
IS
S

N
 0

24
9-

63
99

appor t
de r ech er ch e

Thèmes SYM et NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Specific Quantifier Elimination for Inner Box Test
in Distance Constraints with Uncertainties

Carlos Grand́on — Bertrand Neveu

N° 5883

Avril 2006

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

A Specific Quantifier Elimination for Inner Box Test in
Distance Constraints with Uncertainties

Carlos Grandón∗ , Bertrand Neveu†

Thèmes SYM et NUM — Systèmes symboliques et Systèmes numériques
Projet Coprin

Rapport de recherche n° 5883 — Avril 2006 — 23 pages

Abstract: This document presents a specific quantifier elimination algorithm for distance
constraints with uncertainties represented by constraints with existentially quantified pa-
rameters. Generally, the solution set of this type of constraints has a non-null volume, and
therefore an interval based solver that implements a branch and prune algorithm will bisect
again and again the boxes included inside the solution set, leading to inefficient computa-
tion. This situation can be strongly improved using a test for detecting inner boxes. In this
work, we show how interval arithmetics can be successfully used for building an inner box
test in some types of constraints and how it can be combined with a quantifier elimination
algorithm for handling constraints with existentially quantified parameters.

Key-words: Quantifier Elimination, Uncertainty, Distance equations, Interval Analysis,
Constraint Programming.

∗ PhD Scholarship agreement CONICYT - INRIA Sophia Antipolis
† PhD adviser

Une élimination de quantificateur spécifique pour le test
de bôıte intérieur de contraintes de distance avec

incertitudes

Résumé : Ce document présente un algorithme d’élimination de quantificateur spécifique
pour des contraintes de distance avec incertitudes, représentées par des contraintes avec
des paramètres quantifiés existentiellement. En général, l’ensemble solution de ce type de
contraintes a un volume non nul. Par conséquence, un solveur basé sur les intervalles et qui
applique un algorithme de type branch and prune divisera un grand nombre de fois les bôıtes
à l’intérieur de l’ensemble solution, conduisant ainsi à un calcul inefficace. Cette situation
peut être fortement améliorée en utilisant un test pour détecter les bôıtes intérieures. Dans
ce travail, nous montrons comment l’arithmétique par intervalle peut être utilisée pour
construire un tel test pour des contraintes particulières, et comment il peut être combiné
avec un algorithme d’élimination de quantificateur pour traiter les contraintes avec des
paramètres quantifiés existentiellement.

Mots-clés : Elimination de quantificateur, incertitude, équations de distance, analyse par
intervalle, programmation par contraintes.

A SQE for Distance Constraints with Uncertainties 3

1 Introduction

This document presents a Specific Quantifier Elimination (SQE) algorithm for distance
constraints with uncertainties in their parameters. We focus on this type of constraints
because of their usefulness and their simplicity. Many problems in practice can be expressed
by distance constraints (see [3]), from molecular biology ([1, 18]) to robotics ([19]).

Interval constraint propagation ([2, 5]) is a widely used technique for solving these class
of problems. This technique allows one to reduce the domains of variables involved in a
constraint without losing any solution. When it is coupled with a bisection algorithm, an
accurate reliable outer approximation of the solutions can be achieved ([16]). Many interval
constraint-based solvers (e.g. ILOG Solver [15], Numerica [13]) implement this approach.
The main advantage of these methods is to generate a set of boxes which conservatively
enclose each solution with a given precision. However, when applied to problems with non-
isolated solutions they bisect again and again the boxes included inside the solution set,
leading to inefficient computations and providing enclosures that are either prohibitively
verbose or poorly informative.

There are different situations where a problem has non-isolated solutions, e.g. inequality
constraints ([22, 18]) or constraints with existentially quantified parameters (e.g. a constraint
on variable x ∈ R like (∃a ∈ a)(c(a, x)) where a is an interval). In particular, a problem
formed by distance constraints with uncertainties has non-isolated solutions. That means
the solution set of the problem has a non-null volume, and therefore a branch and prune
algorithm applied to this problem will bisect again and again the boxes included inside the
solution set. This situation can be strongly improved using a test for detecting inner boxes,
so that boxes which are proved to lie inside the solution set will not be bisected any more.

Interval arithmetics can be successfully used for building such inner box test with some
types of constraints. In particular, inequality constraints of the form c(x) : f(x) ♦ 0 (where
♦ = {>,≥, <,≤}) when the constraint has no existentially quantified parameters. Let ρc be
the solution set of the constraint c(x), and let x be a box. Let f(x) be the interval evaluation
of f(x) in x. The comparison f(x) ♦ 0 can be used as a sufficient condition1 of the inclusion
x ⊆ ρc, and therefore, as an inner box test for the constraint.

Constraints with existentially quantified parameters are more complicate, because the
interval evaluation does not take into account these types of quantifiers. Even though
the comparison f(x) ♦ 0 can be used as inner box test, this test fails in most cases due
to existential quantifiers. Distance constraints with uncertainties are clearly one of these
classes of constraints.

In this document, we propose a method for checking if a box is included inside the
solution set of a distance constraint with existentially quantified parameters. We focus on
quantified distance constraints where the variables are the coordinates of a point x ∈ Rn. As
existentially quantified parameters, we have the coordinates of another point a ∈ Rn and a
distance r ∈ R. Then, the distance constraint fixes the distance between a and x to be equal

1In some particular cases, when the variable x appears once in the function, the comparison can be
considered as a necessary and sufficient condition, but in general, this comparison is only a sufficient condition
of x ⊆ ρc.

RR n° 5883

4 Grandón & Neveu

to r. In our method, a special quantifier elimination algorithm is used in order to transform
a quantified distance constraint into an equivalent non quantified conjunction/disjunction
of constraints which can be evaluated using classic interval arithmetics.

The rest of this document is organized as follow: Section 2 presents the problem state-
ment in a more formal way. Section 3 presents the basics related to interval analysis and
quantifier elimination. Section 4 presents a Special Quantifier Elimination algorithm in a
two and three dimensional space, and some optimization for particular cases. Section 6 com-
ments preliminary results obtained with our implementation. Last, Section 7 summarizes
the work’s contribution.

Notations Following ([17]), scalars and vectors are denoted by lower case letters. Intervals
are denoted by boldface letters. The real values x and x denote the lower bound and upper
bound of an interval x, respectively. Let ε = {e1, ..., en} be an ordered set of indices,
the vector (xe1 , ...,xen) is denoted by xε, so that (x1, . . . ,xn) is denoted by x[1..n]. If no
confusion is possible, the usual notation x will be used in place of x[1..n].

2 Problem Statement

The Euclidean distance between two points a ∈ Rn and x ∈ Rn is defined by

d(a, x) =

√√√√ n∑
k=1

(xk − ak)2 (1)

An Euclidean distance constraint that relates two points a and x with a distance value r
between them, can be expressed as following: ca,r,x :

∑n
k=1(xk− ak)2 = r2. All values given

by a problem are called parameters, and they correspond to known values. Sometimes, these
parameters values are not exactly known, but they are bounded by quantities and can be
expressed in the form of intervals.

So, given a n-dimensional interval vector a and an interval r, we are interested in the
following quantified distance constraint:

ca,r(x) : (∃a ∈ a)(∃r ∈ r)(
n∑

k=1

(xk − ak)2 = r2) (2)

It means, all the points x ∈ Rn that are at a distance r from the point a. The set of x
which satisfies (2) is denoted by ρc. Figure 1 presents some examples of quantified distances
constraints and their solutions.

In this work, we are interested in a sufficient condition for the inclusion x ⊆ ρc, that
means, given a n-dimensional interval vector x, we have (∀x ∈ x)(ca,r(x)) is true. Notice
that a sufficient condition designed for one quantified distance constraint can also be used for
a conjunction of quantified distance constraints C =

∧
k∈[1..m] c

(k)
a(k),r(k)(x). If existentially

INRIA

A SQE for Distance Constraints with Uncertainties 5

Figure 1: Some examples of quantified distance constraint and their solutions. In (a) only
the parameter r has an interval value: ca,r(x) with a = (0, 0) and r = [4, 5]. In (b) only
the parameter a has an interval value: ca,r(x) with a = ([−1, 1], [−1, 1]) and r = 4.5. In (c)
both parameters have interval values: ca,r(x) with a = ([−1, 1], [−1, 1]) and r = [4, 5].

quantified parameters are not shared between different constraints, we have the following
implication: ∧

k∈[1..m]

x ⊆ ρc(k) =⇒ x ⊆ ρC (3)

3 Background and Definitions

In this section we present a brief introduction to Interval Analysis and Quantifier Elimina-
tion. Section 3.1 introduces some concepts as intervals and interval arithmetics, and relates
these concepts with our work. Section 3.2 introduces the quantifier elimination problem and
how it can be applied to a quantified distance constraint.

3.1 Interval Analysis

Interval Analysis ([20, 12]) was born in the 60’s aiming rigorous computations with uncertain
quantities and automatic control of the errors in a computed result. Informally, an interval
is a set of real values represented by two bounds. These bounds are elements of a set F,
that is a subset of the real numbers. In a computational implementation, the set F is
generally the set of floating points numbers that the computer can represent. For example,
using arithmetics with three significant digits, we can represent a value

√
2 by the interval

[1.414, 1.415] and guarantee that the mathematically correct result is inside of the computed
interval. In a formal way, an interval can be defined as following:

Definition 1 (Interval) An interval x = [x, x], with x and x ∈ F, is the set of real numbers
{r ∈ R | x ≤ r ≤ x}.

RR n° 5883

6 Grandón & Neveu

The set of intervals with bounds in F, denoted by IR, is partially ordered by set inclusion.
A Cartesian product of n intervals b = x1 × · · · × xn is called a box. Two boxes b1 and b2

are said disjoint if b1 ∩ b2 = ∅.
Interval arithmetics provides a set of operators that allow one to compute interval results.

Whenever an operation on reals is specified, the corresponding operation on their intervals
is executed. Let a and b be two intervals, and let ♦ denotes one of the four arithmetic
operators {+,−, ∗, /}. The operation a♦b is defined by:

a♦b = {a♦b | a ∈ a ∧ b ∈ b},

with a/b undefined if 0 ∈ b. This definition ensures that the resulting interval a♦b con-
tains all possible outcomes from applying ♦ with operands from a and b, but the definition
does not show how to compute it. The resulting interval is easily obtained using the bounds
of the involved interval as shown in (4).

a⊕ b = [a + b, a + b]
a	 b =

[
a− b, a− b

]
a⊗ b =

[
min(ab, ab, ab, ab),max(ab, ab, ab, ab)

]
(4)

a� b = a ∗
[
1/b, 1/b

]
We used the operators {⊕,	,⊗,�} here, to emphasize the difference between interval

operations and real operations, but from here on the classical notation {+,−, ∗, /} will be
used.

Definition 2 (Hull approximation) Let S be a subset of R. The Hull approximation of
S, denoted �S, is the smallest interval x such that S ⊆ x.

An interval extension of f : Rn → R is a mapping f : IRn → IR such that for all
x1, . . . ,xn ∈ IR : x1 ∈ x1, . . . , xn ∈ xn ⇒ f(x1, . . . , xn) ∈ f(x1, . . . ,xn). An n-ary interval
operation � is called the natural interval extension of an n-ary real operation ♦ if for all
x1, . . . ,xn ∈ IR : �(x1, . . . ,xn) = �({♦(x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn}. The natural
interval extension of a function f : Rn → R is the interval function obtained from f by
replacing each constant r by �r, each variable by an interval variable, and each operation
by its natural interval extension. From here on the interval evaluation of a function f(x)
with x ∈ x denotes the evaluation of the natural interval extension of f(x) using the interval
x for the variable x.

Interval arithmetics can be successfully used as a sufficient condition of the inclusion x ⊆
ρ in some types of quantified constraints. For example, an interval evaluation of a function
f(x, y) : 3x2 − 2y + 9 with x ∈ [−1, 3] and y ∈ [−2, 4] can be used for proving this inclusion
in a constraint f(x, y) > 0, because f([−1, 3], [−2, 4]) = 3 · [−1, 3]2 − 2 · [−2, 4] + 9 = [1, 40].
As the evaluation of the function f is inside the interval [1, 40], that means

(∀x ∈ [−1, 3])(∀y ∈ [−2, 4])(3x2 − 2y + 9 > 0)

INRIA

A SQE for Distance Constraints with Uncertainties 7

In some quantified distance constraints, this inclusion can also be successfully proved,
when existentially quantified parameters are not taken into account in the evaluation of the
function. For example, consider the following constraint

(∃r ∈ r)(x2
1 + x2

2 = r2)

with x1 = [1, 2], x2 = [−1, 1], and r = [1, 3]. Let f(x1, x2) = x2
1 + x2

2 be a function and
consider the interval evaluation of f(x1,x2) : ([1, 2]2 + [−1, 1]2) = [1, 5]. From the point of
view of interval arithmetics, we have the following interpretation:

(∀x1 ∈ x1)(∀x2 ∈ x2)(∃z ∈ [1, 5])(x2
1 + x2

2 = z)

In particular, if [1, 5] ⊆ r2 the following proposition is also verified:

(∀x1 ∈ x1)(∀x2 ∈ x2)(∃r ∈ r2)(x2
1 + x2

2 = r2)

So, the inclusion x2
1 + x2

2 ⊆ r2 is a sufficient (and necessary, in this case) condition of
x ⊆ ρ.

In a more general case (quantified distance constraint like (2)), the interval evaluation
is less effective, because existential quantified parameters are inside the evaluated function.
For example, consider the constraint

(∃a1 ∈ a1)(∃a2 ∈ a2)(∃r ∈ r)((x1 − a1)2 + (x2 − a2)2 = r2)

with x1 = [3, 6], x2 = [−1, 1], a1 = [−1, 1], a2 = [−1, 1], and r = [4, 5]. If we consider the
function f(x1, x2, a1, a2) = (x1−a1)2+(x2−a2)2, the interval evaluation of f(x1,x2,a1,a2) is
([3, 6]−[−1, 1])2+([−1, 1]−[−1, 1])2 = [4, 53]. The inclusion [4, 53] ⊆ r2 is not true, so the test
fails. A classic interval evaluation cannot prove that the interval vector x = ([3, 6], [−1, 1])
is inside of the solution set of the constraint, but it is. This fault is not due to interval
arithmetics but to a conceptual problem in its application. For two intervals x and a,
Interval Arithmetic computes an interval result z that encloses the combinations between
any value from x and any value from a. That means (∀x ∈ x)(∀a ∈ a)(x♦a ∈ z). So,
the interval a is not considered as an existentially quantified parameter but as a universally
quantified variable. In section 3.2 we show how these existentially quantified parameters
can be eliminated from the evaluation of a function.

3.2 Quantifier Elimination

Informally, the basic motivation of the quantifier elimination is to eliminate unwanted vari-
ables from an algebraic description of some situation. These variables may represent pa-
rameters of a model, or real quantities that cannot be measured in an exact way (values
with uncertainties, for example). Many mathematical problems can be phrased as quantifier
elimination problems (see [14, 21]).

The first real quantifier elimination procedure which has been implemented was intro-
duced by Collins in 1975 (see [6]). This method based on cylindrical algebraic decomposition

RR n° 5883

8 Grandón & Neveu

(CAD) is worst-case doubly exponential in the number of variables. Some methods for
solving the quantifier elimination problem have been proposed and implemented since the
introduction of the CAD based algorithm (see QEPCAD[7], REDLOG[9], and QERRC[8]).
A good survey of these methods can be found in ([10]).

3.2.1 Quantifier Elimination Problem

From a more formal point of view, the real quantifier elimination problem can be phrased as
follows: Given a formula F with quantified variables (universally ∀ and/or existentially ∃),
find a formula F in which no variables are quantified, and that both F and F are equivalent
in the domain of the real numbers. F is called the input formula, and F the solution formula.

For example, one solution formula for F : (∃x)[ax2 + bx + c = 0] can be:

F : b2 − 4ac ≥ 0 ∧ [b 6= 0 ∨ a 6= 0 ∨ c = 0]

In the case of distance constraints, a formula F : (∃r ∈ [1, 2])[x2 + y2 = r2] is equivalent
to the following quantifier-free formula:

F : (x2 + y2 ≥ 1) ∧ (x2 + y2 ≤ 4)

Using the QEPCAD implementation of the quantifier elimination algorithm (available
in [4]), it is possible to transform a 2D quantified distance constraint into a set of non-
quantified constraints in only some seconds, but in the general case, the 3D quantified
distance constraint can not be transformed2. In the next sections we show that it is possible
to transform both types of constraints into a set of non-quantified constraints in less than one
second, using a Specific Quantifier Elimination Algorithm based on graphic consideration.
Moreover, this set of non-quantified constraints can be evaluated with interval arithmetics
in order to build an inner box test.

4 Specific Quantifier Elimination

In this section we propose a specific quantifier elimination algorithm based on graphic consid-
erations for quantified distance constraints. Section 4.1 presents an algorithm to transform
a 2D quantified distance constraint into a quantifier-free formula, while section 4.2 presents
the same algorithm in a three dimensional case. However, higher dimensions are out of the
scope of the specific quantifier elimination proposed here.

4.1 The Two Dimensional Case

Let us consider a quantified distance constraint ca,r(x) : f(a, x) = r2 as following:

ca,r(x) : (∃a1 ∈ a1)(∃a2 ∈ a2)(∃r ∈ r)((x1 − a1)2 + (x2 − a2)2 = r2) (5)
2We use a PentiumIV 3GHz based machine with 512MB RAM and 2GB of swap memory. A general

2D quantified distance constraint is transformed into a quantifier-free formula in 33s, but the calculus for a
general 3D quantified distance constraint could not be ended before memory overflow.

INRIA

A SQE for Distance Constraints with Uncertainties 9

Figure 2a shows the graph of this constraint.

Figure 2: A two dimensional quantified distance constraint. (a) Generic constraint ca,r(x).
(b) Internal auxiliary constraint ci

a,r(x). (c) External auxiliary constraint ce
a,r(x).

The first step of our algorithm is the decomposition of ca,r(x) into two auxiliary con-
straints. These constraints are the result of the elimination of the quantified parameter r
from the constraint:

(∃r ∈ r)(f(a, x) = r2) ⇐⇒ f(a, x) ≤ r2 ∧ f(a, x) ≥ r2 (6)

Figure 2b and figure 2c show both auxiliary constraints. Let us call figure 2b the internal
auxiliary constraint ci

a,r(x) and figure 2c the external auxiliary constraint ce
a,r(x). So, we

clearly have ca,r(x) ⇐⇒ ci
a,r(x)∧¬ce

a,r(x). These two auxiliary constraints can be charac-
terized using the bounds of the involved interval, as presented in section 4.1.1 and section
4.1.2.

4.1.1 The constraint ci
a,r(x)

Using only the bounds of the intervals in a we obtain a disjunction of four non-quantified
constraints that represent an approximation of ci

a,r(x):

1. (x1 − a1)
2 + (x2 − a2)

2 ≤ r2

2. (x1 − a1)
2 + (x2 − a2)2 ≤ r2

3. (x1 − a1)2 + (x2 − a2)
2 ≤ r2

4. (x1 − a1)2 + (x2 − a2)2 ≤ r2

These constraints do not describe the constraint ci
a,r(x), because some gaps are present

as shown in figure 3a. In order to fill the remaining gaps, we use two constraints that
represent boxes as shown in figure 3b. These boxes are characterized in a compact way by
the following two interval inclusion constraints:

RR n° 5883

10 Grandón & Neveu

Figure 3: Reconstruction of ci
a,r(x) using four disks (a) and two boxes (b).

5. x ∈ ([a1 − r, a1 + r],a2)

6. x ∈ (a1, [a2 − r, a2 + r])

Finally, ci
a,r(x) is equivalent to the disjunction of the last six non-quantified constraints.

4.1.2 The constraint ce
a,r(x)

The graph of the constraint ce
a,r(x) is easily obtained by intersecting four open disks. This

constraint is represented as a conjunction of the following no quantified constraints:

1. (x1 − a1)
2 + (x2 − a2)

2 < r2

2. (x1 − a1)
2 + (x2 − a2)2 < r2

3. (x1 − a1)2 + (x2 − a2)
2 < r2

4. (x1 − a1)2 + (x2 − a2)2 < r2

Notice that the boundary of the figure 2c is not included in the graph of ce
a,r(x). The

constraint ¬ce
a,r(x) is then represented as the disjunction of four (non-strict) inequalities.

4.2 The Three Dimensional Case

In the three dimensional case, we use the same decomposition into two auxiliary constraints
used in the two dimensional case. The main difference is in the construction of the internal
auxiliary constraint. Let us consider a quantified distance constraint ca,r(x) : f(a, x) = r2

as following:

ca,r(x) : (∃a1 ∈ a1)(∃a2 ∈ a2)(∃a3 ∈ a3)(∃r ∈ r)(
3∑

i=1

(xi − ai)
2 = r2) (7)

INRIA

A SQE for Distance Constraints with Uncertainties 11

Figure 4: Generic graph of the constraint ca,r(x). All values between the the clearest surface
and the darkest one are solutions of the constraint. Values inside the darkest surface are
not solution.

The generic graph of the constraint ca,r(x) is shown in figure 4. The first step of the
algorithm replaces the proposition (∃r ∈ r)(f(a, x) = r2) (in the original constraint) by the
conjunction (f(a, x) ≤ r2) ∧ (f(a, x) ≥ r2), and builds the auxiliary constraint ci

a,r(x) and
ce
a,r(x) as shown in figure 5.

Figure 5: Decomposition of the constraint ca,r(x) into two auxiliary constraints: ci
a,r(x) (left

side picture) and ce
a,r(x) (right side picture).

Constraint ci
a,r(x) corresponds to the inequality (f(a, x) ≤ r2), while constraint ce

a,r(x)
corresponds to the inequality (f(a, x) < r2). The constraint ca,r(x) is then replaced by the
conjunction ci

a,r(x) ∧ ¬ce
a,r(x). Sections 4.2.1 and 4.2.2 present a characterization of the

constraints ci
a,r(x) and ce

a,r(x), respectively, as a conjunction/disjunction of non-quantified
constraints.

4.2.1 The constraint ci
a,r(x)

Using the bounds of the intervals in a we build eight inequalities. The disjunction of these
inequalities are a first approximation of ci

a,r(x):

RR n° 5883

12 Grandón & Neveu

1. (x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

2. (x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)2 ≤ r2

3. (x1 − a1)
2 + (x2 − a2)2 + (x3 − a3)

2 ≤ r2

4. (x1 − a1)
2 + (x2 − a2)2 + (x3 − a3)2 ≤ r2

5. (x1 − a1)2 + (x2 − a2)
2 + (x3 − a3)

2 ≤ r2

6. (x1 − a1)2 + (x2 − a2)
2 + (x3 − a3)2 ≤ r2

7. (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)
2 ≤ r2

8. (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 ≤ r2

We notice that many gaps are present in the graph of this approximation. In order to fill
these gaps we built a set of constraints based on geometric entities like boxes and cylinders.
As in the two dimensional case, we use some boxes characterized by the following three
interval inclusion constraints:

9. x ∈ ([a1 − r, a1 + r],a2,a3)

10. x ∈ (a1, [a2 − r, a2 + r],a3)

11. x ∈ (a1,a2, [a3 − r, a3 + r])

Figure 6: Graph of some interval inclusion constraints for building ci
a,r(x).

The graph of these boxes is shown in figure 6. We notice that some gaps are still present,
after the above decomposition. These remained gaps are filled with the following twelve
cylindrical constraints (that correspond to the edges of the graph of ci

a,r(x)):

INRIA

A SQE for Distance Constraints with Uncertainties 13

12. (x1 ∈ a1) ∧ ((x2 − a2)
2 + (x3 − a3)

2 ≤ r2)

13. (x1 ∈ a1) ∧ ((x2 − a2)
2 + (x3 − a3)2 ≤ r2)

14. (x1 ∈ a1) ∧ ((x2 − a2)2 + (x3 − a3)
2 ≤ r2)

15. (x1 ∈ a1) ∧ ((x2 − a2)2 + (x3 − a3)2 ≤ r2)

16. (x2 ∈ a2) ∧ ((x1 − a1)
2 + (x3 − a3)

2 ≤ r2)

17. (x2 ∈ a2) ∧ ((x1 − a1)
2 + (x3 − a3)2 ≤ r2)

18. (x2 ∈ a2) ∧ ((x1 − a1)2 + (x3 − a3)
2 ≤ r2)

19. (x2 ∈ a2) ∧ ((x1 − a1)2 + (x3 − a3)2 ≤ r2)

20. (x3 ∈ a3) ∧ ((x1 − a1)
2 + (x2 − a2)

2 ≤ r2)

21. (x3 ∈ a3) ∧ ((x1 − a1)
2 + (x2 − a2)2 ≤ r2)

22. (x3 ∈ a3) ∧ ((x1 − a1)2 + (x2 − a2)
2 ≤ r2)

23. (x3 ∈ a3) ∧ ((x1 − a1)2 + (x2 − a2)2 ≤ r2)

Finally, the graph of ci
a,r(x) is equivalent to the disjunction of the twenty-three non-

quantified constraints previously presented.

4.2.2 The constraint ce
a,r(x)

As in the two dimensional case, the graph of the constraint ce
a,r(x) is easily obtained by

intersecting some inequalities. In the three dimensional case, these inequalities represent
eight open spheres, and may be characterized as following:

1. (x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

2. (x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)2 < r2

3. (x1 − a1)
2 + (x2 − a2)2 + (x3 − a3)

2 < r2

4. (x1 − a1)
2 + (x2 − a2)2 + (x3 − a3)2 < r2

5. (x1 − a1)2 + (x2 − a2)
2 + (x3 − a3)

2 < r2

6. (x1 − a1)2 + (x2 − a2)
2 + (x3 − a3)2 < r2

7. (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)
2 < r2

8. (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 < r2

Notice again that the boundary is not included in the graph of ce
a,r(x). The constraint

¬ce
a,r(x) is then represented as the disjunction of eight (non-strict) inequalities.

RR n° 5883

14 Grandón & Neveu

5 Implementation

In our SQE implementation we represent a constraint in the form of a tree. As internal nodes
of the tree we have logic operators and and or. As terminal nodes, we have non-quantified
constraints or interval inclusion constraints. Figure 7 shows a generic tree of the quantified
distance constraint ca,r(x) : (x1 − a1)2 + (x2 − a2)2 = r2.

��
��
and

�
�
�
�
�
���
��

or
,

,
,

,
,

,,
(x1 − a1)

2 + (x2 − a2)
2 ≤ r2

�
���

��
(x1 − a1)

2 + (x2 − a2)2 ≤ r2

(((((((x1 − a1)2 + (x2 − a2)
2 ≤ r2

hhhhhh (x1 − a1)2 + (x2 − a2)2 ≤ r2H
HHH

HH x ∈ ([a1 − r, a1 + r],a2)

l
l

l
l

l
ll x ∈ (a1, [a2 − r, a2 + r])

B
B
B
B
B
B
B
B
B��
��

or
���

��� (x1 − a1)
2 + (x2 − a2)

2 ≥ r2

(((((((x1 − a1)
2 + (x2 − a2)2 ≥ r2

hhhhhh (x1 − a1)2 + (x2 − a2)
2 ≥ r2HH

HHHH (x1 − a1)2 + (x2 − a2)2 ≥ r2

Figure 7: Generic decomposition tree of the constraint ca,r(x).

Given an interval vector x and a decomposition tree, the algorithm computes an interval
evaluation of the left side of each constraint and compares this evaluation with the right
side. If at least one constraint is verified in each branch of the node and, all points in x are
solution of the constraint ca,r(x). That means, the box x is an inner box of ca,r(x).

INRIA

A SQE for Distance Constraints with Uncertainties 15

5.1 Some Optimizations

In our implementation of the Special Quantifier Elimination algorithm we use some op-
timization of the decomposition, based on the number of intervals in a and their values.
For example, if only a1 and r are intervals and a2 is a real value, the constraint ci

a,r(x) is
characterized by the disjunction of the following three constraints:

1. (x1 − a1)
2 + (x2 − a2)2 ≤ r2

2. (x1 − a1)2 + (x2 − a2)2 ≤ r2

3. x ∈ (a1, [a2 − r, a2 + r])

Moreover, if (2r ≤ a1 − a1), then the constraint ce
a,r(x) is not considered (because the

graph of ca,r(x) has no gap in the middle), and the decomposition is built as a disjunction
of only the last three inequalities.

6 Preliminary Results

In this section we present different cases of quantified distance constraints in 2D and 3D,
and the results of applying a classic interval solver (without inner box test), an interval
solver with a basic test, and an interval solver combining a inner box test based on our SQE
algorithm. Table 1 presents a list of quantified distances constraints in 2D.

Constraint Variable Parameters
c1
a,r(x) x = ([−10, 10], [−10, 10]) a = (0, 0)

r = [4, 5]
c2
a,r(x) x = ([−10, 10], [−10, 10]) a = ([−1, 1], [−1, 1])

r = 4.5
c3
a,r(x) x = ([−10, 10], [−10, 10]) a = ([−1, 1], [−1, 1])

r = [4, 5]
c4
a,r(x) x = ([−10, 10], [−10, 10]) a = ([−2, 2], [0, 0])

r = [2, 5]
c5
a,r(x) x = ([−10, 10], [−10, 10]) a = ([−0.1, 0.1], [−0.1, 0.1])

r = [3, 5]

Table 1: Some examples of quantified distances constraints in 2D.

The first three constraints correspond to the examples presented in figure 1 (section 2).
Constraint c4

a,r(x) is a special example where the graph of the solution set has no gap in
the middle. Finally, constraint c5

a,r(x) is an example with a big uncertainty in the distance
parameter and a little uncertainty in the center parameter. These examples allow us to show
the performance of the algorithms in problems with different degree of uncertainties.

RR n° 5883

16 Grandón & Neveu

Table 2 presents a list of quantified distances constraints in 3D.

Constraint Variable Parameters
c6
a,r(x) x = ([−10, 10], [−10, 10], [−10, 10]) a = ([−0.1, 0.1], [−0.1, 0.1], [−0.1, 0.1])

r = [4, 5]
c7
a,r(x) x = ([−10, 10], [−10, 10], [−10, 10]) a = ([−2, 2], [−2, 2], [−2, 2])

r = [4.4, 4.5]
c8
a,r(x) x = ([−10, 10], [−10, 10], [−10, 10]) a = ([−2, 2], [−2, 2], [−2, 2])

r = [3, 6]

Table 2: Some examples of quantified distances constraints in 3D.

A branch and prune algorithm combining filtering and bisection techniques was used for
finding the solution set of each constraint. The inner box test was applied each time the
filtering phase failed in reducing the domain of the variables. Table 3 shows the comput-
ing results3 of the experimentations without using inner box test (Without Test), using a
basic test based on classic interval evaluation (Basic Test), and using the specific quantifier
elimination based test (SQE Test).

Row Time presents the running time in seconds. Rows Boxes and Inner present the
total number of boxes and the number of inner boxes found, respectively. First of all, it is
clear that the use of inner box tests drastically reduces the computing time in all situations.
We notice that the SQE Test is the best test in most of cases but in constraint c1

a,r(x). How
we explained in section 3.1, the simple interval evaluation test is a necessary and sufficient
condition of x ⊆ ρc, so the test based on our SQE cannot improve the computing time.
Anyway, the computed results of both tests are the same. Figure 8 shows these results in
a graphic way. Left side picture shows the solution set computed without using any inner
box test. Right side picture shows the solution set computed using an inner box test.

We notice that only in some particular cases, like constraints c1
a,r(x), c4

a,r(x), c5
a,r(x), and

c6
a,r(x), the inner box test based on classic interval evaluation can detecting inner boxes.

In most of these cases, the degree of the uncertainties in the center parameter is low (with
respect to the degree of the distance parameter), and the test can detect a few number of
boxes. Figure 9 shows a graphic comparison between the solution set computed with the
basic inner box test (left side picture) and the results obtained with the test based on the
SQE (right side picture). In the first case, the test cannot detect inner boxes in a big surface
(due to the existential parameters in the left side of the constraint), and therefore, it splits
the boxes inside this zone until arriving to the given precision. On the other hand, the test
based on the SQE detects successfully the inner boxes inside this surface, and the number
of boxes needed for describing the solution set is substantially lower.

3Obtained on a Pentium IV 3GHz with 512MB of RAM and 1.5GB of swap memory, running IcosAlias
v0.2b (a tool in development in Coprin project) on a Linux operating system.

INRIA

A SQE for Distance Constraints with Uncertainties 17

Precision ε = 2e−2 Without Test Basic Test SQE Test
c1
a,r(x)
Time (s) 4.516 0.358 0.361
Boxes 107,629 7,820 7,820
Inner – 3,839 3,839

c2
a,r(x)
Time (s) 21.946 22.783 0.505
Boxes 510,307 510,306 9,540
Inner – – 4,551

c3
a,r(x)
Time (s) 31.640 33.151 0.515
Boxes 754,768 754,768 9,559
Inner – – 4,556

c4
a,r(x)
Time (s) 19.767 18.042 0.290
Boxes 470,776 410,412 5,896
Inner – 1,328 2,776

c5
a,r(x)
Time (s) 4.407 2.293 0.411
Boxes 170,214 50,338 7,147
Inner – 2,604 3,590

Precision ε = 2e−1 Without Test Basic Test SQE Test
c6
a,r(x)
Time (s) 6.754 5.469 4.420
Boxes 124,832 97,384 48,458
Inner – 12,616 15,218

c7
a,r(x)
Time (s) 58.767 62.634 9.805
Boxes 1,162,876 1,162,876 99,827
Inner – – 25,467

c8
a,r(x)
Time (s) 79.263 84.294 13.288
Boxes 1,592,076 1,592,076 147,648
Inner – – 37,996

Table 3: Computing results of the experiments. All constraints in 2D are computed with a
precision ε = 2e−2. Precision for constraints in 3D was ε = 2e−1.

Similar results can be observed in the three dimensional cases, but the performance of
the inner box test is lower. It is important to notice that in a two dimensional space, any

RR n° 5883

18 Grandón & Neveu

Figure 8: Graphic representation of the solution set of the constraint c1
a,r(x) computed with-

out using inner box test (left side picture), and using the test for detecting inner boxes (right
side picture).

Figure 9: The solution set of the constraint c5
a,r(x) computed with the basic inner box test

(left side picture), and using the test based on SQE (right side picture).

interval based solver must describe the border of the solution set (a line) with boxes, and
these boxes will have the given precision. In a three dimensional space, an interval based
solver must describe a surface (the border of the solution set) with the same precision. This
is a weakness of the interval based approach, even though an optimal inner box test be
applied.

As we have shown in section 2, if existentially quantified parameters are not shared
between different constraints, we can use the inner box test for a conjunction of quantified
distance constraints. For example, consider the following problem formed by three quantified
distance constraints:

x2 + y2 = [2, 2.25]2

(x− [3, 3.5])2 + y2 = [2.95, 3.05]2

(x− [−2.5,−2.25])2 + (y − 2)2 = [3.25, 3.5]2

INRIA

A SQE for Distance Constraints with Uncertainties 19

Using a branch and prune algorithm and the inner box test based on SQE we solved
this problem in 0.372 seconds with a precision ε = 1e−3. Table 4 presents a resume of the
results.

SQE Test
Time (s) 0.372
Total boxes 5,481
Inner boxes 2,550
Total volume 0.21236
Volume inner boxes 0.21103

Table 4: Computing results of an academic problem formed by quantified distance constraints.

Row Total volume represents the volume of all boxes found. Row Volume inner boxes
represent the volume of the inner boxes detected. If no inner box test is implemented, the
last volume must be described by boxes of the size 10−3 × 10−3, that is 211, 030 boxes
approximatively. Figure 10 shows the above results in a graphic way.

Figure 10: Graphic results of the algorithm in an academic example.

RR n° 5883

20 Grandón & Neveu

7 Conclusions

Constraints with existentially quantified parameters, i.e. constraints like (∃a ∈ a)(f(a, x) = 0),
generally have a non-null volume solution set. Therefore, any bisection algorithm dedicated
to the approximation of their solution set should incorporate a test for checking if a box is
included inside the solution set, unless it will spend most of the time bisecting again and
again boxes included in the solution set.

We have shown how interval arithmetics can be successfully used for detecting inner boxes
in some types of constraints and why this arithmetics is less effective in a more general case
of quantified constraint. In addition, we presented the quantified elimination problem, and
how the solution of this problem can be used with interval arithmetics in order to improve
the detection of inner boxes. A special quantified elimination algorithm based on graphic
consideration was also proposed. This algorithm allows one to transform quantified distance
constraints into a set of non-quantified constraints in less than one second.

Some examples using different types of quantified distance constraints have been pre-
sented in order to explain the advantages of this approach. An example with a conjunction
of constraints was also presented.

We can name some limitations of this approach. First, the test based on our SQE is a
sufficient condition for x ⊆ ρc. It is not a necessary condition, because a box can satisfy
x ⊆ ρc while it does not satisfy any of the constraints generated by the decomposition. Such
a box would intersect several graphs of the generated constraints but would be included in
none of them. This situation is called the decomposition flaw and it is generally found in
the 3D decomposition.

Another limitation of our SQE is the space where the test can be applied. We present
a decomposition in two and three dimensional spaces, but higher dimensions are out of the
scope of our test.

We are currently working in a new approach for building inner box tests based on gen-
eralized intervals (intervals whose bounds are not constrained to be ordered [11]). This
approach allows one to compute an interval evaluation of a function involving universally
and existentially quantified parameters without transforming it in a free-function. This fea-
ture is very interesting, because it is possible to verify a constraint with only one interval
evaluation instead a set of evaluations given by the decomposition process. A preliminary
study shows that a test based on this approach is neither optimum, but a combination of
generalized intervals and graphic considerations could overcome this limitation.

INRIA

A SQE for Distance Constraints with Uncertainties 21

References

[1] R. Backofen. Constraint Techniques for Solving the Protein Structure Prediction Prob-
lem. Lecture Notes in Computer Science, 1520:72–88, 1998.

[2] F. Benhamou and W. Older. Applying Interval Arithmetic to Real, Integer and Boolean
Constraints. Journal of Logic Programming, 32(1):1–24, 1997.

[3] L.M. Blumenthal. Theory and Applications of Distance Geometry. Chelsea, New York,
1970.

[4] C. Brown. Quantifier Elimination by Partial Cylindrical Algebraic Decomposition,
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html.

[5] H. Collavizza, F. Delobel, and M. Rueher. Comparing partial consistencies. Reliable
Computing, 1:1–16, 1999.

[6] George Collins. Quantifier elimination for the elementary theory of real closed fields
by cynlindrical algebraic decomposition. In Automata Theory and Formal Languages,
Berlin, Germany, volume LNCS 33, pages 264–274. Springer-Verlag, 1975.

[7] George Collins and Hoon Hong. Partial cylindrical algebraic decomposition for quanti-
fier elimination. J. Symb. Comput., 12(3):299–328, 1991.

[8] A. Dolzmann. Reelle Quantorenelimination durch parametrisches Zählen von Null-
stellen. PhD thesis, FMI, Universität Passau, D-9403 Passau, Germany, November
1994.

[9] Andreas Dolzmann and Thomas Sturm. Redlog user manual. Technical Report MIP-
9616, FMI, Universität Passau, D-94030 Passau, Germany, October 1996.

[10] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier elimina-
tion in practice. Technical Report MIP9720, FMI, Universität Passau, D-94030 Passau,
Germany, December 1997.

[11] A. Goldsztejn. Définition et Applications des Extensions des Fonctions Réelles aux
Intervalles Généralisés. PhD thesis, Université de Nice-Sophia Antipolis, 2005.

[12] B. Hayes. A Lucid Interval. American Scientist, 91(6):484–488, 2003.

[13] Pascal Van Hentenryck. A gentle introduction to NUMERICA. Artif. Intell., 103(1-
2):209–235, 1998.

[14] Hoon Hong, Richard Liska, and Stanly Steinberg. Testing stability by quantifier elimi-
nation. Journal of Symbolic Computation, 24(2):161–187, 1997.

[15] ILOG. Ilog Solver, reference manual, August 2000.

RR n° 5883

22 Grandón & Neveu

[16] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis with Examples
in Parameter and State Estimation, Robust Control and Robotics. Springer-Verlag,
2001.

[17] R.B. Kearfott. Standardized notation in interval analysis, 2002.

[18] L. Krippahl and P. Barahona. Applying Constraint Programming to Protein Structure
Determination. In Proc. of 5th International Conference on Principles and Practice of
Constraint Programming (CP’99), volume 1713 of Lecture Notes in Computer Science,
pages 289–302, 1999.

[19] J.P. Merlet. Parallel robots. Kluwer, Dordrecht, 2000.

[20] R. Moore. Interval Analysis. Prentice Hall, 1966.

[21] Jacob Schwartz and Micha Sharir. On the ’piano movers’ problem i. the case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers. Technical Re-
port 39, Department of Computer Science, Courant Institute of Mathematical Sciences,
1981.

[22] M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Search techniques for non-linear con-
straint satisfaction problems with inequalities. In Proc. of 14th Biennial Conference of
the Canadian Society on Computational Studies of Intelligence: Advances in Artificial
Intelligence, volume 2056 of Lecture Notes in Computer Science, pages 183–193,
2001.

INRIA

A SQE for Distance Constraints with Uncertainties 23

Contents

1 Introduction 3

2 Problem Statement 4

3 Background and Definitions 5
3.1 Interval Analysis . 5
3.2 Quantifier Elimination . 7

3.2.1 Quantifier Elimination Problem . 8

4 Specific Quantifier Elimination 8
4.1 The Two Dimensional Case . 8

4.1.1 The constraint ci
a,r(x) . 9

4.1.2 The constraint ce
a,r(x) . 10

4.2 The Three Dimensional Case . 10
4.2.1 The constraint ci

a,r(x) . 11
4.2.2 The constraint ce

a,r(x) . 13

5 Implementation 14
5.1 Some Optimizations . 15

6 Preliminary Results 15

7 Conclusions 20

RR n° 5883

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rĥone-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Problem Statement
	Background and Definitions
	Interval Analysis
	Quantifier Elimination
	Quantifier Elimination Problem

	Specific Quantifier Elimination
	The Two Dimensional Case
	The constraint cia,r(x)
	The constraint cea,r(x)

	The Three Dimensional Case
	The constraint cia,r(x)
	The constraint cea,r(x)

	Implementation
	Some Optimizations

	Preliminary Results
	Conclusions

