. a structured problem;
 - + $O(n^2)$ incrementally;
 - + **x*** is integer;
 - λ are optimal only at root node;
 - dynamically purging trivially satisfied cuts.
- AP + cuts:
 - + *LB* always accurate;
 - resulting LPs may be huge;
 - only partially incremental.

Results

• Although CP is not competitive to cope with problems like TSP and ATSP, the addition of an optimization component allows the solution of bigger-size instances.

TSP and ATSP instances						
Instance	e pure AP			AP + Lagrangean relaxation of cuts		
	Opt	Time	Fails	Opt	Time	Fails
Gr17	2085	0.39	511	2085	0.49	30
Fri26	937	0.82	725	937	0.71	80
Bays29	2020	4.12	4185	2020	1.20	403
Dantzig42	Pure Copp	jets>300.ck	even on p	roblem ⁶⁹ 5	f this sīźē.	1081
RY48P	14854*	>300	-	14422	130.00	50K

TSP with Time Windows (TSPTW)

• On less pure problems it is possible to exploit the flexibility of CP.

• TSPTW is the TSP variant in which the visit of each city must be done within a prefixed *Time Window*.

- TSPTW has two main components:
 - a **routing** component which is basically *optimization*, i.e. find the tour of *minimum cost*,
 - a **scheduling** component which is mainly a *feasibility* issue.

TSPTW: aggregated experimental results

• symmetric TSPTW:

- outperforming state of the art methods Pesant et al. 1998
- Lagrangean relaxation of cuts is very effective
- asymmetric TSPTW
 - competitive results with state of the art branchand-cut methods Ascheuer, et al. 2001
 - Lagrangean relaxation does not pay off since AP bound already effective

2: Linking search and bound

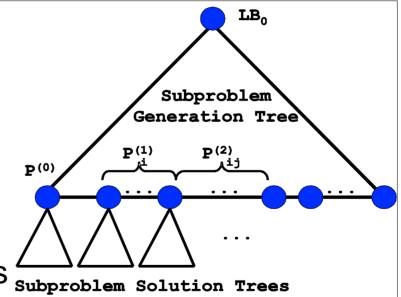
- Discrepancy-based additive bounding:
 - limited discrepancy search;
 - additive bounding techniques;
 - speeding up the proof of optimality.
- Computational results.

Limited discrepancy search

- Explores the most promising branches of a search tree first
 - At each node a heuristic recommends a branch
 - Tolerate a maximum number of *discrepancies* from the heuristic's recommendation
- Limited Discrepancy Search (LDS) is effective to rapidly identify good solutions
- LDS has no real incentive to accelerate the proof of optimality

Discrepancy based search

- Introduced by Milano and van Hoeve at CP 2002
- First split the domain of each variable into:
 - a Good set containing the promising values
 - a *Bad* set containing the rest of the values.



- Perform LDS with these sets ²/₄
 - At each node a discrepancy is counted if a variable takes a value in its *Bad* set.

Discrepancy constraint

- Introduce a *Discrepancy Constraint* in the model of any problem solved via the Discrepancy Based Search (DBS)
 - X is the vector of finite domain variables
 - \mathcal{B}_V is the bad set of variable V
 - *k* is the current accepted level of discrepancy
 - Discrepancy_Cst(X,ß,k)

$$\sum_{i\in N} (X_i \in \beta_{X_i}) = k$$

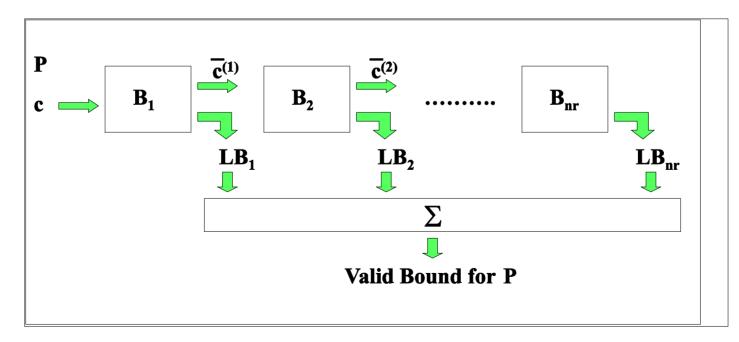
Reduced costs

- The *reduced costs* computed as a result of the solution of a linear program:
 - Associated with a variable V
 - Represent the cost to add to the optimal solution if the variable V becomes basic at value 1
 - Denoted here by: c_V
- If for a given problem:
 - More than one "bound" is available: B^1, \ldots, B^{nr}
 - Each bound takes as input a cost vector: $B^k(c^{k-1})$
 - All bounds return a value LB^k
 - All bounds output a reduced cost vector: c^k

Additive Bounding Procedure (1)

- The Additive Bounding Procedure (ABP) is:
 - Compute: $LB^1 = B^1(c^0)$ where c^0 is the original cost vector
 - for all $k:2,...,nr: LB^{k} = B^{k}(c^{k-1})$

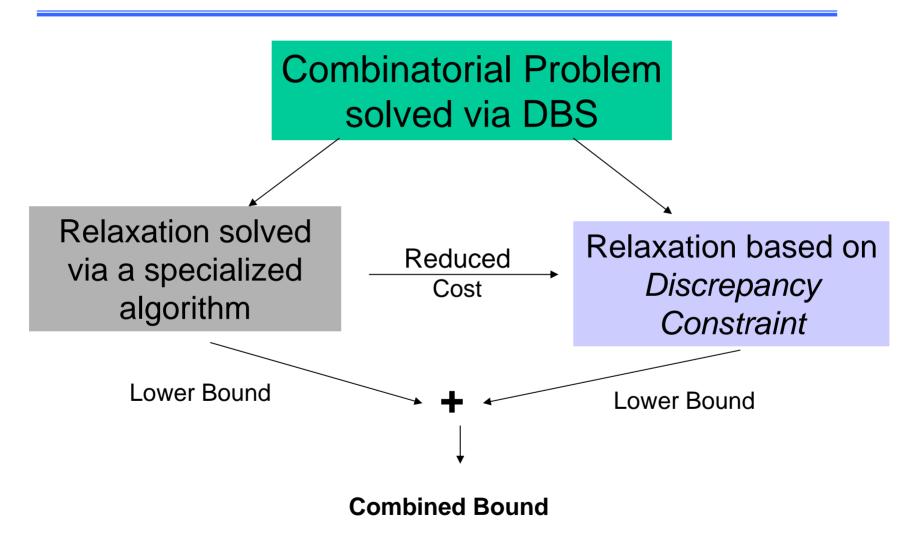
$$-LB = LB^1 + LB^2 + \dots + LB^{nr}$$



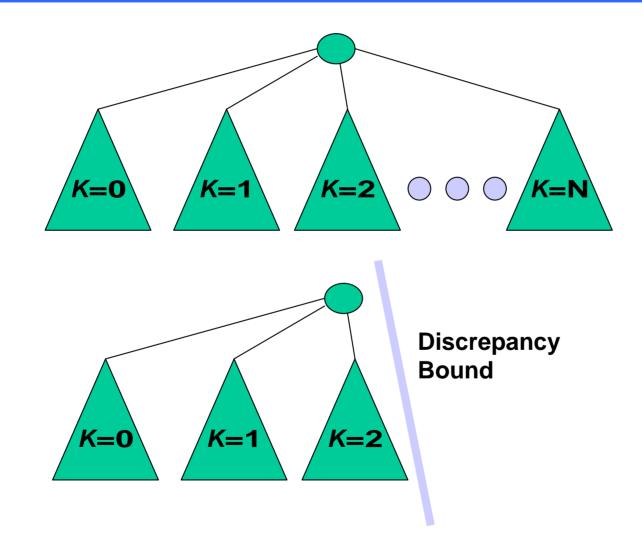
Additive Bounding Procedure (2)

- This remarkable technique has been introduced by Fischetti & Toth as a general framework and successfully applied in the context of the Traveling Salesman Problem.
- Enhancing LDS proof of optimality by improving the quality of the bounds.
- Additional motivation: use ABP in conjunction with DBS to establish a stronger link between search and bound.

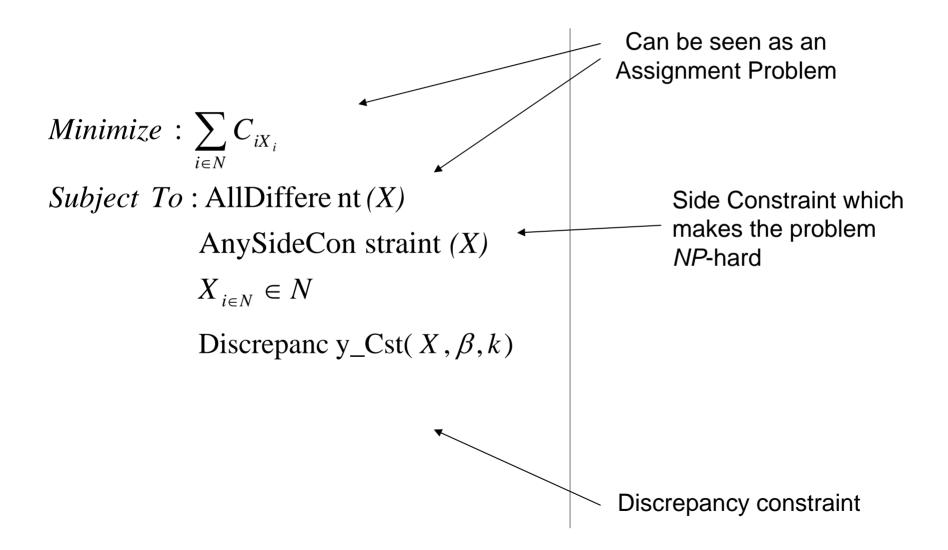
ABP and DBS



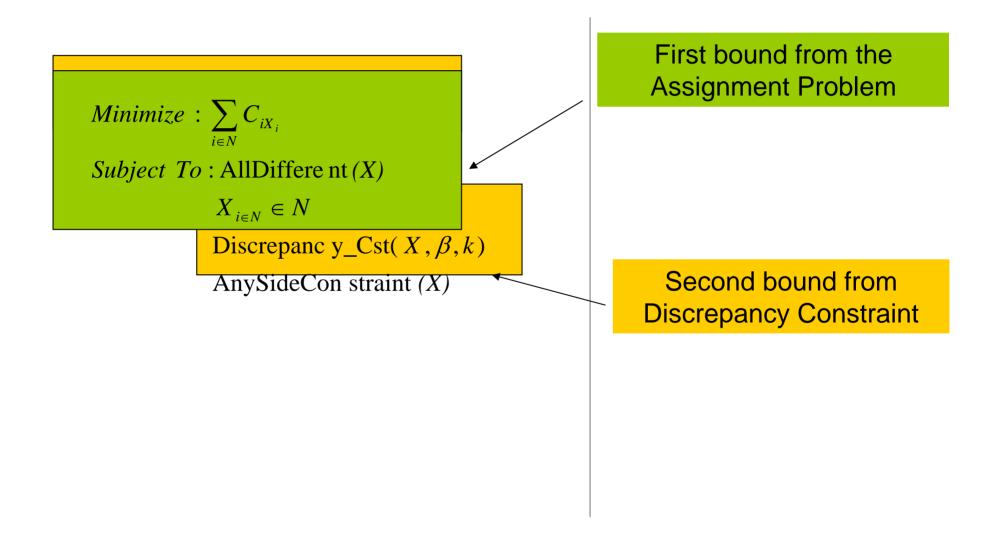
ABP and DBS: what is to be gained



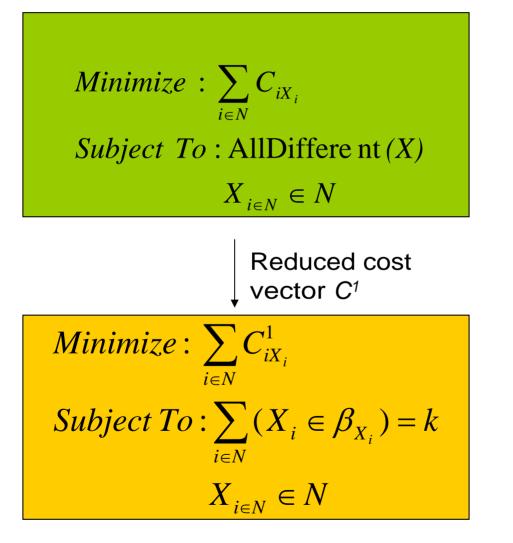
Discrepancy-Based Additive Bounding



Discrepancy-Based Additive Bounding A first additive bound



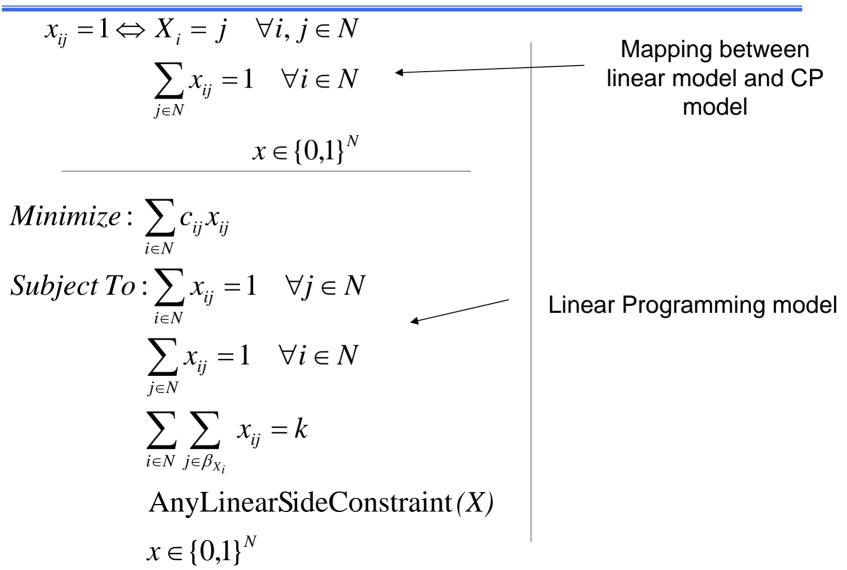
Discrepancy-Based Additive Bounding A first additive bound



First bound from a primaldual Algorithm Second bound from counting the k smallest

reduced cost in ß

Discrepancy-Based Additive Bounding Linear Model



Discrepancy-Based Additive Bounding a second (general) bound

$$\begin{aligned} Minimize : & \sum_{i \in N} c_{ij}^{1} x_{ij} \\ Subject \ To : & \sum_{j \in \beta_{X_{i}}} x_{ij} \leq 1 \quad \forall i \in N \\ & \sum_{i \in N} \sum_{j \in \beta_{X_{i}}} x_{ij} = k \\ & x \in \{0,1\}^{N} \end{aligned}$$

To solve:

- Identify the minimum reduced cost associated with every CP variable
- Sum the *k* minimum reduced costs selected

Discrepancy-Based Additive Bounding Generality of the method

- The technique has been applied in conjunction with the AP but it is obviously independent on it.
- More precisely, the framework can be applied with any (combinatorial) relaxation providing the reduced cost vector or, even more likely, with a sequence of relaxations.
- "Combinatorial relaxation" means that a special purpose algorithm is used to solve the relaxation, thus the framework does not affect the structure of the relaxation itself.

Discrepancy-Based Additive Bounding Further exploiting the structure: AllDifferent

 $\begin{aligned} \text{Minimize} &: \sum_{i \in N} c_{ij} x_{ij} \\ \text{Subject To} &: \sum_{i \in N} x_{ij} \leq 1 \quad \forall j \in N \\ & \sum_{j \in N} x_{ij} \leq 1 \quad \forall i \in N \\ & \sum_{i,j \in N} x_{ij} = k \\ & x \in \{0,1\}^N \end{aligned}$

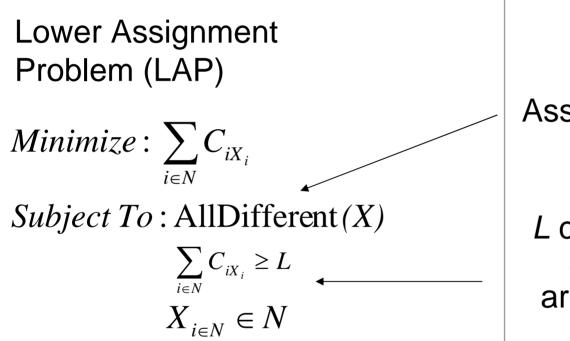
use of a second bound

it is known as the *k*-Assignment problem and can be solved in polynomial time

it is also a relaxation of the previous model (since $c_{ij}^1 = 0$)

Incorporate more information than just the discrepancy constraint

Defining benchmarks (1)



Assignment Structure

L constraint abstracts the side constraints and arbitrarily makes the AP bound poor.

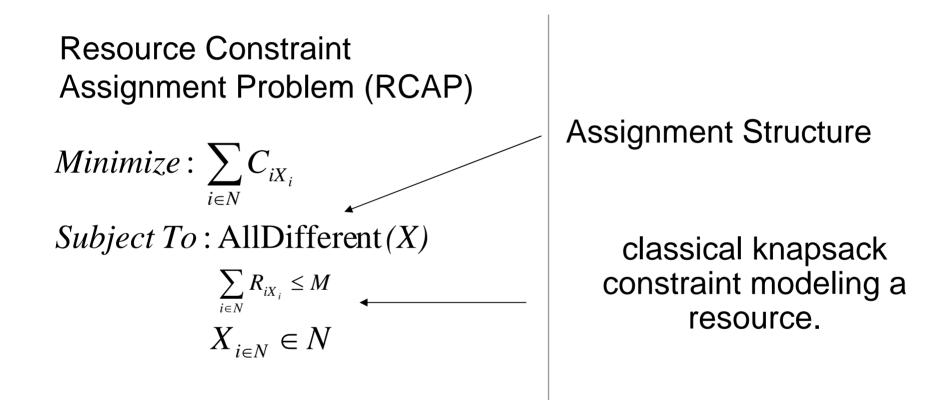
> Didactic but NP-hard and very hard to solve

Defining benchmarks (2)

Asymmetric Traveling Salesman Problem (ATSP)

$$\begin{split} Minimize &: \sum_{i \in N} C_{iX_i} \\ Subject \ To : \text{AllDifferent}(X) \\ & \text{SubTourEli mination}(X) \\ & X_{i \in N} \in N \end{split}$$

Defining benchmarks (3)



NP-hard to solve

Experimental Results

- For all benchmarks we generated 60 test problems using structured cost matrices of the DIMACS ATSP instances.
- Size of the problem was set to N = 25.
- For LAP, *L* is 110% the AP relaxation value.
- For RCAP, first solve AP using *R* as cost vector, then *M* is set 4 times this value.
- Ilog Solver 5.2. on a Intel 1.5 GHz Centrino laptop.
- Time limit (TL) for each run is 3,600 CPU seconds.
- Variable selection based on first fail (min. domain size).
- Value selection based on minimum reduced cost.

Aggregated experimental results (1)

%reduction		Counting		Coociananont	
		Counting	r	Kassignment	
Problem	Time	BT	Time	BT	
LAP	55%	57%	56%	58%	
ATSP	31%	39%	39%	49%	
RCAP	25%	23%	30%	23%	

average k			
Problem	normal DBS	counting	K-assignment
LAP	24.75	4.38	4.35
ATSP	26.00	5.68	5.63
RCAP	23.91	5.16	5.10

Aggregated experimental results (2)

- Taking search into account in the bounding procedures seems to be particularly effective.
- This is a general (and easy) approach which can be widely used when an efficient algorithm for a relaxation provides reduced costs.
- Further exploiting a problem structure can improve the behavior of discrepancy-based additive bounding.

k-discrepancy: Full Integration via LP

- Fully integrate the *Discrepancy Constraint* with the lower bound
 - Use the linear relaxation as a lower bound
 - Not as efficient since an LP is solved at each node
 - Maximum use of discrepancy information

$$\begin{aligned} \text{Minimize} &: \sum_{i \in N} c_{ij} x_{ij} \\ \text{Subect To} &: \sum_{i \in N} x_{ij} = 1 \quad \forall j \in N \\ &\sum_{j \in N} x_{ij} = 1 \quad \forall i \in N \\ &\sum_{i \in N} \sum_{j \in \beta_{X_i}} x_{ij} = k \\ &\text{AnyLinearSideConstraint}(X) \\ &x \in (0,1)^N \end{aligned}$$

k-discrepancy: Partial Integration via Lagrangean Relaxation

Solve the Linear Relaxation Once per discrepancy

Lagrangean Relaxation of the Discrepancy Constraint with optimum multiplier

Solve the Modified Assignment Problem During Search

- Partially integrate the Discrepancy Constraint via Lagrangean Relaxation
 - Only some information on discrepancy is used
 - At each node an assignment problem is solved instead of a linear program

Drawback: the Lagrangean multiplier used is not anymore optimal during search

Additional experimental results

 More integrated is the *Discrepancy Constraint*, less discrepancy level is needed to prove optimality, i.e. in terms of the value of the bound we have:

Additive Bounding < Lagr. Relaxation < Linear Relaxation

- LP and Lagrangean relaxations are less effective both in terms of computing time and number of backtracks (they also solve less problems in TL):
 - LPs are more time consuming
 - Lagrangean multiplier deteriorates
 - Cost-based propagation in pure AP case is more effective

Conclusion

- The AP is extensively used as a relaxation for different purposes.
- On the other hand, the techniques shown in this talk do not depend on the AP.
- The key issue is the use of a combinatorial relaxation, i.e., a relaxation which models a linear program but can be solved with a special purpose technique.
- This is often the case with graph theory models!!!

References

• F. Focacci, A. Lodi, M. Milano, **Cost-based Domain Filtering**, in J. Jaffar, Ed., *Principle and Practice of Constraint Programming – CP 1999*.

• F. Focacci, A. Lodi, M. Milano, **A Hybrid Exact Algorithm for the TSPTW**, *INFORMS Journal on Computing* 14, 403--417, 2002.

• A. Lodi, M. Milano, L.-M. Rousseau, **Discrepancy-based additive bounding for the alldifferent constraint**, in F. Rossi, Ed., *Principle and Practice of Constraint Programming - CP 2003*.