

Optimization in SAP Supply Chain Management

Heinrich Braun, Thomas Kasper

SAP AG

Acceptance of Optimization

Introduction: Supply Chain Management

Supply Chain Management – mySAP SCM

mySAP SCM: Planning Levels

Challenge: Maximize the application of Optimization in SCM

Do´s

- Model Planning Problems as optimization problems
- Use the best optimization algorithms
- Respect the given run time for solution

Don't do's

- Restrict the modeling to optimal solvable instances
 - Size
 - Constraints
- Restrict your optimization algorithms to exact approaches neglecting
 - Iterated Local Search
 - Evolutionary Algorithms etc.

Our Goal

Leverage optimization algorithms by

- Aggregation
- Decomposition

for solving the Planning and Scheduling problems in SCM

Optimization - Expectation by our customer

At most 5% above Optimum ?

Best-of-Breed = Efficiency → Acceptance !

- Depending on problem complexity (model, size)
- Given run time

Efficiency

- Scalability
 - Decomposition = quasi linear
 - Toolbox: alternative algorithms
 - Parallelization
- Return On Investment (ROI)
 - Solution Quality
 - Total Cost of Ownership (Licenses, Maintenance, Administration, Handling)

 (\mathbf{H})

 (\mathbf{H})

OR-Researcher: accepts Problems, which solves his algorithm optimally OR-developer: accepts Problems, which solves his algorithm efficiently OR-user: accepts algorithms, which solves his problem effectively

Optimizer - Expectation by our customer

Idealist

Searching for the global Optimum

Realist

Improving the first feasible solution until Time Out

Sisyphus

Knows, that the problem has changed during run time

Pragmatic

Solves unsolvable problems

9

Hierarchical planning

- Global optimization using aggregation (Supply Network Planning)
- Feasible plans by local optimization (Detailed Scheduling)
- Integration by rolling planning schema
 - ➔ Modeling is crucial !!

Hierarchical Planning

Supply Network Planning (SNP)

- Mid term horizon
- Time in buckets (day, week,..)
- Global optimization
- Maximize profit
- Decide
 - Where to produce
 - How much to produce
 - How much to deliver
 - How much capacities
- Linear optimization (MILP)

Detailed Scheduling (DS)

- Short term horizon
- Time in seconds
- Local optimization
- Disaggregate global plan
 - Time: When to produce
 - Resource:
 On which alternative resource
- Optimize production sequence
- Scheduling algorithms (GA, CP)

SNP Optimizer: Model Overview

PP/DS Optimizer: Model Overview

Example: Complex Modeling

APO Plantafel Bearbeiten Springen Eurokionen Zusätze Einstellungen System Hilfe

APO DS-Plantafel, Planversion JKL301002T, Simulationsversion JKL3010

🛐 📣 🌋 😏 Optimieren... 😤 Neu planen 😽 Ausplanen 🙀 Strategie 🚺 Terminierungsprotokoli

QQ 2 8 8 8 8 4 ≠ ≥ 2 4 7 8 8 8 2 8

	Ressourcenteilbild
Ressource	07.11.2002
reasource	D 21 22 23 00 01 02 03 04 05 00 07 08 09 10 11 12 13 14 15 10 17 18 19 20 21 22 23 00 01 02 03 04 05 00 🎽
WAMGIEß50_4110_008	
WASBA50_1_4110_008	
WASBA50_2_4110_008	
WASBA50_3_4110_008	
WASBA50_4_4110_008	
AMRÜST50_4110_001	
WAMGIEß60_4110_008	
WASBA60_1_4110_008	
WASBA60_2_4110_008	
WASBA60_3_4110_008	
WASBA60_4_4110_008	
AMRÜST60_4110_001	
WAMGIEB70_4110_008	
WASBA70_1_4110_008	
WASBA70_2_4110_008	
WASBA70_3_4110_008	
WASBA70_4_4110_008	
AMRÜST70_4110_001	
WAMGIEß80_4110_008	
WASBA80_1_4110_008	
WASBA80_2_4110_008	
WASBA80_3_4110_008	
WASBA80_4_4110_008	
WASBA80_5_4110_008	
AMRÜST80_4110_001	
	Auftragsteilbild
Auftragsnumme Bedarf	09.11.2002
	D 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 ♥▼
900000207926, 40, 11.794,000, KG	ROH_1SFQ_FQ_322_600*1600*4550 07.11.2002 16:07:00 Änd
	D QVP (1) (100) 🛅 vawdnt05 INS
🏦 Start 🛛 🗹 🔍 🖪 🔟 📾	🥔 🛛 🐼 dsopts 🖾 Et\blac 🗏 Windo 🐼 dsopts 🔯 Inbox 💆 perfor 🤯 SAP Lo 💞 Servic 🐺 APO D 💞 SAP Ea

SAP

Integration between SNP and PP/DS

SNP

- Planning only in SNP horizon
- Release SNP Orders only in PP/DS horizon
- Respect PP/DS orders as fixed
 - capacity reduction
 - material flow

PP/DS

- Respect pegged SNP Orders as due dates
 - No capacity reduction
 - But material flow
- No restrictions for scheduling PP/DS orders

Integration between SNP and PP/DS

SNP

- Planning only in SNP horizon
- Release SNP Orders only in PP/DS horizon
- Respect PP/DS orders as fixed
 - capacity reduction
 - material flow

PP/DS

- Respect pegged SNP Orders as due dates
 - No capacity reduction
 - But material flow
- No restrictions for scheduling PP/DS orders

THE BEST-RUN BUSINESSES RUN SA

Mastering the algorithmic complexity: Aggregation

Model Accuracy versus Solution Quality -> SNP

- Time Aggregation (telescopic buckets)
- Limit the discretization
- Product Aggregation (families of finished products)
- Location Aggregation (transport zones, distribution centers)

However: Sufficient model accuracy of SNP for DS

Modeling of setup (important for process industry)

SNP Optimization: Anticipation of Setup

Multi-Level Capacitated Lot Sizing Problem (MLCLSP)

Setup cost and/or consumption in each bucket

Good results

Setup consumption small compared to bucket capacity (small lots)

Bad results

Setup consumption big compared to bucket capacity (big lots)

SNP Optimization: Lot Sizing in SAP SCM

Proportional Lot Sizing Problem (PLSP)

- Considering setup in preceding bucket
- At most one setup per bucket

Constraints on cross-period lots (= campaign quantity)

Minimal campaign quantity

Campaign quantity integer multiple of batch size

SNP Campaign Optimization: Benchmarks

Comparison: real word problems of process industry ca. 500 000 decision variables, 200 000 constraints

time in minutes

Mastering the algorithmic complexity: Decomposition

Global versus local optimality -> SNP + DS

- Local optimality depends on neighborhood
- High solution quality by local optimization
- Local Optimization = Decomposition

Decomposition strategies

- SNP: time, resource, product, procurement
- DS: time, resource
- Parallelization by "Agents"

Time Decomposition - Local Improvement

Gliding window script

- 1. Optimize only in current window
- 2. Move window by a time delta
- 3. Go to first step

Customer model

"Production Grouping"

~15 comparable selections 179'086 Variables 66'612 Constraints 10'218 Binary variables

OPAL Executable CPLEX 8.0

Pentium IV 1,5 GHz 1 GB Main memory

Multi Agent Optimization

Objective

- Multi Criteria Optimization
- user selects out of solutions with
 - similar overall quality
 - different components
- Use power of Pallelization

Multi Agent Strategy

- Different AGENTS focusing on Setup or Delay or Makespan
- Agents may use any optimizer (CP, GA, ..)
- New solutions by local improvement
- Integrated in Optimizer Architecture

Performance

■ Speedup ≈ available processors

Scheduling Optimizer Architecture

Optimization Performance

Supply Network Planning

- Pure LP
 - Without discrete constraints
 - Up to several million decision variables and about a million constraints
 - Global optimum guaranteed
- For discrete constraints
 - No global optimum guaranteed
 - Quality depends on run time and approximation by pure LP

Detailed Scheduling

- Up to 200 000 activities (no hard limitation)
- First solution as fast as greedy heuristics
- More run time improves solution quality

Summary - Mastering the Algorithmic complexity

- Aggregation
 - SNP: time, product, location
 - Automated Generation: SNP model deduced from DS model !!
- Decomposition
 - SNP: time, resource, product, procurement
 - DS: time, resource
 - Parallelization by "Agents"
- Hierarchy of Goals (customized by scripts)
 - $\blacklozenge \mathsf{SNP} \leftrightarrow \mathsf{DS}$
 - SNP: Service Level $\leftarrow \rightarrow$ Production Costs
 - ◆ DS: Service Level ← > Storage Costs
- Open to partner solutions: Optimizer extension workbench

Our Mission

Optimization as an integrated standard software solution

Focus of Development

In the past

- larger optimization problems
- better solution quality
- more functionality

Current customer view

- Very confident with performance, solution quality, functionality
- Problem: Mastering the solution complexity (e.g. data consistency)

Current focus of development

- More sophisticated diagnostic tools
- Parallelization by GRID Computing

Heuristic (relaxing capacity) versus Optimization

Or

Why do not all SNP-Customers use optimization?

SNP Heuristic

Interactive Planning: Planner responsible for feasibility

 \rightarrow limited model accuracy sufficient

SNP Optimizer

- Automated Planning: Optimizer responsible for feasibility
 - \rightarrow high model accuracy necessary
- Application in complex scenarios

Acceptance criteria: Solution quality

	SNP Heuristik	SNP Optimierer
Scaling of Model size	v	LP: V MILP: using decomposition
Scaling of Model accuracy	Limited model accuracy	Very detailed → MILP: using decomposition
Acceptance by end user	simple model + Transparency of algorithms → acceptable solution	 Not sufficient: (Global) integer gap as Indicator Not acceptable: apparent improvement potential apparent improvement potential Producing too early Neglecting Priorities Goal: Local Optimality > Decomposition

Acceptance criteria: Solution transparency

	SNP Heuristic	SNP Optimizer
Solution stability	 Sequential processing of orders and few constraints robust for small data modifications 	 Global Optimization > small data modifications may cause large solution changes MILP: change of search
Interaction Data/Model versus Solution	 No "Black-Box" algorithms transparent 	 Unforeseeable effects: by considering both globally and simultaneously costs and constraints Soft versus Hard Constraints violation depending on solution quality! Question: violation avoidable by more run time?

Acceptance by different roles

OR Specialists

- solution quality
- run time behavior
- IT department (TCO = Total Cost of Owner Ship, ROI = Return on Investment)
 - ♦ Maintenance
 - ♦ Administration
 - Integration
 - Upgrades / Enhancements

Consultants

- Training / Documentation / Best practices
- Complete and validated scenarios
- Sizing tools
- End user (Planner)
 - Modeling capabilities
 - Solution quality
 - \rightarrow acceptable solution in given run time, error tolerance
 - Solution transparency
 - ightarrow Diagnostics, Warnings, Tool tips in case of errors

Optimization as standard software?!

Tradeoff

- Solution quality
- Solution costs (development, maintenance, ..)

Problems for special solutions

- Modeling as "moving target"
 - Changing master data
 - additional constraints
 - additional resources (machines)
 - Changing transactional data
 - Number of orders
 - Distribution of orders to product groups
 - Changing objectives (depending on the economy)
- Effort for optimization algorithms only <10% of overall costs</p>
 - Integration
 - Interactive Planning
 - ♦ Graphical user interface

Which algorithms for which planning levels?

Supply Network Planning
 LP / MILP Solver (CPLEX)
 Classical Operations Research

Detailed Scheduling

- Constraint Programming
- Evolutionary Algorithms
- **Metaheuristics**

Dialectic of naming debate

Academic: Optimization as an algorithm

Find an optimal solution

or

Practical: Optimization as a dynamic process

> "the path is the goal"

Optimization - in practice

Global optimal

- Often missed
- > Tradeoff: Model accuracy <-> solution quality

Metaheuristics

- > Very robust
- > Quality scales with given run time

Local optimal

- > A must have
- > The planer may not find simple improvements

Acceptance by different roles

- OR Specialists
 - solution quality
 - ♦ run time behavior

IT department (TCO = Total Cost of Owner Ship, ROI = Return on Investment)

- ♦ Maintenance
- Administration
- Integration
- Upgrades / Enhancements

Consultants

- Training / Documentation / Best practices
- Complete and validated scenarios
- Sizing tools
- End user (Planner)
 - Modeling capabilities
 - Solution quality
 - \rightarrow acceptable solution in given run time, error tolerance
 - Solution transparency
 - ightarrow Diagnostics, Warnings, Tool tips in case of errors

Optimizer architecture

"Acceptance"-Criteria: ROI

- Total Cost of Ownership
 - Licenses (development effort)
 - ♦ Maintenance
 - Enhancements
- Integration (to system landscape at customer)
- Planning quality

Architecture

- Toolbox
- Exchangeable Components
- Idea: Divide and Conquer for improving the components
- → SAP Netweaver

Toolbox: alternative Optimizer

Evolution / Competition of Optimizer

- cf. Linear Optimization (ILOG CPLEX)
 - Primal Simplex
 - Dual Simplex
 - Interior Point Methods

Alternative Optimizer for Scheduling

- Constraint Programming (ILOG)
- Evolutionary Algorithms (SAP)
- Relax and Resolve (University of Karlsruhe)
- Alternative Optimizer for Vehicle Routing and Scheduling
 - Constraint Programming, Tabu Search (ILOG)
 - Evolutionary Algorithms (SAP)

Acceptance by different roles

- OR Specialists
 - solution quality
 - run time behavior

■ IT department (TCO = Total Cost of Owner Ship, ROI = Return on Investment)

- ♦ Maintenance
- ♦ Administration
- Integration
- Upgrades / Enhancements

Consultants

- Training / Documentation / Best practices
- Complete and validated scenarios
- Sizing tools
- End user (Planner)
 - Modelling capabilities
 - Solution quality
 - \rightarrow acceptable solution in given run time, error tolerance
 - Solution transparency
 - \rightarrow Diagnostics, Warnings, Tool tips in case of errors

Acceptance in Consulting

Problem: Know How

- Consultants sell methods to the customer which they can
 - master
 - modify (additional heuristics)
- Consequence for Optimization?!

Expert-Consulting Service for Optimization

- Remote Consultant located in development
- In particular, expert help for consulting partner

Quick Questionnaire

- "Early watch" for planning complexity
- Simple modeling tool
 - What can I do to reduce model complexity?
 - Fallback Model: Which simplified model is uncritical?
 - Which model details are critical?

Sizing for Supply Network Planning

SNP Optimizer Questionnaire

Continuous model		Estimate	Resulting variables	Resulting constraints
Number of planning periods	82)		
Number of (planning relevant) location product combinations	14.500		1.189.000	1.189.000
Number of transportation lane product combinations	176.000		14.432.000	
Number of location product combinations with customer demands	11.705		1.919.620	959.810
Number of location product combinations with corrected demand forecasts		0	0	0
Number of location product combinations with forecasted demands	11.705		1.919.620	959.810
Average lateness (in periods) allowed for demand items	1			
Number of location product combinations with safety stock requirements	11.705		959.810	959.810
Number of location product combinations with product-specific storage bound			0	
Number of location product combinations with an active shelf life		0	0	0
Number of production process models (PPMs)	1.641		134.562	
Number of resources (production, transportation, handling in/out, storage)	50		4.100	4.100
	NUMD	er of constraints:	4.072.530	
Discrete model		Discretized	Additional	Additional
		periods	discrete variables	constraints
Number of PPMs with minimum lot size requirements	1.641	ponouo	134.562	
Number of PPMs with discrete lot size requirements	1.641		134.562	
Number of PPMs with fixed resource consumption	1.641		134.562	
Number of production resources with discrete expansion			0	
Number of transportable products with minimum lot size requirements			0	
Number of transportable products with discrete lot size requirements			0	
Number of piecewise-linear cost functions (procurement, production, transport)			0	
Number of piecewise-linear cost functions (procurement, production, transport)			0	

© SAP AG 2002,

Sizing for Supply Network Planning

SNP Optimizer Questionnaire

Continuous model		Estimate	Resulting variables	Resulting constraints
Number of planning periods	13			
Number of (planning relevant) location product combinations	14.500		188.500	188.500
Number of transportation lane product combinations	176.000		2.288.000	
Number of location product combinations with customer demands	11.705		304.330	152.165
Number of location product combinations with corrected demand forecasts		0	0	0
Number of location product combinations with forecasted demands	11.705		304.330	152.165
Average lateness (in periods) allowed for demand items	1			
Number of location product combinations with safety stock requirements	11.705		152.165	152.165
Number of location product combinations with product-specific storage bound			0	
Number of location product combinations with an active shelf life		0	0	0
Number of production process models (PPMs)	1.641		21.333	
Number of resources (production, transportation, handling in/out, storage)	50		650	650
Discrete model		Discretized	Additional	Additional
		periods	discrete variables	constraints
Number of PPMs with minimum lot size requirements	1.641	-	21.333	
Number of PPMs with discrete lot size requirements	1.641		21.333	
Number of PPMs with fixed resource consumption	1.641		21.333	
Number of production resources with discrete expansion			0	
Number of transportable products with minimum lot size requirements			0	
Number of transportable products with discrete lot size requirements			0	
Number of piecewise-linear cost functions (procurement, production, transport)			0	
Add	itional number of d	iscrete variables:	63.999	
	Additional numb	er of constraints:	0	

54

CP AI OR 2004, Heinrich Braun

		estionna	aire	
Version 4.0.1 for	SAP APO 3.0, 3.	1 and 4.0		
Memory consumption		number of	memory per	memory
		objects	object[kb]	consumption[Mb
Orders inside the optimization horizon	5.000	5.000	4,50	2
Average number of activities in an order	10,0	50.000	5,00	24
Average number of modes of an activity	3,0	150.000	1,00	14
Number of resources	10	10	530,00	
Number of setup matrices	2	2	55,00	
Maximum number of setup attributes in a setup matrix	500	250.000	0,10	4
Complexity of the model		decree of		f features
complexity of the model		degree or	10 0	riealures
<u> Cizo</u>		<i>(1111/1/1111)</i>	ner deara	e of difficulty
SIZE		A	per degre	e of difficulty
Backward Scheduling	ves	A C	per degre A:	ee of difficulty
Backward Scheduling Block planning on resources	yes no	A C A	per degre A: B:	ee of difficulty 1 0
Backward Scheduling Block planning on resources Bottleneck optimization	yes no no		per degre A: B: C:	ee of difficulty 1 0 2
Backward Scheduling Block planning on resources Bottleneck optimization Campaigns	yes no no no	A C A C B	per degre A: B: C:	ee of difficulty 1 0 2
Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt	yes no no no no	A C A C B B B	per degre A: B: C:	ee of difficulty 1 0 2
Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt Deadlines modeled as hard constraints	yes no no no no no	A C A C B B B B B	per degre A: B: C:	ee of difficulty 1 0 2
Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt Deadlines modeled as hard constraints Validity periods of orders	yes no no no no no no no	A C A C B B B B B B B	per degre A: B: C:	ee of difficulty 1 0 2
Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt Deadlines modeled as hard constraints Validity periods of orders Cross-order relationships	yes no no no no no no no no	A C A C B B B B B B B B B B	per degre A: B: C:	ee of difficulty 1 0 2
Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt Deadlines modeled as hard constraints Validity periods of orders Cross-order relationships Mode linkage	yes no no no no no no no no no no	A C A C B B B B B B B B C	per degre A: B: C:	ee of difficulty 1 0 2 Degree
Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt Deadlines modeled as hard constraints Validity periods of orders Cross-order relationships Mode linkage Sequence dependent setups activities	yes no no no no no no no no yes	A C A C B B B B B B B C C C	per degre A: B: C:	Degree of complexity:
Backward Scheduling Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt Deadlines modeled as hard constraints Validity periods of orders Cross-order relationships Mode linkage Sequence dependent setups activities Shelf life or max. pegging arcs	yes no no no no no no no yes no	A C A C B B B B B B B B C C C A	per degre A: B: C:	Degree of complexity: high
Backward Scheduling Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt Deadlines modeled as hard constraints Validity periods of orders Cross-order relationships Mode linkage Sequence dependent setups activities Shelf life or max. pegging arcs Container resource	yes no no no no no no no yes no no	A C A C B B B B B B B B C C C C A A	per degre A: B: C:	Degree of complexity: high
Backward Scheduling Backward Scheduling Block planning on resources Bottleneck optimization Campaigns continous requirement/receipt Deadlines modeled as hard constraints Validity periods of orders Cross-order relationships Mode linkage Sequence dependent setups activities Shelf life or max. pegging arcs Container resource Synchronization on resources	yes no no no no no no no yes no no no no no no no no no no no no no	A C A C B B B B B B B C C C C A A C	per degre A: B: C:	Degree of complexity: high

If the degree of complexity is not "moderate" SAP recommends the optimization consulting service

PP/DS Optimization Questionnaire								
Version 4.0.1 for	SAP APO 3.0, 3.	1 and 4.0						
Memory consumption		number of	memorv per	memorv				
, i		obiects	obiect[kb]	consumption[Mb]				
Orders inside the optimization horizon	25.000	25.000	4.50	110				
Average number of activities in an order	10.0	250.000	5.00	1.220				
Average number of modes of an activity	3.0	750.000	1,00	732				
Number of resources	10	10	530,00	Ę				
Number of setup matrices	2	2	55,00	(
Maximum number of setup attributes in a setup matrix	250.000	0,10	49					
Safety factor: 130% Memory consumption [Mb]: 2.762								
Complexity of the model		degree of	no of	features				
		difficulty	per degre	e of difficulty				
Size		A						
Backward Scheduling	yes	С	A:	1				
Block planning on resources	no	А	B:	0				
Bottleneck optimization	no	С	C:	2				
Campaigns	no	В						
continous requirement/receipt	no	В						
Deadlines modeled as hard constraints	no	В						
Validity periods of orders	no	В						
Cross-order relationships	no	В						
Mode linkage	no	C						
Sequence dependent setups activities				Degree				
Shelf life or max. pegging arcs	yes	C		Degree of complexity:				
	yes no	C A		Degree of complexity: challenging				
Container resource	yes no no	C A A		Degree of complexity: challenging				
Container resource Synchronization on resources	yes no no no	C A A C	C	Degree of complexity: challenging				

If the degree of complexity is not "moderate" SAP recommends the optimization consulting service

Acceptance by different roles

- OR Specialists
 - solution quality
 - ♦ run time behavior
- IT department (TCO = Total Cost of Owner Ship, ROI = Return on Investment)
 - ♦ Maintenance
 - ♦ Administration
 - Integration
 - Upgrades / Enhancements

Consultants

- Training / Documentation / Best practices
- Complete and validated scenarios
- Sizing tools

End user (Planner)

- Modeling capabilities
- Solution quality
 - \rightarrow acceptable solution in given run time, error tolerance
- Solution transparency
 - → Diagnostics, Warnings, Tool tips in case of errors

Model Analysis

Product properties

- Cardinality of sourcing alternatives for a location-product
- Maximum throughput per sourcing alternative for a location product
- Lead-time per location product
- Cycle analysis

Resource properties

Key resources

number of (final) products requiring a resource

Cost model properties

Non-delivery penalty configuration

non-delivery penalty > production costs+ Delay costs ?!

Transport-Storage

transport_costs > storage_costs ?!

Push analysis

storage_costs_L1 + transport_costs < storage costs_L2 ?!</pre>

Pull/Push Redundancy: Example Pull Closure

- Eliminate location-products not required for demand- or safety stock satisfaction, min resource utilization, or not involved in cost push
- Eliminate all dependent lane-products, lanes and locations
- Eliminate all dependent activities (procurement, transport, PPM)

THE BEST-RUN BUSINESSES RUN SAP

Problem characteristics

#buckets	#loc-products	#lane-products	#ppm	#products	#locations	#lanes	#ineq	#vars	memory consumption
24	8.788	2.647	10.680	5.644	64	207	201.327	<u>524.578</u>	994.050.048

Level of redundancy

Data Reduction

Memory Consumption

■ w /o cost push ■ w ith cost push

Problem characteristics

#buckets	#loc-products	#lane-products	#ppm	#products	#locations	#lanes	#ineq	#vars	memory	consumption
33	5.092	23.107	1.169	260	32	146	201.327	524.578		1.569.828.864

Level of redundancy

Data Reduction

Report of Solution Quality

Key Indicators

- Resource utilization
 - ♦ Setup time
 - ♦ Idle time
- Stock
 - ♦ Safety
 - ♦ Range of coverage
- Demand
 - Backlog
 - Delay (Percentage of volume, average of delay in days, priorities)
 - Non Deliveries

Aggregation – Drill Down

- Location
- Product

Advanced solution analysis

Explanation

- Non deliveries
- Delay
- Missed safety stock

Easier Optimizer Customizing

- Preconfigured optimizer profiles
- Support for generating cost parameters

Acceptance by OR-Specialist

- Evolutionary algorithms are also optimization algorithms
- \rightarrow Bridging the gap between Local Search and MILP

Acceptance by IT-department / "Decider of the investment"

- Solution completeness, Integration, Openness to Enhancements
- → Component Architecture (SAP Netweaver)

Acceptance by Consultant

- Know How, References, Best Practices, Quality guarantees
- \rightarrow Optimization as "commodity" needs patience

Acceptance by End user

- Explanation Tools
- Semi-automatic optimizer configuration

Reallocate Orders using aggregated level (SNP)

Problem

Scheduling a late order or Solving a machine break down

Solving on same location and same production process model

Re-optimize in detailed scheduling

Change location or production model

- Remove orders overlapping machine break down
- Resolve problem on aggregate level (SNP)
 - Selecting appropriate location and/or alternative PPM
- Release order to detailed scheduling
- Re-optimize detailed scheduling
- ONLY APPLICABLE: Inside overlapping horizon of SNP and PP/DS

Setup for each bucket

Enhancing PP/DS orders by SNP orders

