

Mechanism science and assistance to elderly

J-P. Merlet COPRIN Project-Team INRIA Sophia-Antipolis France

COPRIN: a team of 15 people, 6 staff, 9 phd, postdoc located at Sophia-Antipolis

2005: strategic decision to focus on assistance robotics

COPRIN: a team of 15 people, 6 staff, 9 phd, postdoc located at Sophia-Antipolis

2005: strategic decision to focus on assistance robotics

2011: INRIA launches the Large Scale Initiative Personally Assisted Living (PAL)

• why ?: the specific problem(s) we target

- why ?: the specific problem(s) we target
- who ?: decide that an assistance device is needed, use it or help to use it

- why ?: the specific problem(s) we target
- who ?: decide that an assistance device is needed, use it or help to use it
- when ?: all the time ? on demand ?

- why ?: the specific problem(s) we target
- who ?: decide that an assistance device is needed, use it or help to use it ?
- when ?: all the time ? on demand ?
- how ?: the mean. universal ? specific ?

2006-2009: discussion for establishing our objectives and priorities

2006-2009: discussion for establishing our objectives and priorities

- personal of retirement houses: nurses, staff
- doctors
- elderly and handicapped people associations
- local authorities
- individuals

Over 200 individuals have been interviewed

Some of the established needs:

• End-users: low intrusivity

- End-users: low intrusivity
- End-users/Doctors: adaptability
 - to the end-user needs, evolving in time
 - to the environment of the end-user
 - to the uncertainty of the real world

- End-users: low intrusivity
- End-users/Doctors: adaptability
 - robot must adapt to the user, not the opposite!

- End-users: low intrusivity
- End-users/Doctors: adaptability
- End-users, Practitioners: low-cost, easy installation and maintenance

- End-users: low intrusivity
- End-users/Doctors: adaptability
- End-users, Practitioners: low-cost, easy installation and maintenance
- Practitioners: low-energy consumption

- End-users: low intrusivity
- End-users/Doctors: adaptability
- End-users, Practitioners: low-cost, easy installation and maintenance
- Practitioners: low-energy consumption
- Doctors: monitoring for prevention

- End-users: low intrusivity
- End-users/Doctors: adaptability
- End-users, Practitioners: low-cost, easy installation and maintenance
- Practitioners: low-energy consumption
- Doctors: monitoring for prevention
- Roboticists: connectivity

- End-users: low intrusivity
- End-users/Doctors: adaptability
- End-users, Practitioners: low-cost, easy installation and maintenance
- Practitioners: low-energy consumption
- Doctors: monitoring for prevention
- Roboticists: connectivity
- Roboticists: not a single "universal" device

Needs with highest priority:

• transfer: especially in the toilets!

- transfer: especially in the toilets!
- fall prevention/detection

- transfer: especially in the toilets!
- fall prevention/detection
- mobility aid: but no navigation aid

- transfer: especially in the toilets!
- fall prevention/detection
- mobility aid: but no navigation aid
- large variety of interfaces

- transfer: especially in the toilets!
- fall prevention/detection
- mobility aid: but no navigation aid
- large variety of interfaces
- easier and more human communication systems

- transfer: especially in the toilets!
- fall prevention/detection
- mobility aid: but no navigation aid
- large variety of interfaces
- easier and more human communication systems
- monitoring: give information to doctor for prevention, objective assessment and diagnostic

MMT will play an important role in assistance devices

transfer and fall prevention

transfer and fall prevention

• involve large forces

transfer and fall prevention

- involve large forces
- safety issues

transfer and fall prevention

- involve large forces
- safety issues
- a difficult task for non-intrusive humanoid robots

Designing low cost devices

Guidelines for designing low cost, easy to install and maintain devices

Guidelines for designing low cost, easy to install and maintain devices

use only on-the-shelf hardware

Guidelines for designing low cost, easy to install and maintain devices

- use only on-the-shelf hardware
- propose innovative mechanical design

- use only on-the-shelf hardware
- propose innovative mechanical design
- propose a dimensioning methodology that :

- use only on-the-shelf hardware
- propose innovative mechanical design
- propose a dimensioning methodology that:
 - allows to adapt the hardware to the end-user and its surrounding

- use only on-the-shelf hardware
- propose innovative mechanical design
- propose a dimensioning methodology that:
 - allows to adapt the hardware to the end-user and its surrounding
 - guarantees the performances of the system

- use only on-the-shelf hardware
- propose innovative mechanical design
- propose a dimensioning methodology that:
 - allows to adapt the hardware to the end-user and its surrounding
 - guarantees the performances of the system
 - facilitate the installation by providing several design solutions

Transfer aid: MARIONET-ASSIST

- wire-driven parallel robot
- 3 to 6 dof
- lift 150kg anywhere
- stowed in the ceiling when not in use
- a manipulation robot
- rehabilitation robot
- Cost: \approx 1000 euros

Design problem:

 crane must be able to lift the elderly whatever is his location in the room

Design problem:

- crane must be able to lift the elderly whatever is his location in the room
- **Design parameters**
 - maximal forces of the winch (within a catalog of standard hardware)
 - location of the winches in the ceiling

Design problem:

 crane must be able to lift the elderly whatever is his location in the room

Design parameters

- maximal forces of the winch (within a catalog of standard hardware)
- location of the winches in the ceiling

Design methodology

 allow to determine a safe 3D region for the location of each winch

VIDEO

• who ?: elderly having still some motricity

- who ?: elderly having still some motricity
- when ?: any walking period

- who ?: elderly having still some motricity
- when ?: any walking period
- why ?:

- who ?: elderly having still some motricity
- when ?: any walking period
- why ?:
 - fall detection

- who ?: elderly having still some motricity
- when ?: any walking period
- why ?:
 - fall detection
 - provide gait information for the doctors

- who ?: elderly having still some motricity
- when ?: any walking period
- why ?:
 - fall detection
 - provide gait information for the doctors
- how ?: accepted mechanical design

ANG-light:

- gait monitoring through trajectory reconstruction
- fall detection:accelerometer
- wifi, phone, gps
- •Cost: 400 euros

- MMT is used to determine the walker trajectory based on the wheels rotation and accelerometer measurements
- currently being tested with real patients at Nice hospital

Typical record

ANG

- 150W motors
- electric clutches
- > 50 sensors
- solar panel
- active fall prevention
- control: tv remote, radio, IR,.
- automatic homing
- fallen object recovery
- GPS, wifi, bluetooth
- Cost: 2000 euros

VIDEO

Rehabilitation: MARIONET-REHAB

At home rehabilitation, with the following modes: passive (monitoring), semi-active (decreasing fatigue), active (sophisticated rehabilitation protocol)

– p. 8

The components of an assistance device:

- computers
- sensors and actuators
- communication
- mechanism

computers: new embedded computers allow to

- manage and control easily sensors and actuators
- are low-cost and wearable

computers: new embedded computers allow to

- manage and control easily sensors and actuators
- are low-cost and wearable

sensors: low cost sensors are already available communication chips are almost common

- innovative design:
 - that are intrinsically safe
 - whose control is simple (design for control)

- innovative design
- modular/adaptable design
 - low-cost
 - easy to install and maintain

- innovative design
- modular/adaptable design
- design methodology:
 - that takes uncertainties into account to guarantee performances
 - that provides several set of solutions to be able to manage unexpected installation constraints

Hence MMT will play a central role in assistance devices

- innovative design
- modular/adaptable design
- design methodology

Let's go to work!

