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Abstract. Many problems in chemistry, robotics or molecular biology
can be expressed as a Distance CSP4. In this paper, we propose a spe-
cific methodology for tackling uncertainties in this class of problems.
The main idea consists in solving the CSP without taking into account
the uncertainties and using this information to approximate the solution
space of the original CSP. This methodology permits to obtain an inte-
rior and exterior approximation of each solution sub-space by a set of
disjoint boxes.

1 Introduction

Many of problems in chemistry, robotics or molecular biology can be expressed
as a Distance CSP [1, 2]. Sometimes, the parameters of this kind of problems
are determined in an experimental way, and therefore they have an uncertainty
degree.

A classical approach for solving this class of problems is to solve the CSP
without considering the uncertainties, and to obtain a set of solutions instead
a set of solution sub-spaces, without knowing the real solution space. Another
approach is to apply a branch and prune algorithm to generate a set of boxes that
include all the solution sub-spaces. The disadvantage of this approach is that the
algorithm generates a lot of boxes with a given precision and without information
about independent solution sub-spaces. A subsequent task is to apply a clustering
algorithm [3] to recover the solution sub-spaces.

In this paper, we propose a new methodology built from the combination of
both approaches for tackling uncertainties in a Distance CSP. Two hypotheses
are necessary to apply our algorithm:

– The problem has a finite number of solutions ρ, without taking into account
the uncertainties.
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– The problem has only connected sets of solutions around each initial solution,
when we consider the uncertainties.

The algorithm can be summarized in the following steps:

1. Finding all solutions of the problem without considering the uncertainties.
2. Applying a division of the initial space into sub-spaces containing only one
initial solution each.

3. Applying a branch and prune algorithm, combined with a specialized feasi-
bility checker to identify inner boxes, for each initial solution.

In the remainder of this section we explain the problem and its characteristics.
Section 2 presents some basic definitions that we use in section 3 to explain our
methodology. Section 4 shows some preliminary experiments and limitations of
this approach. Finally, section 5 presents the conclusions of this work and future
works.

1.1 Problem

A distance constraint c between two points Pi and Pj in a n-dimensional space
E ⊂ Rn, can be expressed as follows:

c(Pi, Pj) :

n∑

k=1

(xik − xjk)
2 = d2

ij (1)

where xik is the k-th coordinate of the point Pi, and dij is the distance value
between them. A Distance CSP is a CSP formed by distance constraints. All
fixed values in a Distance CSP, are called parameters of the problem. They can
be fixed points or distances, and they can have real or interval values. When a
CSP has parameters with interval values, it is called CSP with uncertainties.
We have identified two type of uncertainties: soft uncertainty and hard uncer-

tainty. Soft uncertainty occurs when the independent parameter in the equation
(the distance) has an interval value. Hard occurs when the parameters related
with the variables have interval values (a fixed point, for example).
A main difficulty of the branch and prune algorithm is to determine when

a box is totally included in the solution space. It is very important, since each
branching in the search tree exponentially increases the number of boxes.
Xuan-Xu et al. [4, 5] propose techniques to verify inner boxes in CSP with

non-isolated solutions. This type of techniques delivers good results in simple
problems with soft uncertainty, but they are not effective in Distance CSP with
hard uncertainty or several points in a space. In section 3.1 we propose a new
algorithm to verify inner boxes in Distance CSP.

2 Background and Definitions

2.1 Interval Arithmetics

We use interval arithmetics to take into account the influence of rounding or
uncertainties in computing calculation.



Definition 1 (Interval) Let
�

denote a finite subset of � extended with the
two infinity symbols {−∞,+∞}. An interval [a, b] with a, b ∈

�
is the set of real

number {r ∈ � | a ≤ r ≤ b}.

The set of intervals with bounds in
�
, denoted by � , is partially ordered by

set inclusion. A Cartesian product of n intervals B = I1 × · · · × In is called a
box. Two boxes B1 and B2 are said disjoint if B1 ∩B2 = ∅.

Definition 2 (Set Extension) Let S be a subset of � . The approximation of
S, denoted 2S, is the smallest interval I such that S ⊆ I.

An interval extension of f : � n → � is a mapping F : � n → � such that
for all I1, . . . , In ∈ � : r1 ∈ I1, . . . , rn ∈ In ⇒ f(r1, . . . , rn) ∈ F (I1, . . . , In). A
more general description of interval extension and natural interval extension for
a function and arithmetic operator can be found in [6, 7].

2.2 Constraint Programming

Definition 3 (CSP) A CSP [8] is a triple (X,D,C) where X = {x1, . . . , xn}
denotes a set of variables, D = {Dx1

, . . . , Dxn
} denotes a set of domains and

C = {c1, . . . , cm} denotes a set of constraints.

In this paper, we consider a special type of CSP called Distance CSP with
uncertainties. It is a CSP with intervals domains (also called NCSP5), and there-
fore real-valued variables. Moreover, a constraint is an atomic formula built from
a set of operations, a set of variables, a set P = {p1, . . . , pk} of parameters and
a binary relation symbol of the set {=,≤,≥}. Uncertainties exist when one or
more parameters have intervals values instead a real values. Let V ar(c) be the
set of variables occurring in c, Par(c) the set of parameters occurring in c, and
ρc the relation associated to c, then ρc = {v ∈ Dx1

× · · · × Dxk
;x1, . . . xk ∈

V ar(c) | ∃p ∈ p1 × · · · × pj ; p1, . . . , pj ∈ Par(c), c(v,p) is verified }. The global
relation defined by the conjunction of all the constraints of a CSP, is denoted ρ.

2.3 Local Consistencies

Local consistencies, like Hull-Consistency or Box-Consistency, are extensively
covered in literature (see [9], for example).

Definition 4 (Hull-Consistency) A constraint c is said hull consistent with
respect to a box B if and only if B = 2(ρc ∩ B). A CSP � is hull consistent
when all its constraints are hull consistent.

Definition 5 (Inner Box) Let c be a constraint and B a box. B is a inner box
of c if and only if B ⊆ ρc.
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3 Algorithm

We consider a Distance CSP with uncertainties � . The first step in the method-
ology is solving the problem � ′ from � without considering uncertainties (by
replacing each parameter with interval value by the middle point of the interval).
We use a branch and prune algorithm (solver) for getting all solutions of � ′.
Let S′ = {s1, . . . , sn} be the set of solutions for � ′. The next phase consists

of applying a solution separation algorithm. For each solution si ∈ S′, we calcu-
late the equation of the median plane Mpsi,sj

(x) between si and sj , si 6= sj .
Algorithm 1 shows the Solution separation algorithm.

Algorithm 1 : SSA(Solution s, Solutions S ′): constraints

C′ ← ∅
for all solution si in S′\{s} do

Mps,si
(x)← (x− s+si

2
) · ( s−si

‖s−si‖
) ≥ 0

C′ ← C′ ∪Mps,si
(x)

return C ′

For each solution si ∈ S′, we solve a CSP � si
built from the original CSP

� and the set of equations Mpsi,sj
, si 6= sj . The sub-space for a solution si,

defined by the conjunction of all Mpsi,sj
, si 6= sj is equivalent to the sub-space

of a Voronoi diagram [10] for this point.

3.1 Feasibility checker

Our feasibility checker, used to determine inner boxes, is based on the following
proposition:

Proposition 1 Let c : f(x1, . . . , xk, p1, . . . , pr) = D be a distance constraint
with uncertainty (D = [d, d], p1, . . . , pr ∈ P parameters). Let B = Ix1

×· · ·× Ixk

be a box, and let Fp(B) be the interval extension of f when each variable xi is
replaced by the interval Ixi

and each interval-valued parameter pi by the middle
point of its value. If Fp(B) ⊆ D then B is an inner box of c.

Proof. Considering fp, the function f when replacing each interval-valued para-
meter pi by its middle point. By definition of interval extension, for any x1 ∈
Ix1

, . . . , xk ∈ Ixk
it follows that fp(x1, . . . , xk) ∈ Fp(B), and if Fp(B) ⊆ D then

there exists d∗ ∈ D such that fp = d∗, and then B ⊂ ρc.

Algorithm 2 : FCheck(CSP � , Solution s, Box B): bool

for all constraint c(Pi, Pj) in � do

if Fp(B) * D then

return false
return true



We can see that if B is an inner box of c, for all c in � then B ⊆ ρ. The final
branch and prune algorithm uses the feasibility checker (shown in algorithm 2)
to identify an inner box each time when the pruning phase does not reduce the
domains.

4 Preliminary Experiments

We have selected some toy problems to show the utility of this approach. The first
one consists in determining 2 points in � 2, given by the CSP � 1 : (X,D,C, P ) =
({P1,P2}, { � 2, � 2}, {d(P1,Pa) = d2

1
, d(P1,Pb) = d2

2
, d(P2,P1) = d2

2
, d(P2,Pb) =

d2

2
}, {Pa = (0, 0), Pb = (6, 0), d1 = [4, 5], d2 = [3, 4]}). The second one consists

of determining a point in a Distance CSP with soft and hard uncertainties,
� 2 : (X,D,C, P ) = ({P1}, { � 2}, {d(P1,Pa) = d2

1
, d(P1,Pb) = d2

2
}, {Pa =

(0, 0), Pb = ([5.9, 6.1], [−0.1, 0.1]), d1 = [4, 5], d2[3, 4]}). Problem � 3 is similar
to � 2 but with a parameter Pa = ([−0.1, 0.1], [−0.2, 0.2]). Table 1 shows the
results6 for these problems.

Prob. Sols. Precision Boxes Inner Time FC Boxes FC Inner FC Time

� 1 4 0.2 32676 0 123.35s 29634 1594 91.60s
� 2 2 0.01 47515 0 274.55s 13757 1073 16.95s
� 3 2 0.01 62477 0 472.69s 30753 1027 106.98s

Table 1. Preliminary results of some toy problems

Column Sols. shows the number of solutions for the problem without consid-
ering the uncertainties. Column Precision shows the minimun interval width for
applying a branching process over the domain of the variable. Columns Boxes,
Inner and Time present the number of boxes, inner boxes and the computation
time, respectively, for a branch and prune algorithm without feasibility checker.
Columns FC Box, FC inner, FC times present the same values with feasibility
checker. We can see that in all problems, the FC can help us for reducing the
computation time and the number of boxes found.

4.1 Limitations

We have found some limitations of this methodology:

– Sometimes, it is not possible to calculate all solutions to a CSP � ′, because
the problem without uncertainties has no solutions or because � ′ has a
infinite number of solutions. In any of these cases, it is not possible to apply
our algorithm.

– We consider that the number of solution sub-spaces in the CSP with uncer-
tainties � , is equal to the number of solutions of the CSP without uncertainty
� ′. That is not necessarily true, since two solutions can share the same so-
lution sub-space, or the problem � can have more solutions sub-spaces than

6 Obtained on a Pentium III 500MHz 256MB RAM running IcosAlias v0.1c
(http://www-sop.inria.fr/coprin/gchabert/icosalias.html) on a Linux kernel 2.4.27.



the solutions of � ′. The first case is easier to detect, because we can take
two CSP � si

and � sj
, and seek for solutions on the median plane between

si and sj .

5 Conclusions

The contribution of this work is twofold: first, a methodology for solving a Dis-
tance CSP with uncertainties by approximating the solution sub-spaces without
a posterior clustering algorithm; second, a new feasibility checker function for
detecting inner boxes in a branch and prune algorithm. In spite of the limited ex-
perimentation, the preliminary results show the utility of this aproach. Although
this methodology can be applied to Distance CSP with any type of uncertainty,
the results of the feasibility checker are limited in the cases of hard uncertainty.
At present we work on how to increase the performance of our FC function in
the problems with hard uncertainty.
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