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Abstract

This paper presents and compares
two methods for checking if a box is
included inside the solution set of an
equality constraint with existential
quantification of its parameters. We
focus on distance constraints, where
each existentially quantified parame-
ter has only one occurrence, because
of their usefulness and their simplic-
ity. The first method relies on a
specific quantifier elimination based
on geometric considerations whereas
the second method relies on compu-
tations with generalized intervals—
interval whose bounds are not con-
strained to be ordered. We show
that on two dimension problems,
the two methods yield equivalent re-
sults. However, when dealing with
higher dimensions, generalized inter-
vals are more efficient.

Keywords: Inner approximation,
distance constraint, AE-solution set,
quantifier elimination, generalized
intervals, continuous domains.

1 Introduction

The interval theory ([13, 6]) was born in the
60’s aiming rigorous computations with un-
certain quantities. Interval constraint prop-
agation ([1, 2]) is a widely used technique
that allows one to reduce the domains of vari-
ables involved in a numerical constraint with-
out losing any solution. When this technique

is coupled with a bisection algorithm, an accu-
rate reliable outer approximation of the solu-
tion set of a numerical Constraint Satisfaction
Problem (CSP) can be achieved ([8]). How-
ever, when the solution set has a non-null (hy-
per)volume, such a branch and prune algo-
rithm will bisect again and again the boxes
included inside the solution set, leading to in-
efficient computations. This situation can be
strongly improved using a test for detecting
inner boxes so that boxes which are proved
to lie inside the solution set will not be bi-
sected any more. Furthermore, in addition
to the speedup of computations, such inner
boxes often have interesting interpretations.
There are different situations where the so-
lution set of a CSP has a non-null volume,
e.g. inequality constraints ([11]) or con-
straints with existentially quantified param-
eters, e.g. a constraint on variable x ∈ R like
(∃a ∈ a) (c(a, x)) where a is an interval ([7]).
In this paper, we focus on quantified distance
constraints where the variables are the coor-
dinates of a point x ∈ R

n. As existentially
quantified parameters, we have the coordi-
nates of another point a ∈ Rn and a distance
r ∈ R. Then, the distance constraint fixes
the distance between a and x to be equal to
r. The approximation of such constraints can
be useful in many contexts, e.g. GPS local-
ization or parallel robots modeling ([15, 12]).
We propose and compare two different meth-
ods for checking if a box is included inside
the solution set of a distance equation with
existentially quantified parameters. On one
hand, the quantified distance constraint is
changed to an equivalent non quantified dis-



junction/conjunction of constraints which can
be checked using interval arithmetic. On the
other hand, the Kaucher arithmetic of gen-
eralized intervals ([9, 4]), which represents a
new formulation of the modal intervals the-
ory ([14, 7]), allows one to verify the inclu-
sion through a generalized interval evaluation
of the constraint. These two tests for inner
boxes are implemented in a branch and prune
algorithm and experiments have been carried
out on academic examples in order to compare
them.

Notations Following [10], intervals are de-
noted by boldface letters. Integral inter-
vals are denoted by [m..n]. Let E =
{e1, ..., en} be an ordered set of indices, the
vector (xe1 , ...,xen) is denoted by xE , so that
(x1, . . . ,xn) is denoted by x[1..n]. If no confu-
sion is possible, the usual notation x will be
used in place of x[1..n].

2 Problem statement

The Euclidean distance between the points
a ∈ Rn and x ∈ Rn is defined by

f(a, x) =
√( ∑

k∈[1..n]

(xk − ak)2
)

Given two n-dimensional boxes x and a and
an interval r, we are interested in the following
quantified distance constraint

(∃a ∈ a) (∃r ∈ r) (f(a, x) = r) (1)

which is denoted by ca,r(x). The set of x ∈ Rn

which satisfies (1) is denoted by ρa,r. It is
shown in Figure 1: on the left hand side
graphic, the center is known exactly (a =
(1, 1)) while the radius is known with uncer-
tainty (r = [0.9, 1.1]). On the right hand side
graphic, all parameters are known with un-
certainty (a = ([0.8, 1.2], [0.8, 1.2]) and r =
[0.9, 1.1]), leading to a less intuitive graph.
This paper aims to provide some sufficient
conditions for the inclusion x ⊆ ρa,r.

It can be noted that a sufficient condition de-
signed for one quantified distance constraint
can also be used for a conjunction of quanti-
fied distance constraints

∧
k∈[1..m] ca(k),r(k)(x),

Figure 1: Quantified distance constraints.

where a(k) are some n-dimensional boxes and
r(k) some intervals. Indeed, if existentially
quantified parameters are not shared between
different constraints, we have the following
implication:

∧
k∈[1..m]

x ⊆ ρa(k),r(k) =⇒ x ⊆
⋂

k∈[1..m]

ρa(k),r(k)

3 A specific quantifier elimination

The quantifier elimination (QE) consists in
transforming a quantified constraint into an
equivalent non quantified constraint. A gen-
eral QE algorithm for polynomial constraints
is available ([3]). However, its high complex-
ity restricts its application to small problems.
In the particular case of distance constraints,
the implementation of QE proposed in Math-
ematica5.1 succeeds only in the 1-dimensional
case. For higher dimensions, the calculus
could not be ended before memory overflow
on a Pentium IV 2Ghz with 512Mo of mem-
ory. In this section, we present a specific QE
for the distance constraint ca,r(x). The pre-
sentation is done in the two dimensional case.
The three dimensional case can be treated in
the same way. However, higher dimensions
are still out of the scope of the proposed spe-
cific QE.

The typical graph of the constraint ca,r(x) is
shown in the left side of Figure 2, while its
eight characteristic circles are represented on
the right side. These circles are obtained us-
ing the bounds of the intervals a and r within
the distance constraint. We constructed the
graph of the left side graphic using the infor-
mations of the right side graphic, i.e. using
only the bounds of the involved intervals.



Figure 2: Quantified distance constraint to-
gether with its eight charateristic circles.

3.1 Decomposition of the quantified
distance constraint

The specific QE proposed here relies on the
decomposition of ca,r(x) into two auxiliary
constraints with convex graph. The graphs of
these two auxiliary constraints are illustrated
on Figure 3: let us call the left side constraint
c′a,r(x) and the right side one c′′a,r(x). No-
tice that the boundary of the right hand side
graph is not included in the graph of c′′a,r(x)
so that we clearly have

ca,r(x) ⇐⇒ c′a,r(x) ∧ ¬c′′a,r(x)

(see [5] for a proof in the general case tak-
ing into account some non typical situations).
We now characterize these two auxiliary con-
straints using the bounds of the involved in-
tervals.

Figure 3: The two constraints c′a,r(x) and
c′′a,r(x) used in the reconstruction of ca,r(x).

3.1.1 The constraint c′a,r(x)

The graph of the constraint c′a,r(x) is built
using the four exterior circles of Figure 3 and
two boxes. Indeed, c′a,r(x) is equivalent to the
disjunction of the following six constraints:

1. f(a1,a2, x) ≤ r 3. f(a1,a2, x) ≤ r

2. f(a1,a2, x) ≤ r 4. f(a1,a2, x) ≤ r

5. x ∈ ([a1 − r,a1 + r],a2)

6. x ∈ (a1, [a2 − r,a2 + r])

This reconstruction of c′a,r(x) is illustrated by
Figure 4: the first four constraints represent
four disks (left hand side graph of Figure 4).
The graph of their disjunction is close to the
graph of c′a,r(x) but some gaps are present.
The last two constraints fill the remaining
gaps thanks to two boxes (right hand side of
Figure 4).

Figure 4: Reconstruction of the constraint
c′a,r(x) using four disks and two boxes.

3.1.2 The constraint c′′a,r(x)

The graph of the constraint c′′a,r(x) is easily
obtained by intersecting four open disks cor-
responding to the interior circles of Figure 2.
The constraint c′′a,r(x) is equivalent to the con-
junction of the four following constraints:

1. f(a1,a2, x) < r 3. f(a1,a2, x) < r

2. f(a1,a2, x) < r 4. f(a1,a2, x) < r

Finally, ¬c′′a,r(x) is expressed as the disjunc-
tion of four (non-strict) inequalities.

3.2 Interval arithmetic

Now, we use classic interval arithmetic to
evaluate the previously constructed expres-
sion for all x in a given box x, in the following
way:

• for constraints 5. and 6. of section 3.1.1,
we have x ⊆ ã =⇒ (∀x ∈ x) (x ∈ ã),
where ã is one of the two intervals in-
volved in the constraints.

• for the other constraints, the natural ex-
tension of f is used (the real opera-
tions are replaced by their interval coun-
terparts in the expression of f): we
have f(ã,x) ◦ r̃ =⇒ (∀x ∈ x) (f(ã, x) ◦ r̃)
where ◦ ∈ {≤,≥} and ã1 ∈ {a1,a1},



ã2 ∈ {a2,a2}, and r̃ ∈ {r, r} are some
bounds of the original intervals.

We now have a sufficient condition for x ⊆
ρa,r. But this is not a necessary condition:
a box can satisfy x ⊆ ρa,r while it does not
satisfy any of the six constraints presented in
Section 3.1.1. Such a box would intersect sev-
eral graphs among the ones presented in Sec-
tion 3.1.1 but would be included in none of
them (this flaw will be called the decomposi-
tion flaw from now on). However, it can be
proved that given a box satisfying x ⊆ ρa,r,
the proposed sufficient condition will prove
this inclusion after a finite number of mid-
point bisections.

4 Generalized interval evaluation

In this section a sufficient condition is pro-
posed for a n-dimensional box x to satisfy
x ⊆ ρa,r. It is based on one evaluation of
the expression of f(x, a) using generalized in-
tervals and their arithmetic. This technique
was initially proposed in the modal intervals
theory (see [14, 7]) and is now informally pre-
sented in a revisited way using generalized
intervals (see [4] for a detailed presentation
of the new formulation of the modal intervals
theory). This new formulation allows one to
understand the underlying mechanisms.

4.1 Generalized intervals and
quantifiers

The intervals usually considered in the in-
terval theory are closed, bounded and non-
empty. These intervals are uniquely defined
by two real numbers, called their bounds.
The lower bound of an interval is of course
lower or equal than its upper bound. Gener-
alized intervals are defined relaxing the con-
straint that bounds have to be ordered, e.g.
[−1, 1] is a proper interval and [1,−1] is an
improper interval. So, related to a set of re-
als {x ∈ R | u ≤ x ≤ v}, where u, v ∈ R, one
can consider two generalized intervals [u, v]
and [v, u]. It will be convenient to use the
operations dual [u, v] = [v, u] and pro [u, v] =
[min{u, v},max{u, v}] (called proper projec-

tion) to change the proper/improper quality
of a generalized interval keeping unchanged
the underlying set of reals. The set of gener-
alized intervals is denoted by KR, the set of
proper intervals by IR and the set of improper
intervals by IR.

An inclusion is defined for generalized inter-
vals by x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y,
e.g. [−1, 1] ⊆ [−1.1, 1.1] (the inclusion cor-
responds to the inclusion between the under-
lying sets of reals), [1.1,−1.1] ⊆ [1,−1] (the
inclusion between the underlying sets of reals
is reversed) and [2, 0.9] ⊆ [−1, 1] (the under-
lying sets of reals have at least one common
point).

Let us now consider a continuous function g :
R

n −→ R, a generalized interval vector x ∈
KR

n and a generalized interval z ∈ KR. We
now define the (g,x)-interpretability of z as
following: first, if x1, . . . , xn, and z are proper
then by definition z is (g,x)-interpretable if
and only if

(∀x ∈ x) (∃z ∈ z) (g(x) = z) .

Therefore, when all involved intervals are
proper, we obtain the interpretation of the
classical interval theory. Second, if an im-
proper interval is involved in place of a proper
one, the related quantifier is changed in the
quantified proposition to be satisfied, keeping
the universal quantifiers in front of the quan-
tified proposition. Also, when an improper in-
terval is associated to a variable, the domain
of this variable is the proper projection of the
former. For example, if x1, z ∈ IR (proper)
and x2 ∈ IR (improper) then by definition z
is (g,x)-interpretable if and only if

(∀x1 ∈ x1) (∃z ∈ z) (∃x2 ∈ pro x2)
(g(x) = z) .

On the other hand, if x1 ∈ IR and x2, z ∈ IR
then by definition z is (g,x)-interpretable if
and only if

(∀x1 ∈ x1) (∀z ∈ pro z) (∃x2 ∈ pro x2)
(g(x) = z) .

Thanks to the definition of (g,x)-
interpretable intervals, we are able to handle



quantified propositions by only performing
computations on generalized intervals. This
will lead to efficient computations (see [4] for
more details).

The definition of interpretable generalized in-
tervals is stated, the next step is to construct
such generalized intervals. This construction
follows the construction of classical interval
extensions: first the construction is done for
simple functions (Subsection 4.2). This leads
to some formal expressions of interpretable in-
tervals in the cases of simple elementary func-
tions like +, −, ×, ÷, x2, ... As in the context
classical interval analysis, these expressions
form a generalized interval arithmetic (that
is proved to coincide with the Kaucher arith-
metic). Then this generalized interval arith-
metic is used to perform some generalized in-
terval evaluation of the function (Subsection
4.3). Although it is not true in general, this
evaluation is proved to compute interpretable
generalized intervals when the expression used
for the interval evaluation contains only one
occurrence of each variable (see [4] for the
specific treatment of expressions that contain
multiple occurrences of variables). There-
fore this generalized interval evaluation can
be used for distance equations.

4.2 The Kaucher arithmetic

The Kaucher arithmetic extends the classi-
cal interval arithmetic to generalized inter-
vals (see [9, 14, 4]). The Kaucher addition
and subtraction have the same expressions
than their classical counterparts: x + y =
[x+y,x+y] and x−y = [x−y,x−y]. Also,
when only intervals with positive bounds are
involved, the Kaucher multiplication has the
following expression: x × y = [x × y,x × y].
In the general case, the expressions of the
Kaucher multiplication and division are more
complicated. Although it was not introduced
with this goal, the Kaucher operation x ◦ y,
where ◦ ∈ {+,−,×, /}, is proved to compute
a (◦,x,y)-interpretable generalized intervals
(see [14, 4]). For example, [1, 2] + [10, 4] =
[11, 6] is interpreted by

(∀x ∈ [1, 2]) (∀z ∈ [6, 11]) (∃y ∈ [4, 10])
(x + y = z)

and [1, 2]× [10, 4] = [10, 8] is interpreted by

(∀x ∈ [1, 2]) (∀z ∈ [8, 10]) (∃y ∈ [4, 10])
(x× y = z)

Also, univariate functions f(x) like x2

or
√

x are extended to generalized inter-
vals in the following way: the interval
f(x) satisfies pro f(x) = range (f,pro x)
and has the same proper/improper qual-
ity than x, e.g. [2, 3]2 = [4, 9] is inter-
preted by (∀x ∈ [2, 3]) (∃z ∈ [4, 9])

(
x2 = z

)
and [3, 2]2 = [9, 4] is interpreted by
(∀z ∈ [4, 9]) (∃x ∈ [2, 3])

(
x2 = z

)
.

Now, as we can compute interpretable inter-
vals for elementary functions, we are in po-
sition to provide interpretable intervals for
more realistic functions compounded of ele-
mentary functions.

4.3 Generalized evaluation of an
expression

Let us illustrate on an example the general-
ized interval evaluation of an expression. Con-
sider the function g(x, a, u) = (x−a)2+u and
the generalized intervals a = [4, 2], x = [0, 1]
and u = [2, 3]. The interval z is obtained
by evaluating the expression of g (the in-
tervals t and s are intermediate intervals):
t = x − a = [−2,−3], s = t2 = [9, 4] and
z = s + u = [11, 7]. These computations are
interpreted by the following quantified propo-
sitions: t = x − a = [−2,−3] is interpreted
by

(∀x ∈ x) (∀t ∈ pro t) (∃a ∈ pro a)
(x− a = t) .

(2)

Also s = t2 = [9, 4] is interpreted by

(∀s ∈ pro s) (∃t ∈ pro t)(
t2 = s

)
.

(3)

Finally z = s + u = [11, 7] is interpreted by

(∀u ∈ u) (∀z ∈ pro z) (∃s ∈ pro s)
(s + u = z) .

(4)

It is easy to see that the quantified proposi-
tions (2) and (3) imply the following one:

(∀x ∈ x) (∀s ∈ pro s) (∃a ∈ pro a)(
(x− a)2 = s

)
.

(5)



In the same way, the quantified propositions
(4) and (5) imply the following one:

(∀x ∈ x) (∀u ∈ u) (∀z ∈ pro z) (∃a ∈ pro a)
(g(x, a, u) = z) .

Therefore, the interval z is (g,x,a,u)-
interpretable.

The presented argumentation is easily gener-
alized to any expression containing only one
occurrence of each variable and any gener-
alized interval arguments, and therefore to
quantified distance constraints of arbitrary
dimension. As a consequence, the general-
ized interval evaluation f(dual a,x) yields a
(f,dual a,x)-interpretable interval. Further-
more, thanks to the properties of the general-
ized intervals inclusion (see [4]), if r satisfies
f(dual a,x) ⊆ r then r is also (f,dual a,x)-
interpretable, that is

(∀x ∈ x) (∃a ∈ a) (∃r ∈ r) (f(a, x) = r)

is true. Finally, the inclusion f(dual a,x) ⊆ r
is a sufficient condition for x ⊆ ρa,r. This
condition is not necessary in general, e.g.
a = ([−2, 2], [−2, 2]) and r = [1, 1] so that
x = ([−2, 2], [−2, 2]) is an inner box which
does not satisfy f(dual a,x) ⊆ r (in this case,
the specific QE presented in Section 3 suc-
ceeds in proving the inclusion). However, it
can be proved that the sufficient condition
based on generalized interval evaluation is fur-
thermore necessary provided that x ∩ a = ∅.
It is likely to be satisfied for inner boxes x in
some realistic situations.

5 Comparison of the two methods

Some academic examples were selected in or-
der to compare both approaches for checking
inner boxes in a CSP involving only quantified
distance constraints. Problem 1 and Problem
2 are in a two dimensional space, while Prob-
lem 3 is in a three dimensional space. The first
problem is composed of a single constraint
ca,r(x), while the second and third problem
are composed of three constraints ca(1),r(1)(x),
ca(2),r(2)(x), and ca(3),r(3)(x). All problems
have uncertainties. Table 1 shows the descrip-
tion of each one.

Table 1: Some academic examples.
P1 (2D, one equation)

x = ([−100, 100], [−100, 100])
a = ([−0.5, 0.5], [−0.5, 1.3])
r = [1.3, 1.6]

P2 (2D, three equations)
x = ([−100, 100], [−100, 100])
a(1) = (0, 0)
r(1) = [2, 2.25]
a(2) = ([3, 3.5], 0)
r(2) = [2.95, 3.05]
a(3) = ([−2.5,−2.25], 2)
r(3) = [3.25, 3.5]

P3 (3D, three equations)
x = ([0, 100], [−100, 100], [0, 100])
a(1) = ([−0.1, 0.1], [−0.1, 0.1], [−0.1, 0.1])
r(1) = [4, 5]
a(2) = ([4.9, 5.1], [−0.1, 0.1], [−0.1, 0.1])
r(2) = [3, 4]
a(3) = ([1.8, 2.2], [3.95, 4.05], [0.8, 1.2])
r(3) = [4, 5]

A branch and prune algorithm combining 2B-
consistency and bisection techniques was used
for solving each problem. The inner box
checking was applied each time the consis-
tency algorithm failed in reducing the space.

Table 2 shows the computational results1 of
the experiments, using the specific quanti-
fier elimination (SQE) and the generalized in-
terval evaluation (GIE). Rows Box and Ibox
show the total number of boxes and the num-
ber of inner boxes found, respectively. Row
Vol shows the total volume of the boxes, while
row Ivol shows the volume of the inner boxes.
Row Time shows the running time in seconds.
Some experiments have been conducted with-
out using any inner box checking, but Prob-
lem 1 led to swap memory overflow (1.6Go)
before reaching the expected precision.

First of all, it is clear that the use of in-
ner tests drastically reduces the computation
times in all situations.

1Obtained on a Pentium IV 2GHz with
256Mb of RAM and 1,5Gb of swap mem-
ory, running IcosAlias v0.2b (http://www-
sop.inria.fr/coprin/gchabert/icosalias.html).



Table 2: Computational results.
No Test SQE GIE

P1

Box > 107 64877 64877
Ibox – 33225 33225
Vol – 18.50312 18.50312
Ivol – 18.49187 18.49187
Time – 4.63 4.08

P2

Box 451655 5481 5481
Ibox – 2550 2550
Vol 0.21236 0.21236 0.21236
Ivol – 0.21103 0.21103
Time 36,08 0.53 0.43

P3

Box 7717507 503059 501795
Ibox – 137900 137799
Vol 2.83133 2.83133 2.83133
Ivol – 2.72203 2.72254
Time 803.63 87.49 58.38

On Problem 1 and Problem 2 (Figure 5 and
Figure 6), the two methods for inner box
checking are optimal and compute exactly the
same approximations: on one hand, the bi-
section is performed in such a way that the
decomposition flaw (section 3.2) of the SQE is
not met. On the other hand, we have x∩a = ∅
for all inner boxes, so that the GIE is optimal.
The running time using the GIE is always
slightly lower than using the SQE because the
former computes only one evaluation of the
constraint.

On Problem 3 (Figure 7), the two tests com-
pute different approximations: the total vol-
umes are equal with both methods but the
inner volume provided by the GIE is greater,
with a lower number of inner boxes. While
the GIE is still optimal (because x ∩ a = ∅),
the decomposition flaw is now met (in dimen-
sion 3 the decomposition used for the SQE is
more complicated so the decomposition flaw
is more likely to be met). As a consequence,
the speedup of GIE is more sensitive on this
example.

Figure 5: Solution for Problem 1.

Figure 6: Solution for Problem 2.

Figure 7: Solution for Problem 3.

6 Conclusion

Equality constraints with existentially quan-
tified parameters, i.e. constraints like
(∃a ∈ a) (f(a, x) = 0), generally have a non-
null volume solution set. Therefore, any bi-
section algorithm dedicated to the approxima-
tion of their solution set should incorporate a
test for checking if a box is included inside
the solution set, unless it will spend most of
the time bisecting again and again boxes in-
cluded in the solution set. Focusing on the
simple but useful example of quantified dis-
tance constraints, we proposed two tests: on
one hand, thanks to geometric considerations,
the quantified distance constraint has been
changed to a non-quantified constraint. On
the other hand, we presented with a new point
of view a test which was initially proposed by
the modal intervals theory. This new formu-



lation of the modal intervals theory allows one
to understand the underlying mechanisms.

Some experiments have been conducted on
academic examples of conjunctions of quan-
tified distance constraints. Although both
methods are very different, they yield very
similar results about both computation times
and description of the solution set (with a
slight advantage for the test based on gener-
alized intervals). Moreover, the test based on
generalized interval evaluation presents two
advantages: first, it is much simpler to im-
plement. Second, it can be easily extended
to a quantified distance constraint in an arbi-
trary dimensional space, where the proposed
specific quantifier elimination fails.

As forthcoming work, a new inner test com-
bining the two presented tests will be studied
aiming to obtain an optimal test in all situ-
ations. Also, we will apply some inner test
in the context of parallel robots study, taking
into account the uncertainties on the geomet-
ric parameters.
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