ANG, a family of multi-mode, low cost walking aid

J-P. Merlet
COPRIN Project team

INRIA
Motivation
Motivation

- rapid increase of the number of elderly
Motivation

• rapid increase of the number of elderly
• 2.5 millions of fall per year
Motivation

• rapid increase of the number of elderly
• 2.5 millions of fall per year
 • in France direct consequence of a fall: 9300 deaths per year
Motivation

• rapid increase of the number of elderly
• 2.5 millions of fall per year
• 80% of domestic accidents
Motivation

• rapid increase of the number of elderly
• 2.5 millions of fall per year
• 80% of domestic accidents
• walking pattern is a good indication of the general state of health
Motivation

• rapid increase of the number of elderly
• 2.5 millions of fall per year
• 80% of domestic accidents
• walking pattern is a good indication of the general state of health
 • but doctors lack of tools to objectively assess the quality of walking pattern
Motivation

- rapid increase of the number of elderly
- 2.5 millions of fall per year
- 80% of domestic accidents
- walking pattern is a good indication of the general state of health
 - but doctors lack of tools to objectively assess the quality of walking pattern
 - they are missing rare events that indicate emerging pathologies
Motivation

Objectives: develop a walker-type support system
Motivation

Objectives: develop a walker-type support system

• low-cost: ≠ humanoid robot
Motivation

Objectives: develop a walker-type support system

- **low-cost**: ≠ humanoid robot
- **low intrusitivity, nice design**: social acceptance
Motivation

Objectives: develop a walker-type support system

- **low-cost**: \(\neq \) humanoid robot
- **low intrusitivity, nice design**: social acceptance
- **interfaces**: large diversity needed to fit the mental/physical abilities
Motivation

Objectives: develop a walker-type support system

- **low-cost**: ≠ humanoid robot
- **low intrusitivity, nice design**: social acceptance
- **interfaces**: large diversity needed to fit the mental/physical abilities
- **fall detection/prevention**
Motivation

Objectives: develop a walker-type support system

• **low-cost**: ≠ humanoid robot
• **low intrusitivity, nice design**: social acceptance
• **interfaces**: large diversity needed to fit the mental/physical abilities
• **fall detection/prevention**
• **monitoring tools**: allows for daily monitoring of walking pattern
Motivation

Objectives: develop a walker-type support system

- **low-cost**: ≠ humanoid robot
- **low intrusitivity, nice design**: social acceptance
- **interfaces**: large diversity needed to fit the mental/physical abilities
- **fall detection/prevention**
- **monitoring tools**: allows for daily monitoring of walking pattern
- **smart device**: should be able to cooperate with other assistance agents
Motivation

Objectives: develop a walker-type support system

- **low-cost**: ≠ humanoid robot
- **low intrusitivity, nice design**: social acceptance
- **interfaces**: large diversity needed to fit the mental/physical abilities
- **fall detection/prevention**
- **monitoring tools**: allows for daily monitoring of walking pattern
- **smart device**: should be able to cooperate with other assistance agents
- **other tasks**...
Solution
Solution

Starting point: available **Rollator**, first step when motricity starts to fail
Solution

Starting point: available Rollator, first step when motricity starts to fail

- already accepted devices
- close to wheelchair \Rightarrow functionalities may be transferred
- low cost hardware
ANG-light
ANG-light

Added:

- 3D accelerometer+gyro
- GPS
- rear wheels encoders
- fit-PC+ IR interface
ANG-light

Objectives:

• fall detection: based on abnormal velocity/acceleration
ANG-light

Objectives:

- **fall detection**: based on abnormal velocity/acceleration
- **walking analysis**: walking aid trajectory reconstructed from accelerometer and encoders measurements
Typical records for a straight line trajectory
ANG-light

Objectives

• provide a gold standard for "normal" walking patterns
 • with/without walking aid

• measure walking pattern on elderly people
 • with the walking aid
 • infer walking pattern without the walking aid

• determine indexes that are pertinent for doctors to qualify walking patterns

• detect abnormal events and report them to doctors
ANG-light

Methodology
ANG-light

Methodology

In direct collaboration with the CHU hospital at Nice

- first phase, 2011: trial at INRIA on 24 subjects (age: between 20 and 50 years)
ANG-light

Methodology

In direct collaboration with the CHU hospital at Nice

- **first phase, 2011**: trial at INRIA on 24 subjects (age: between 20 and 50 years)
 - *instrumented*: accelerometer/gyro on the knees and wrists, force sensors in the shoes, video recorded
 - *records on* trajectories with/without the walking aid performed *twice, random order*
ANG-light

Methodology

In direct collaboration with the CHU hospital at Nice

- **first phase, 2011**: trial at INRIA on 24 subjects (age: between 20 and 50 years)
 - instrumented: accelerometer/gyro on the knees and wrists, force sensors in the shoes, video recorded
 - records on trajectories with/without the walking aid performed twice, random order
- **second phase, currently**: trials on 30 elderly people at CHU Nice
 - not instrumented
 - same trajectories performed twice with the walker
ANG-light

../../..../Texte/AEN/Experience-09-2011/Videos/walk.mpg

..../..../Texte/AEN/Experience-09-2011/Videos/walk.mpg
ANG-light

Objectives:

- **fall detection**: based on abnormal velocity/acceleration
- **walking analysis**: walking aid trajectory reconstructed from accelerometer and encoders measurements
- **navigation aid**
ANG-light

Navigation aid

walking aid may

• measure the slope of a sidewalk
• detect a lowered kerb
ANG-light

detecting/ranking lowered kerb

![Graph showing the detection and ranking of lowered kerbs](image-url)
ANG-light

Navigation aid

walking aid may

- measure the slope of a sidewalk
- detect a lowered kerb
- qualify the quality of the sidewalk surface when using a walking aid or wheelchair
ANG-light

An innocuous-looking sidewalk
ANG-light

An innocuous-looking sidewalk ... and how it feels with a walking aid.
In summary daily users of the walking aid in a city may provide very interesting information for itinerary planning in this city.

How can they share this knowledge?
In summary *daily users* of the walking aid *in a city* may provide very interesting information for *itinerary planning* in this city.

How can they *share* this knowledge?

Information may be used to update a *collaborative map* (OpenstreetMap).
To validate this concept we have:

- retrieved the map of INRIA at Sophia-Antipolis from OpenStreetMap
- used the walking aid all over our site
- then updated the map with the provided information
ANG-light
ANG-II
ANG-II

Starting point: available Rollator

Added:

- 157W motors
- electromagnetic clutch
ANG-II sensors

- 8 multidirectionnal IR distance sensors
- Force sensors in the handles
- 3D accelerometers, GPS
- Light sensors, 2 webcams
- GPS
ANG-II

- on board vacuum cleaner
- pick-up reacher
- solar panel
- interface: IR, web, radio, joystick, handle, hand motion
Conclusion

Already accepted walking aid may help to provide:

- **on-demand** mobility assistance
- **fall** detection/prevention, alarm
- walking **diagnosis tool** for doctors
- **dynamic map building** for itinerary planning
- navigation aid *(but is that necessary ?)*
- help for **transfer** (sit-to-stand)
- help for **domestic tasks**
- ...