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Stability Analysis of Underconstrained
Cable-Driven Parallel Robots

Marco Carricato and Jean-Pierre Merlet

Abstract—This paper studies cable-driven parallel robots with less than
six cables, in crane configuration. A geometrico-static model is provided,
and the stability of static equilibrium is assessed within the framework of
a constrained optimization problem. The method relies on ordinary linear-
algebra routines, and it may be very simply applied to the most general
architectures. Several examples are provided, concerning robots with a
number of cables that range from 2 to 4.

Index Terms—Cable-driven parallel robots (CDPRs), kinematic analy-
sis, stability analysis, static analysis, underconstrained robots.

I. INTRODUCTION

Cable-driven parallel robots (CDPRs) employ cables in place of
rigid-body extensible legs to control the end-effector pose. CDPRs
strengthen classic advantages characterizing closed-chain architectures
versus serial ones, such as reduced masses and inertias, a larger payload
to robot weight ratio, high dynamic performances, etc., while providing
peculiar advantages, such as a larger workspace, reduced manufactur-
ing and maintenance costs, ease of assembly and disassembly, superior
modularity, and reconfigurability.

A CDPR intended to control the total number f of degrees of freedom
(dof) of the end effector, i.e., a fully constrained robot, should have at
least f + 1 cables [1]. Indeed, since cables may exert only tensile axial
forces, a redundancy of control actions is necessary to prevent cables
from becoming slack [2]–[5]. The number of cables may be reduced
to f if the end effector is linked to a constraining mechanism [6],
[7] or it is submitted to an external force of convenient magnitude
and direction that steadily acts upon it. One example of the latter
case is provided by crane-type manipulators [8], [9], in which gravity
plays the role of an additional virtual cable. A rich literature exists for
fully constrained robots, as they have attracted much interest from the
research community [1]–[19].

This paper studies underconstrained CDPRs, which are equipped
with a number of cables n smaller than f , thus allowing only n dofs
of the end effector to be controlled. CDPRs with a limited number
of cables may be used in several applications (such as measurement,
rescue, service or rehabilitation operations [20]–[24]), in which the task
to be performed requires a limited number of controlled freedoms or
a limitation of dexterity is acceptable in order to decrease complexity,
cost, set-up time, likelihood of cable interference, etc. Compared with
fully constrained manipulators, limited research has been conducted
on underconstrained CDPRs [25]–[31].
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27–July 1, 2010.

M. Carricato is with the Department of Mechanical Engineering (DIEM)
and the Center for Health Sciences and Technologies (HST-ICIR), University
of Bologna, 40136 Bologna, Italy (e-mail: marco.carricato@unibo.it).

J.-P. Merlet is with the COPRIN Research Team, INRIA, Sophia Antipolis,
BP 93, 06902 Sophia Antipolis Cedex, France (e-mail: jean-pierre.merlet@
sophia.inria.fr).

Digital Object Identifier 10.1109/TRO.2012.2217795

A major challenge in the kinematic study of underconstrained CD-
PRs comes from the fact that, when the actuators are locked and cable
lengths are assigned, the end effector is still movable so that the actual
configuration is determined by the applied forces. Accordingly, loop-
closure and mechanical-equilibrium equations must be simultaneously
solved, and displacement-analysis problems become, more properly
speaking, geometrico-static. As the end-effector pose depends on the
applied load, it may change due to external disturbances so that inves-
tigating equilibrium stability is essential. An equilibrium configuration
is actually feasible only if cable tensions are positive and equilibrium
is stable.

In this paper, underconstrained n–n CDPRs are considered, i.e., ma-
nipulators in which a fixed base and a mobile platform are connected
to each other by n cables, with n ≤ 5. The notation n–n denotes the
number of distinct cable exit points on the base and anchor points on the
platform. Cables are treated as inextensible and massless, and the plat-
form is acted upon by a constant force, e.g., gravity. A geometrico-static
model is presented, and inverse and direct geometrico-static problems
are described. A general and efficient algorithm to assess the stabil-
ity of equilibrium is proposed. The algorithm, which is based on a
constrained optimization formulation, relies on ordinary linear-algebra
routines, and it may be very simply applied to the most general archi-
tectures.

A CDPR with two cables is studied in detail to show the effectiveness
of the proposed approach. Only planar models are available so far in
the literature for this robot (cf., [26], [28], and [30]), but they do not
provide the entire set of equilibrium configurations and they may cause
unstable configurations to be inadvertently addressed as stable. The
complex spatial behavior of the robot is described, and complete static
and stability analyses are presented. To show the generality of the
stability algorithm, this is also applied to exemplifying robots with
three and four cables.

In all numerical examples that are presented in the text, measure-
ments are expressed in SI units, with angles being computed in radians.

II. GEOMETRICO-STATIC MODEL

Fig. 1 shows the model of an underconstrained n–n CDPR, for the
case n = 3. The ith cable (i = 1, . . . , n) exits from the fixed base at
point Ai , and it is connected to the mobile platform at point Bi . The
cable length is ρi , with ρi > 0. Oxyz is a Cartesian coordinate frame
that is fixed to the base, with i, j, and k being unit vectors along the
coordinate axes. Gx′y′z ′ is a Cartesian frame that is attached to the end
effector. Without loss of generality, O is chosen to coincide with A1 .
The platform pose is described by X = [x;Φ], where x is the position
vector of G in the fixed frame, and Φ is the array grouping the variables
parameterizing the platform orientation with respect to Oxyz. For the
sake of brevity, the following symbols are also introduced:

ai = Ai − O, ri = Bi − G, si = Bi − Ai

where

si = x + ri − ai . (1)

The platform is acted upon by a constant force, e.g., gravity, which is
assumed to be oriented as k and applied at G, without loss of generality.
This force may be described by a 0-pitch wrench QLe , where Q is the
intensity of the force, and Le is the normalized Plücker vector of the
force line of action. The normalized Plücker vector of the line that
is associated with the ith cable is Li /ρi , where, in axis coordinates,
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Fig. 1. Geometric model of a CDPR with three cables.

Li = − [si ;pi × si ], and pi is any vector from an arbitrarily chosen
reference point (called for brevity moment pole) to the cable line.
Accordingly, the wrench exerted by the ith cable on the platform is
(τi/ρi )Li , with τi being a positive scalar that represents the intensity
of the cable tensile force.

When all cables of the robots are active (i.e., taut), the set C of
geometrical constraints imposed on the platform is made up by n
equations, i.e.,

‖si‖2 = ρ2
i , i = 1, . . . , n. (2)

Since only n geometrical restraints are enforced, the platform pre-
serves 6 − n dofs, with its posture being determined by equilibrium
laws, namely

[L1 · · · Ln Le ]︸ ︷︷ ︸
M

⎡

⎢⎢⎢⎢⎣

(τ1/ρ1 )

...

(τn /ρn )

Q

⎤

⎥⎥⎥⎥⎦
= 0 (3)

where M is a 6 × (n + 1) matrix that only depends on the platform
pose X, and

τi ≥ 0, i = 1, . . . , n. (4)

Equations (2) and (3) amount to 6 + n scalar relations that involve
6 + 2n variables, namely the cable tensions and lengths, and the vari-
ables parameterizing the platform pose. Depending on the variables
designated as input, one may tackle an inverse geometrico-static prob-
lem (IGP), if n variables concerning the platform pose are assigned, or
a direct one (DGP), if cable lengths are given. In both cases, a square
system of 6 + n equations in 6 + n unknowns is obtained so that a
finite set of solutions is, in general, expected.

Both the IGP and the DGP may be simplified by eliminating cable
tensions from the unknowns. Indeed, it emerges from (3) that equilib-
rium is possible only if

rank(M) ≤ n (5)

to wit, if all (n + 1) × (n + 1) minors of M vanish. This strategy
allows a large set of linearly independent relations that comprise neither
the cable tensions nor the cable lengths to be obtained, a set that
may be further enlarged by changing the moment pole with respect to
which M is formulated and by canceling the corresponding minors.
The mentioned strategy is particularly favorable, since the wealth of
relationships in X replacing the static constraints may play a crucial
role for the development of effective solution strategies for both the
IGP and the DGP [32]–[37].

The IGP takes particular advantage of the partial decoupling of the
system equations, since, in this case, the 6 − n configuration variables
that are needed to fully determine the platform pose may be directly
computed by way of (a minimum of) 6 − n relations that emerge from
(5). Cable lengths may be subsequently computed by (2), and cable ten-
sions may be obtained by a suitable set of linear independent relations
chosen within (3).

The DGP poses more complex mathematical problems than the IGP,
since in this case the platform configuration must be determined by
simultaneously solving both the relations emerging from (5) and the
n relations in (2). Furthermore, when cable lengths are assigned as
inputs, nothing ensures, a priori, that when the platform reaches its
stable equilibrium all cables are under tension. Accordingly, the final
pose may be a DGP solution for either the current n–n CDPR or any
m–m CDPR that may be derived from the initial n–n robot (with
m < n). It follows that the overall solution set emerges by solving the
DGP for all

∑n−1
h=0

(
n

n−h

)
CDPRs that may be obtained from the initial

n–n robot.

III. STABILITY ANALYSIS

Let an equilibrium configuration
(
X̄, ρ̄1 , . . . , ρ̄m

)
be considered,

with m being the number of active constraints (i.e., the number of cables
contributing to supporting the platform). By a convenient reordering
of indexes, taut cables may be assumed to be the first m, with m ≤
n. Since the platform preserves 6 − m dofs, it may displace under
the effect of a transitory change in the external force acting on it,
while cable lengths remain unvaried (for the sake of simplicity, it is
assumed that the number of cables in tension does not change because
of the perturbation, which is reasonable, but not necessarily true).
The problem of assessing equilibrium stability is, thus, in order. In
particular, while constraints (2) hold for i = 1, . . . , m, G may generally
move within a closed region of R

3 (in some cases, a surface or a curve).
If g is the frontier of this region, the equilibrium is stable any time the
potential energy U associated with the external wrench, namely −Qk ·
x, is at a local minimum on g. Loosely speaking, the platform is at rest
at all points Ḡ of g in which the variety tangent to g is perpendicular to
k, with the equilibrium being stable if and only if a neighborhood WḠ

of Ḡ exists such that
(
P − Ḡ

)
· k < 0, for all P ∈ (g ∩ WḠ ). Under

such a condition, when the platform displaces under the effect of a
perturbation, the original configuration is restored if the perturbation
ceases. Finding the minima of a constrained function is a classic issue in
optimization theory. An efficient algorithmic formalization is presented
hereafter.

At equilibrium, the variation of the total potential energy of the plat-
form due to a virtual displacement must be zero [38]. Such a variation
is the opposite of the virtual work carried out by all forces that act on
the platform, namely

δL = −Qk · δG +
m∑

i=1

τi
si

ρi

· δBi = 0. (6)
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If δx and δΘ are, respectively, the virtual displacement of G and
the virtual rotation of the platform, then

δG = δx, δBi = δsi = δx + δΘ × ri (7)

and thus

δL = −Qk · δx +
m∑

i=1

τi
si

ρi

· δsi = f · δx + m · δΘ = 0 (8)

where

f = −Qk +
m∑

i=1

τi
si

ρi

, m =
m∑

i=1

τiri ×
si

ρi

. (9)

Equation (8), from which f and m are inferred to be zero, is clearly
equivalent, for n = m, to (3).

Since, for ρi = ρ̄i

δ (‖si‖ − ρi ) = δ‖si‖ =
si · δsi

ρi

=
si · δx + ri × si · δΘ

ρi

(10)

δL may be also written as

δL = −Qk · δx +
m∑

i=1

τi δ (‖si‖ − ρi ) (11)

i.e., as the virtual variation of the Lagrange function1

L = −Qk · x +
m∑

i=1

τi (‖si‖ − ρi ) (12)

which shows that Lagrange multipliers coincide with the cable ten-
sions, namely with the forces necessary to impose the geometrical
constraints [38]. Such an observation is useful, since it allows the sta-
bility characteristics of the equilibrium to be assessed by evaluating
the definiteness of the reduced Hessian Hr of L, i.e., the Hessian of L
taken with respect to the configuration variables further restricted to the
tangent space of the constraints C in (2) [39]. An algebraic expression
of Hr is derived hereafter.

The second-order variation of δL is given by

δ2L = −Qk · δ2x +
m∑

i=1

τi
δsi · δsi

ρi

+
m∑

i=1

τi
si · δ2si

ρi

(13)

with
δ2si = δ2x + δ2Θ × ri + δΘ × (δΘ × ri ) . (14)

Substituting (14) into (13) and enforcing f = m = 0 yields

δ2L =
m∑

i=1

τi

ρi

[δsi · δsi + si · δΘ × (δΘ × ri )] (15)

and thus

δ2L =
m∑

i=1

τi

ρi

{ δx · δx − 2δx · (ri × δΘ)

− (ri × δΘ) · [(x − ai ) × δΘ] } (16)

1Equation (6) plus the relations {τi > 0, ‖si‖ = ρi} for i = 1, . . . , m and
{τi = 0, ‖si‖ < ρi} for i = m + 1, . . . , n is equivalent to the Karush–Kuhn–
Tucker conditions for the minimization of L, provided that L1 , . . . ,Lm are
linearly independent.

or, in matrix notation

δ2L =
m∑

i=1

τi

ρi

[
δxT δx − 2δxT r̃i δΘ + δΘT r̃i (x̃ − ãi ) δΘ

]
(17)

where, for a generic vector n, ñ denotes the skew-symmetric matrix
that is associated with the operator n×.

δ2L is a bilinear form in the twist space of the platform. If the
platform virtual displacement is expressed, in ray coordinates, as δt =
[δx; δΘ] and I3 denotes the 3 × 3 identity matrix, the symmetric matrix
that is associated with this form is

H =
m∑

i=1

τi

ρi

[
I3 −r̃i

r̃i
1
2

[r̃i (x̃ − ãi ) + (x̃ − ãi ) r̃i ]

]
(18)

which represents the pseudo-Hessian of L (H is not a true and proper
Hessian, since δΘ is not generally integrable).

The tangent space of C is obtained by setting (10) equal to zero for
all values of i. In matrix notation, this amounts to

Jδt =

⎡

⎢⎢⎢⎣

sT
1 (r1 × s1 )

T

...
...

sT
m (rm × sm )T

⎤

⎥⎥⎥⎦

[
δx

δΘ

]
= 0 (19)

where the ith row of J coincides with −Li , expressed in axis coordi-
nates and assuming G as the moment pole. J is the pseudo-Jacobian of
the constraint equations.

If N is any 6 × (6 − m) matrix whose columns generate the null
space of J, the reduced Hessian of C is the following (6 − m) × (6 −
m) matrix:

Hr = NT HN. (20)

A sufficient condition for the equilibrium to be stable consists in Hr

being positive definite.
It is worth remarking that if E3 is the matrix such that δΘ = E3δΦ,

the Hessian and the Jacobian derived by differentiating L and C with
respect to x and Φ are equal, respectively, to H′ = ET

6 HE6 and
J′ = JE6 , where E6 = [I3 , 03 ; 03 ,E3 ], and 03 is the 3 × 3 zero
matrix. If the null space of J′ is generated by N′ = E−1

6 N, then
Hr = NT HN = N′T H′N′.

The method that is proposed in [28] differs from the one presented
here in that it determines the stability of equilibrium by looking at
the Hessian of an unconstrained potential, explicitly expressed as a
function of a number of independent coordinates equal to the number
of taut cables. Such a mapping is, generally, difficult to obtain, and it
requires extensive differential symbolic computation. Indeed, Michael
et al. [28] apply important simplifications on the geometry of the robot.
Instead, the method described here is based on a purely algebraic for-
mulation (no differentiation is needed), and it may be very simply
applied to the most general cases. No simplification of the robot geom-
etry is necessary, and equilibrium stability may be assessed by ordinary
linear-algebra routines (the order of magnitude of the computation time
required to determine Hr and its eigenvalues is the msec).

IV. GEOMETRICO-STATIC ANALYSIS OF THE SPATIAL 2–2
CABLE-DRIVEN PARALLEL ROBOT

In this section, the case n = 2 is discussed in detail. In spite of its
relative simplicity, the spatial manipulator with two cables has the merit
of revealing, without the burden of heavy mathematical computations, a
number of issues that are of fundamental importance to obtain physical
insight into the kinematics and statics of underconstrained CDPRs.
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Fig. 2. Geometric model of a CDPR with two cables. (a) Operation mode I. (b) Operation mode II.

A. Modeling

Without loss of generality, the coordinate plane xz (which is parallel
to k) may be allowed to pass through A1 and A2 , whereas x′z ′ may
be chosen so that it contains B1 , B2 , and G. For practical reasons, the
segment B1B2 is assumed to be strictly smaller than the projection of
the segment A1A2 on the x-axis (assumption A). This assumption is
not conceptually necessary, but it rules out some special configurations,
which could be handled with no difficulty, but whose analysis would
burden the presentation. In particular, the possibility that both cables
may be simultaneously parallel to k is discarded.

Since the cable wrenches and the external load represent pure forces,
and three screws of equal pitch are linearly dependent if and only if they
belong to a planar pencil [40], G, A1 , A2 , B1 , and B2 must necessarily
rest, at the equilibrium, in a plane parallel to k. Accordingly, xz and
x′z ′ must be superimposed. If y and y′ point in the same direction, the
robot is said to work in operation mode I [see Fig. 2(a)] and the rotation
matrix between Oxyz and Gx′y′z ′ is

RI =

⎡

⎢⎣
cθ 0 sθ

0 1 0

−sθ 0 cθ

⎤

⎥⎦ (21)

whereas if y and y′ point in opposite directions, the robot is said to
work in operation mode II [see Fig. 2(b)] and the rotation matrix is

RI I =

⎡

⎢⎣
cθ 0 sθ

0 −1 0

sθ 0 −cθ

⎤

⎥⎦ (22)

where θ is the angle formed by x′ with x through a positive rotation
around y′, and sθ and cθ stand for sin θ and cos θ, respectively. If b′

i is
the coordinate vector of Bi in the Gx′y′z ′ frame, then ri = RI (θ)b′

i

or ri = RI I (θ)b′
i .

Distinguishing these two operation modes is important, since they
provide distinct equilibrium configurations (and one set cannot be ob-
tained from the other by planar movements). Indeed, when initially
assembled, the CDPR moves to a pose corresponding to one operation
mode. In general, after a displacement, the equilibrium pose still be-
longs to the same mode. However, when the robot is not constrained
to move on a given plane by external means, appropriate changes in
the cable lengths may bring the platform to an unstable equilibrium

configuration, from which it may move away changing its operation
mode (see Section IV-D).

If O ≡ A1 is chosen as the moment pole, Li and Le may be, respec-
tively, expressed as − [si ; ai × si ] and [k; x × k] so that the matrix
M in (3) becomes

M =

[− (x + r1 ) a2 − (x + r2 ) k

0 −a2 × (x + r2 ) x × k

]
. (23)

Since at the equilibrium all vector components parallel to the y-axis
and all moment components perpendicular to it are equal to zero, they
may be ignored. Therefore, the matrix

M′ =

[
x + r1 r21 − a2 k

0 a2 × (x + r2 ) x × k

]
(24)

obtained from M by elementary column transformations and by setting
rij = ri − rj , i �= j, may be condensed as

M′ =

⎡

⎢⎣
x + r1x r21x − a2x 0

z + r1z r21z − a2z 1

0 a2 × (x + r2 ) · j −x

⎤

⎥⎦ . (25)

Under assumption A, |r21x | ≤ ‖r21‖ < |a2x | �= 0. Accordingly, it
emerges from (25) that rank M′ ≥ 2 and (5) holds if and only if
detM′ = 0, namely

p1 := (r21x x + a2x r1x ) z − r21z x2

+ (r1z r2x − r1x r2z + a2x r21z − a2z r2x ) x

+ r1x (a2x r2z − a2z r2x ) = 0. (26)

Equation (26), which is equivalent to requiring L1 ,L2 , and Le to form
a planar pencil, only depends on the variables x, z, and θ (through the
components of rij ).

The two constraint equations that emerge from (2) may be linearly
combined in the form

p2 := x2 + z2 + 2 (r1xx + r1z z) + ‖r1‖2 − ρ2
1 = 0 (27)

p3 := 2 (a2x − r21x ) x + 2 (a2z − r21z ) z

+ ‖r1‖2 − ‖a2 − r2‖2 + ρ2
2 − ρ2

1 = 0. (28)

They comprise the variables x, z, θ, ρ1 , and ρ2 .
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Fig. 3. Examples of one-dimensional solution sets of the IGP with assigned
orientation for the 2–2 robot. (a) a2x = 4, a2z = 1, r2x = −r1x = 1, r1z =
−0.5, r2z = 0, and x = 2. (b) a2x = 4, a2z = 1, r1x = 0, r2x = 1.5, r2z =
r1z = −0.5, and z = 1.5. In both cases, equilibrium configurations are feasible
along the entire path.

B. Inverse Geometrico-Static Problem

The IGP may be directly solved by (26). Different cases may be
distinguished, depending on which pose parameters are assigned. In
particular, when the orientation is known (including the operation mode
and θ), one may assign either one component of x or an approximate
global position of G.2

1) Orientation and Variable x Are Assigned: If the orientation and
x are known, (26) provides a single solution in z, as long as r21x x �=
−a2x r1x .

If the latter condition does not hold, the problem may be solved only
if the entire polynomial vanishes, in which case the solution set is one-
dimensional, and it coincides with a line that is parallel to k. Under
assumption A, this occurs if either one of the following conditions
holds:

1) rix = 0 and x = aix , with i = 1 or 2;
2) a2 × r21 · j = 0, r21x �= 0 and x = −a2x r1x /r21x .
In the former case, Ai , Bi , and G lie on a line parallel to k, and

the robot operates like a one-dof crane, with the ith cable holding the
entire charge. In the latter case, the line segments A1A2 and B1B2 are
parallel, and the platform may follow a quasi-static linear path parallel
to k, with orientation being constant and the load being sustained by
both cables [see Fig. 3(a)].

2) Orientation and Variable z Are Assigned: If the orientation and
z are assigned, (26) provides, in general, two solutions in x.

If all coefficients of p1 vanish, the solution set is one-dimensional,
and it coincides with a line perpendicular to k. Under assumption A,
p1 is identically nought if r1z = r2z , z + r1z = ajz , and rix = 0, with
i �= j, namely if points B1 , B2 , and Aj lie on a line perpendicular to
k, and the segment BiG is parallel to k [see Fig. 3(b)]. In this case,
L1 ,L2 , and Le intersect in Bi .

3) Orientation and an Approximate Position of G Are Assigned:
If the orientation and an approximate desired location (xd , zd ) of G
are assigned, x and z must be found so that (26) is satisfied and the
error ε = (x − xd )2 + (z − zd )2 is minimized. Since both ε and p1

are continuously differentiable in x and z, the global minimum of ε
is a stationary point of the function Lε = (x − xd )2 + (z − zd )2 +

2The constant-orientation statical workspace of the 2–2 CDPR is a conic on
the xz-plane, as observed in [26].

λp1 (x, z). Setting the derivatives of Lε with respect to x and z to zero
provides a linear system in x and z, by which x and z may be determined
as functions of λ. Upon substituting x = x(λ) and z = z(λ) into p1 ,
a quartic polynomial in λ is obtained. Its real roots are the stationary
points of Lε , among which the global minimum may be determined
by the evaluation of ε. Clearly, this optimal configuration is feasible
only if the conditions concerning cable-tension signs and stability are
satisfied.

4) Position Is Assigned: When x is assigned and the orientation
is unknown, by letting ri = RI (θ)b′

i or ri = RI I (θ)b′
i (i = 1, 2),

p1 becomes a quadratic polynomial in sθ and cθ . For each operation
mode, the resultant of p1 and the trigonometric identity yields a quartic
equation in sθ . For each root in sθ , (26) provides a single value of
cθ and thus of θ. The problem admits, altogether, eight solutions, all
of which may be real. When x = aix , with i = 1 or 2, the algorithm
provides, among its solutions, the configurations for which only the ith
cable is taut.

C. Direct Geometrico-Static Problem

When the DGP is dealt with, ρ1 and ρ2 are assigned and the platform
pose must be found. The operation mode is a priori unknown.

For each mode, (28) allows x to be expressed as a linear function
of z, since p3 is linear in x and z and the coefficient 2(a2x − r21x )
is different from zero under assumption A. Substituting x = x(z) into
p1 and p2 yields two quadratic equations in z, namely p4 = 0 and
p5 = 0, from which z may be eliminated. By canceling out the nonzero
factor 16 (a2x − r21x )4 , a single equation in θ may be further obtained
in the form p6 = 0. By Weierstrass substitutions, sθ and cθ may be
conveniently expressed as functions of tan (θ/2), here denoted as tθ .
By clearing the factor (1 + t2

θ )6 , a 12th-degree polynomial equation in
tθ is finally obtained, i.e.,

12∑

k=0

Bk tk
θ = 0. (29)

For each solution of (29), a single value of z is computed by the
greatest common divisor of p4 and p5 . The existence of such a value
is guaranteed [41], since the coefficient of the monomial z2 of p4 is
4‖a2 − r21‖2 and this number is nonzero under assumption A. A single
value of x is finally obtained by (28). By considering both operation
modes, the problem admits up to 24 solutions.

The solution of the DGP presented here is an improvement with
respect to what was previously presented in the literature, as

1) a maximum of only 12 solutions is reported in [28] and [30],
where only one operation mode is taken into account;

2) the solution set computed by the elimination procedure presented
in [30] is not minimal, since it includes four spurious roots.

Equilibrium configurations that involve a single cable in tension may
be searched for by setting, for each operation mode and for i = 1 and
2, Bi = Ai + ρik, G = Bi ± ‖ri‖k, and Bj = G + rj , with j �= i
[postures for which Bi = Ai − ρik may be discarded, for they would
not comply with the requirement (4)]. Provided that ‖sj ‖ ≤ ρj , these
configurations are acceptable and they may be appended to the solution
set emerging from (29).

It is apparent that
1) when B1 , B2 , and G are aligned, the two operation modes coin-

cide;
2) when a2z = 0, each operation mode may be obtained from the

other by a reflection through the x-axis.
The total degree of (29) has an apparent geometrical interpreta-

tion [28]. If the platform is thought of as the coupler of a four-bar
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Fig. 4. Solution set of the DGP of a 2–2 robot with distinct operation modes such that a2x = 5, a2z = −0.5, b′1x = −1, b′1z = −0.5, b′2x = 1, b′2z = 0, ρ1 =
ρ2 = 6.5, and Q = 10. There are six real potential equilibrium configurations in each mode [figures (a)–(b)] and one equilibrium configuration for which one
cable is taut and the other is slack [figure (c), ‖B1 − A1‖ = 6.02 < ρ1 ]. Only one equilibrium configuration is feasible [with G ≡ Ḡ1 , figure (a)].

linkage whose grounded links are the cables (with assigned lengths),
the locus gxz of the positions that G may assume on the xz-plane un-
der constraints (2) may be interpreted as a coupler curve, which is, in
general, a sextic of class 12 [40]. Accordingly, there are up to 12 lines
tangent to gxz passing through the point at infinity perpendicular to
k. Since the equilibrium configurations are the points of gxz in which
the tangent line is perpendicular to k (see Section III), the maximum
number of solutions of the DGP must be 12, for each operation mode.

D. Stability Analysis

If the robot is constrained to lie on the xz-plane by external means
(e.g., it is suspended against a vertical wall with negligible friction),
other than by equilibrium conditions, all vector components parallel
to the y-axis and all moment components perpendicular to it may be
neglected in stability analysis too, so that matrices J and H specialize
as, respectively,

J =

[
(x + r1 )

T
xz r1 × x · j

(x + r2 − a2 )
T
xz r2 × (x − a2 ) · j

]
(30)

and

H =
2∑

i=1

τi

ρi

[
I2 − (ri × j)xz

− (ri × j)T
xz −ri × j · [(x − ai ) × j]

]
. (31)

In this occurrence, the null space of J may be generated by the vector

N =

[
−adj (J12 ,12 )J12 ,3

det (J12 ,12 )

]
(32)

where adj denotes the adjugate matrix, and Jij,h k denotes the block
matrix obtained from rows i and j, and columns h and k, of J. Ac-
cordingly, the reduced Hessian is a scalar, i.e., Hr .

However, stability assessment by way of (30)–(32) takes into account
only the motions that occur on the xz-plane, and it is not able to provide
correct information if the robot is free to move out of this plane, which
is likely to occur in practice. In this case, stability must be assessed

by way of the tridimensional formulas provided in Section III, with J,
N, and Hr being, respectively, 2 × 6, 6 × 4, and 4 × 4 matrices. This
observation and the fact that the 2–2 CDPR is able to switch between
distinct planar modes during its operation prevent this robot from being
considered as a planar mechanism.

E. Examples

Two examples that concern the DGP and the stability analysis of the
2–2 CDPR are presented hereafter.

1) Example 1: An exemplifying robot with assigned cable lengths
and distinct operation modes (a2z �= 0, and B1 , B2 , and G are not
aligned) is represented in Fig. 4. Fig. 4(a) and Fig. 4(b) portray the
loci gxz for modes I and II, respectively. On each (bicursal) locus,
the figure shows the equilibrium positions of G corresponding to the
real solutions of (29). Fig. 4(c) depicts the unique valid equilibrium
configuration for which a single cable is in tension.

Table I reports the corresponding values of the pose and cable ten-
sions, as well as an indication about the definiteness of the “planar”
and the “spatial” reduced Hessians (the symbols >,≥, <,≤, and <>
stand, respectively, for positive definite, positive semidefinite, negative
definite, negative semidefinite, and indefinite).

The configurations for which cable tensions are nonnegative lie,
naturally, in the half-plane z > 0. Among these, Hr > 0 in Ḡ1 , Ḡ7 ,
and Ḡ9 . (Fig. 4(a) and Fig. 4(b) depict the robot configurations in such
positions.) However, Ḡ1 , Ḡ7 , and Ḡ9 are local minima of the potential
energy only if movements on the xz-plane are considered exclusively.
If, instead, possible motions out of the xz-plane are taken into account,
the analysis of Hr proves that the configurations centered in Ḡ7 and Ḡ9

are unstable. The platform may, in fact, move away from the former by
tilting over the axis B1B2 , whereas it may move away from the latter
by rotating around an axis lying on the xz-plane, thus unfolding the
cables away from the crossed configuration.

2) Example 2: When a2z = 0 and B1 , B2 , and G are collinear,
the loci gxz of the two operation modes coincide and gxz is a curve
symmetric about the x-axis. Hence, for any equilibrium configuration
in the half-plane z > 0, there is a symmetric one in the half-plane
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TABLE I
REAL EQUILIBRIUM CONFIGURATIONS OF THE ROBOT SHOWN IN FIG. 4

TABLE II
EQUILIBRIUM CONFIGURATIONS OF THE 2–2 ROBOT SHOWN IN FIG. 5

Conf. Ḡ θ τ1 τ2 Hr Hr

1 (+2.50000, +6.32456) 0 +5.14 +5.14 > ≥
2 (+0.91886, +5.47723) 2π/3 +8.36 +2.59 < <>

3 (+1.56894, +5.47797) 2.5410 +7.38 +4.15 > <>

4 (+2.50000, +5.47723) π +5.93 +5.93 < <>

5 (+3.43106, +5.47797) 3.7422 +4.15 +7.38 > <>

6 (+4.08114, +5.47723) 4π/3 +2.59 +8.36 < <>

z < 0. If, without loss of generality, the x′-axis is chosen so as to pass
through B1 , B2 , and G (so that b′1z = b′2z = 0), the symmetry emerges
analytically by the particular form of (29), since the coefficients of all
odd-power monomials vanish. If, moreover, b′1x = −b′2x and ρ1 = ρ2 ,
the problem has four solutions at x = a2x /2: two corresponding to
θ = 0 and two corresponding to θ = π. Since the latter may not be
accounted for by (29),3 the leading coefficient of the polynomial at the
left-hand side of (29) vanishes and its degree lowers to 10.

Fig. 5 shows a 2–2 robot of this kind, similar to an example reported
in [28]. The geometric dimensions approximately respect the propor-
tions of a Chebyshev straight-line linkage. In this case, all solutions
of (29) are real. The coupler curve gxz is bicursal, and it is symmetric
with respect to the x-axis. Fig. 5 portrays the portion of gxz that lies
on the half-plane z > 0, together with the stationary configurations of
G that lie on it. These are the only ones in which cable tensions are
positive. Table II reports the corresponding numeric values of the pose
and the cable tensions, as well as the definiteness of the “planar” and
the “spatial” reduced Hessians. When only movements on the xz-plane
are considered, the potential energy is at a minimum in Ḡ1 , Ḡ3 , and
Ḡ5 , and, accordingly, Hr > 0. Michael et al. [28] assess such pos-
tures (whose corresponding robot configurations are depicted in the
figure) as stable. However, if all possible movements of the platform
are taken into account, the analysis of Hr proves that the only stable
configuration is that centered in Ḡ1 .4

3Equation (29) is unable to provide θ = π as a solution, since, in this case,
tθ → ∞. This solution must be detected by direct evaluation of p6 .

4It must be said that, even in the “planar” case, the robustness of the poses
in Ḡ3 and Ḡ5 to external disturbances is very small, since the differences in
potential energy between the stationary configurations lying on the “rectilinear”
part of gxz are almost negligible.
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Fig. 5. Solution set of the DGP of a 2–2 robot with coincident operation modes
such that a2z = b′1z = b′2z = 0, a2x = 5, b′2x = −b′1x = 1, ρ1 = ρ2 = 6.5,
and Q = 10. There are 12 real potential equilibrium configurations, each one
with multiplicity 2 (only those in the half-plane z > 0 are shown), and no
equilibrium configurations with a single cable in tension. Only one equilibrium
configuration is feasible (with G ≡ Ḡ1 ).

By assigning a small perturbation to the geometric parameters of the
robot in Fig. 5 (by setting, for instance, a2z = b′2z = ε and b′2x = 1 + ε,
with ε = 0.002), the two operation modes may be separated, with all
solutions in each mode being kept real. In this way, the DGP of the 2–2
robot is proven to have up to 24 real distinct solutions. Of course, this
count only concerns potential solutions of the problem at hand, since it
does not take into account the constraints imposed by the sign of cable
tensions and the stability of equilibrium. Once such constraints are
imposed and solutions are sifted, the number of feasible configurations
is drastically reduced.

V. STABILITY ANALYSIS OF n–n CABLE-DRIVEN PARALLEL

ROBOTS, WITH n ≥ 3

The application of the stability algorithm presented in Section III to
an n–n CDPR with a number m of taut cables greater than 2 presents
no difficulty with respect to the case m = 2. Indeed, (18)–(20) hold for
an arbitrary robot geometry and for any value of m comprised between
2 and 5. Actually, when m increases, the order of N and Hr lowers
and the eigenproblem becomes simpler. In fact, for m = 3, 4, and 5,
Hr has dimensions 3 × 3, 2 × 2, and 1, respectively.

Tables III and IV report the real equilibrium configurations of two ex-
emplifying robots with assigned cable lengths, with n = 3 and n = 4,
respectively. For the sake of brevity, only the solutions with nonneg-
ative tension in all cables are reported. The platform orientation is
expressed in terms of Euler parameters. Equilibrium configurations are
obtained by solving (2)–(3) via homotopy continuation. Details can-
not be included here due to space limitation, but readers may find the
complete derivation in [32], [35], and [36]. The stability of each con-
figuration is assessed by computing the eigenvalues of Hr . The 3–3
robot in Table III has six equilibrium configurations with all cables in
tension, with only the first one being stable. There are no equilibrium
configurations with slack cables. The 4–4 robot in Table IV has two
equilibrium configurations with all cables active and one configuration
in which two cables are slack. Interestingly, only the latter is stable.
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TABLE III
STABILITY ANALYSIS OF A 3–3 ROBOT WITH a2 = [10; 0; 0], a3 = [0; 12; 0], b′

1 = [1; 0; 0], b′
2 = [0; 1; 0], b′

3 = [0; 0; 1], (ρ1 , ρ2 , ρ3 ) = (7.5, 10, 9.5)

Conf. (e0, e1, e2, e3 () x, y, z) Q (τ1, τ2, τ3) Hr

1 1,−3.355398, +0.542536, +1.711023 2.931333, 4.076890, 6.045191 10 5.26, 5.11, 5.81 >

2 1,−4.222022,−5.904163,−0.471928 1.680460, 3.574305, 5.560548 10 6.84, 3.05, 6.14 <>

3 1,−1.165850,−1.273125,−1.006600 1.399261, 3.279485, 5.531283 10 6.76, 2.51, 4.86 <>

4 1,−0.548350,−0.487719,−1.210596 1.815931, 4.302219, 5.551637 10 5.46, 3.25, 5.50 <>

5 1,−0.504474, +2.590310,−1.247955 3.523134, 5.532024, 5.262678 10 2.89, 7.87, 9.12 <>

6 1, +0.543433,−0.145506, +0.569622 3.024095, 4.730974, 3.301921 10 5.90, 7.83, 9.56 <

TABLE IV
STABILITY ANALYSIS OF A 4–4 ROBOT WITH

a2 = [9; 0; 1], a3 = [11; 9; 0], a4 = [−2; 8;−1], b′
1 = [−2;−1;−1], b′

2 = [1;−2; 0], b′
3 = [2; 1;−1], b′

4 = [0; 2;−1], (ρ1 , ρ2 , ρ3 , ρ4 ) = (6, 7, 8, 9)

Conf. ( e1e0 , e, 2 , e3 () x, y, z) Q (τ1, τ2, τ3, τ4) Hr

1 1,−7.844289,−19.344432, +2.218428 4.566026, 3.268288, 0.837539 10 12.52, 15.42, 9.38, 12.36 <>

2 1,−24.730185, +0.758067,−1.956189 4.468110, 4.167902, 0.975350 10 8.38, 11.17, 11.33, 12.92 <>

3 1, +0.035015,−0.054068, +0.111500 4.517492, 3.696130, 5.963458 10 7.54, 0.00, 6.25, 0.00 >

VI. CONCLUSION

This paper has studied underconstrained CDPRs with less than six
cables, in crane configuration. In such robots, kinematics and statics
are intrinsically coupled, and they must be solved simultaneously.

An algorithm based on a constrained optimization formulation was
provided to assess the equilibrium stability. The algorithm relies on
linear-algebra routines, and it may be very simply applied to the most
general architectures, both planar and spatial. This is a significant im-
provement with respect to what is proposed in the literature for similar
cases.

A robot with two cables was studied in detail. The inverse and the
direct geometrico-static problems were worked out, and the complete
solution sets were obtained. Particular emphasis was placed on equilib-
rium stability. The example showed that, even in the simplest case, the
geometrico-static problems of underconstrained CDPRs gain apprecia-
ble complexity with respect to analogous tasks concerning rigid-link
mechanisms and tricky issues may emerge. Indeed, some of the pre-
sented results emended previous literature on the topic.

The generality of the stability algorithm proposed in this paper was
finally proven by two examples concerning robots with three and four
cables.
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