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Abstract A N−1 wire-driven parallel robot is a robot for which all

the N ≥ 3 wires are connected at the same point of the platform, al-

lowing to control the location of this point. We are interested in the

positioning accuracy of such a robot. If the wires are not elastic we

show that the influence on the accuracy of the co-location errors of

the wire anchor points on the platform is moderate, although a full

analysis is a very difficult task. If the wires are elastic we study the

influence of the the wire lengths measurement errors and inaccurate

estimation of the stiffness of the wires. Again we show a moderate

influence but very large changes in the tensions in the wires that

probably prohibit the use of the redundancy to optimize the tension

in the wires. In all cases the complexity of the forward kinematics

of such a robot makes accuracy analysis a very demanding task that

requires an in-depth investigation.

1 The N − 1 wire-driven parallel robot

In a wire-driven parallel robot (WDPR) wires are attached at specific an-
chor points on the robot platform and can be coiled and uncoiled through
an actuation system with a fixed output point for the wires. WDPR have
been introduced in the 80’s (Landsberger and Sheridan, 1985),(Miura and
Furuya, 1984) as an alternate to parallel robot with rigid links. They share
with them the ability to manipulate large load and to be energy efficient (Li
and Bone, 2001) while they allow for larger workspace (as the amount of
leg lengths variation is much larger) and present a simpler mechanical de-
sign. However their major drawback is that wires can be pulled but not
pushed, which increases the complexity of their kinematics as statics has
to be taken into account (for example the forward kinematic problem is an
open issue (Carricato and Merlet, 2011)).
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There has been recently a renewal of interest for WDPR in view of new
applications: wind tunnel (Yaqing et al., 2007), biomechanic and rehabili-
tation (Wu et al., 2011), haptic interface (V. Zitzewitz et al., 2009), rescue
robotics (Takeda et al., 2005),(Merlet and Daney, 2010). However an im-
portant point has not been addressed completely in this field: positioning
accuracy. This is a very well addressed field for parallel robots with rigid
links (Merlet, 2006) but still an open issue for WDPR whose kinematics is
much more complex (Ottaviano et al. (2002); Thomas et al. (2002)).

We will address this problem for a specific class of WDPR, the N − 1
WDPR which has N wires attached at the same point on the platform, al-
lowing to control the location of this point but not the platform orientation.
We will consider two different cases for the wires: non-elastic and elastic.

2 Non-elastic wires

Although this is not the scope of this paper, an important result has to be
presented if N > 3:

At any pose a N − 1 robot with non-elastic wires will have at

most 3 wires under tension whatever is N > 3
This new result, that will be presented at ICRA 2012, is important as

it allows to reduce the accuracy analysis of a N − 1 robot to the accuracy
analysis of the four 3-1 robots that are derived from the initial robot.

The exit point of the wire system i will be denoted by Ai, its wire length
as ρi and the tension in the wire as τi. The platform pose is determined by
the coordinates x, y, z of C, the center of mass of the load, in a reference
frame where the z axis is vertical. The anchor points of the wires will be
denoted by Bi (ideally Bi = C). Note that the inverse kinematics (IK) is
straightforward as we have

ρ2
i = ||AiBi||2 (1)

Let us assume that the platform is submitted to a force F . The relation
between this force and the tension in the wires is given by:

F = J−T τ (2)

where J−T is the transpose of the inverse jacobian matrix of the robot.
The ith column J−T

i of this matrix is: J−T
i = AiC

T /ρi. Note that with
this convention wire i is under tension if τi is positive. For this robot the
sources of inaccuracy are errors in the wire lengths, in the location of the exit
points of the wire systems and in the location of the common attachment
point. Influence of the wire lengths errors is a well studied topics (Murphy,
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2007),(Thomas et al., 2002) and will not be considered here. We will also
assume that the location of the Ai are well known . Hence remains possible
errors on the location of the Bi.

2.1 Three distinct attachment points Bi

We will first assume that the 3 wires are attached at three distinct points
on the platform, that are close to C but distinct from it. To study the
accuracy of the robot we will assume a given position of C and we will
calculate the wire lengths with equation (1). Then we will assume that
the Bi are different from C (which implies that the wire lengths affect the
orientation of the platform) and solve the forward kinematics (FK). The
difference between the obtained pose and the theoretical one will give us
the positioning error. Unfortunately we are confronted to a major issue:
the FK for a 3-3 robot is still an open problem. For the FK we have as
unknowns the 6 parameters of the pose of the platform and the 3 tensions
in the wires while we have 3 kinematics equations (1) and 6 statics equa-
tions (2). It has been shown that the solution(s) of this system may be
calculated in theory by solving a 158th order univariate polynomial (Car-
ricato and Merlet, 2011) but the high order of this polynomial makes the
solving quite difficult. In our case we rely however on an alternate approach
based on interval analysis. As an example we will consider the 3-1 robot with
A1(0, 0, 0), A2(400, 0, 0), A3(0, 400, 0) and consider that the Bi lie on a circle
of radius 5 so that CB1(−5, 0, 0),CB2(−2.5, 2.5

√
3, 0), CB3(2.5, 2.5

√
3, 0).

For C defined by (176.375, 192.375, -147.93) the theoretical wire lengths
are 300, 310, 330 and the FK admits two solutions with positive tensions:
(171.72, 187.24, -152.66) with the Euler angles in radian (-0.727, -0.387, -
1.62) and (178.465, 194.68, -163.99) with the angles (-0.76, 0.324, 1.55). We
are confronted here with a difficulty of the FK of WDPR that may admit
several solutions, this increasing the complexity of the accuracy analysis.
However we note the moderate positioning errors with a distance between
the solutions and the theoretical one of 8.39 and 16.36. If the radius of the
circle for the Bi’s is reduced to 1, then we still get 2 solutions at a distance
1.99 and 2.0 from the theoretical one.

2.2 Attachment points Bi on a common ring

We will consider here that the 3 wires are connected to a ring of center
U and radius r and are free to slide on this ring, although their motion must
respect their initial connecting order. We will assume that the plane that
includes the ring is perpendicular to the platform and that U,C lie on the
same normal to the platform (figure 1).
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Figure 1. The wires may slide on a ring that is attached to the platform

We define a frame F1 = U,x1,y1, z1 attached to the ring so that x1 is
perpendicular to the ring plane. In this frame the coordinates of Bi are

UBi
1 = (0, r cos(ai), r sin(ai))

where ai is the angle between UBi and the y1 axis. We then define the
mobile frame of the platform Fr = (C,xr,yr, zr) so that zr is parallel to z1.
Hence the coordinates in Fr of a vector u whose coordinates are known in F1

are obtained as R1u where R1 is the rotation matrix for a rotation around
the axis zr of angle ψ1. As U lies on the zr axis we have CUr = (0, 0, h).
If we define R as the rotation matrix between the reference frame and Fr

we get:
CBi = RCBr

i
= R(CUr + R1UBi

1)

while
AiBi = AiO + OC + CBi

Equation (2) is now a linear system of 6 equations in the 3 unknowns τi,
which is dependent upon the 3 unknowns ai and the 6 pose parameters.
Three of these equations may be used to obtain the τi as functions of the
ai and of the pose parameters and will remain three constraint equations.

If we assume now that there is no contact between the attachment points
Bi of the wires on the ring we write that at equilibrium the force exerted
by the wires at Ti must be perpendicular to the ring tangent at Bi. In the
frame F1 the ring tangent vector Ti

1 is

Ti
1 = (0,−r sin(ai), r cos(ai))

Hence in the reference frame we have Ti = RR1Ti
1. We get thus 3 addi-

tional constraint equations with

AiBi.Ti = 0 (3)
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For the FK problem if we assume that all the Bi are distinct, then we
have as unknowns the 6 pose parameters of the platform and the 3 ai.
We have also 3 equations (1), 3 remaining equations from the statics (2)
and the 3 constraint equations (3). Solving such a system is quite difficult
and furthermore not all solutions are valid: indeed the initial assembly of
the robot imposes an ordering of the wires on the ring and this ordering
must be respected for the FK solution. For solving this problem we use
interval analysis which has the advantage of easily allowing to enforce the
ordering constraint. For the same robot than in the previous section we
have considered the pose for C as (92.95, 110.85, -198.02), which lead to
the theoretical wire lengths (237.23, 376.72, 357.206), r = 5, h = 10 and the
ordering (2,3,1) for the wires on the ring. The solving leads to 2 solutions for
C, (110,100,200) and (110.84, 92.78, -204.22), with here again a relatively
moderate difference between the theoretical pose and the final one. Note
that the solving is computer intensive as the computation time is over 1h:
it appears that the influence of errors on the location of the attachment
points on the platform on accuracy is a very demanding task.

3 Elastic wires

In this section we assume that the wires are perfect linear springs. Let τi
be the tension in wire i, li its length at rest, ki the wire stiffness and ρi its
length when under tension. We have

τi = ki(ρi − li) (4)

Let us consider a 4-1 WDPR and its inverse kinematics. For a given pose of
the load the values of the ρi may be determined with equation (1). Equation
(2) is a linear system of 3 equations in the τi that allows one to calculate
τ2, τ3, τ4 as functions of τ1. For a given value of τ1 we may compute the
remaining τi and, if all the τi are positive, we get the value of li from equation
(4). The choice of τ1 is free and hence we have a redundant robot that
allows, in theory, to manage the wires tensions distribution. We may choose,
for example, a τ1 such that H =

∑j=4

j=1 τ
2
j is minimized. This function is

quadratic in τ1 and hence finding the optimal τ1 is trivial. Note however
that we may have IK solutions such that not all 4 wires are under tension.

For the accuracy analysis we have to solve the FK problem. Here the li
are given and the pose of the load has to be determined. The first equation
of (4) allows one to determine τ1. Equation (2) is used to determine the
values of τ2, τ3, τ4 as functions of τ1. The three remaining equations of (4)
are linear in the coordinates of C. After solving this system we report the
result in the IK equations (1) which constitutes a system of 4 equations
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in the unknowns ρ1, ρ2, ρ3, ρ4. The difference between the first and second
equation is linear in ρ4 and is solved for this variable. The 3 remaining equa-
tions, denoted a1, a2, a3, are of degree (6,6,2), (3,3,3), (9,9,3) in ρ1, ρ2, ρ3.
Successive resultants between these equations leads to a polynomial in ρ1

only, which factors out in 2 polynomials of degree 76 and 96. Although
this complete the theoretical solution the degree of the involved polynomi-
als are too high to be used in practice and consequently we have to resort
to a numerical procedure. For that purpose we solve the linear system (2)
to get τ2, τ3, τ4 as function of τ1. Then the first equation of (4) is used
to determine τ1 as a function of ρ1. The three remaining equations of (4)
together with the 4 equations of (1) constitutes a system of 7 equations in
the 7 unknowns x, y, z, ρ1, ρ2, ρ3, ρ4, which is solved using interval analysis.
However we have also to consider that this system may not have a solution
as in the final configuration less than 4 wires may be under tension. If 3
wires are under tension equation (2) is solved to determine the τi, the result
being reported in equations (4) to obtain 3 constraint equations in x, y, z
and the 3 ρi. With the 3 equations (1) we get a system of 6 equations in
the 6 unknowns. As we have to consider all combinations of 3 wires among
4, we have to solve four such system.

To test the sensitivity of the solving to uncertainties on the li’s and on ki

we have considered the 4-1 robot with A1(0, 0, 0), A2(400, 0, 0), A3(0, 400, 0),
A4(400, 400, 0) and we have used the IK to determine what should be the
li to reach the pose x = 100, y = 200, z = −200 with a load of 80, while
minimizing

∑j=4

j=1 τ
2
i , assuming an identical stiffness k = 1000 for all wires.

The nominal values for the li are l1 = l2 = 299.558, l3 = l4 = 412.108 which
leads to τ1 = τ2 = 441.45, τ3 = τ4 = 202.238. We have then considered 1000
values for the ki that were randomly perturbed around their nominal values
by ±0.1k. We have then calculated the FK by assuming first that all 4 wires
were under tension and then the FK with only 3 wires under tension (all
combination of 3 wires were considered) and assuming a perfect wire lengths
control. For all 1000 tests we have obtained a single solution with 4 wires
under tension with the ranges [99.95,100.045], [199.94, 200.05], [-200.054,-
199.95] for x, y, z. However we have observed large variations in τi, that lie
in the ranges [421.3, 462], [420.8, 461.5], [174.1,229.7],[174.7,230.4]. Further-
more there was always a single solution with wires (1,2,3) and (1,2,4) under
tension, while the remaining wire is slack. For these solutions the ranges
for x, y, z were [99.61,99.74], [199.71,200.28],[-200.23,-200.09]. In the triplet
(1,2,3) the tension in wire 3 is almost constant (range: [402.78,403.35]) as
it is for the tension in wire 4 for the triplet (1,2,4) (range: [402.78,403.35])
but the tension in wires 1, 2 were changing significantly for the two triplets
with typical values of (295,588) for the first triplet and (588,295) for the
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second one. Hence force measurements will allow to determine if the wires
under tension are (1,2,3,4), (1,2,3) or (1,2,4).

We then perturb both li (with a range of ±3) and ki. In that case for
1000 tests, only 161 where admitting a solution with 4 wires under tension
with the ranges [95.62,103.97] for x (mean value:100.18), [196.31,203.17] for
y (mean value:200), [-204.22,-195.67] for z (mean value:-200.13), with large
variations for the τi (ranges: [289.4,583.15], [290.8,590.45],[7.7, 407.2], [0.8,
402.4]). Here again there was always at least 2 solutions with 3 wires under
tension with a range [94.5,104.8] for x (mean value: 99.7), [195.54,204.72]
for y (mean value: 199.97), [-204.52,-195.72] for z (mean value: -200.25).
For the triplet (1,2,3) τ3 lies in the range [381.5, 426.5] while for the triplet
(1,2,4) τ4 lies in the range [383.8, 425.6]. Still force measurements allows one
to determine the configuration of wire under tension as τ1 either lies in the
range [273.56,315.3] or [574.8,602.15] while τ2 lies in the range [274.5,313.96]
or [573.9,603]. Similar results were obtained for k = 10 and k = 100.

In conclusion positioning errors are moderate, while the variations of
wire tensions probably prohibit the use of force control and the use of the
redundancy to manage distribution of the tension in the wires.

4 Conclusion

Although WDPR have attracted a lot of interest recently there has been few
works that address their positioning accuracy. We have considered a specific
class of WDPR for which all wires are assumed to be attached at the same
point on the platform. For non elastic wires the main source of positioning
errors (beside control errors in the wire lengths) is that in practice the
wires are not connected at the same point. We have shown that finding
the pose of the robot when assuming close but distinct attachment points
is a difficult task and seems to lead to moderate positioning errors. We
have then considered WDPR with elastic wires and have shown that errors
on the stiffness of the wires and/or on the wire lengths may also lead to
moderate positioning errors but large variations in the wire tensions.

Accuracy analysis of WDPR is a complex task because we have to con-
sider the FK problem for all possible combinations of wires under tension
(and not only the case where all N wires are under tension), while many of
these problems are open. For the N−1 WDPR we have shown that the posi-
tioning errors seem to be moderate but that there is large variations of wire
tensions, which probably prohibit the use of force control and redundancy
management. Hence this issue requires still an in-depth investigation.
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