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In this paper, we present a review of the recent approaches proposed in the literature for strip-packing

problems. Many of them have been concurrently published, given some similar results for the same set

of benchmarks. Due to the quantity of published papers, it is difficult to ascertain the level of current

research in this area.

& 2008 Published by Elsevier Ltd.
1. Introduction

In this paper, we focus our attention on methods to solve the
two-dimensional strip-packing problem, where a set of rectangles
(objects) must be positioned on a container (a rectangular space
area). This container has a fixed width and a variable height size.
The goal, when it is possible, is to put all the objects into the
container without overlap, using a minimum height dimension of
the container. We can find many applications related to strip-
packing problems. For example, various irregularly shaped pieces
cut from a bolt of fabric are required to make a cloth. A piece of
furniture may require rectangular pieces of glass large sheet of
glass, the same is for pieces of wood. In all cases, it is required to
minimize both the amounts of stock and waste. Many approaches
have been proposed in the literature, and in our understanding,
the more complete revision has been presented in Hopper (2000).
However, in the last three years the interest in this subject has
increased, as well as the number of papers presenting new
approaches and improvements to existing strategies. We review
here the most recent results in this research area. This paper is
organized as follows: in the next section, we present a formula-
tion of the 2D strip-packing problem. Section three is related to
the exact methods. In Section four, we review the methods based
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on heuristics. In Section five, we briefly review metaheuristic
methods. Section six presents existing benchmarks to evaluate
new approaches. Finally, section seven presents the conclusion
and future trends in this research area.
2. Two-dimensional strip-packing formulation

The strip-packing problem consists in placing a set N of n

objects (rectangles) on a rectangular area without overlap, such
that the height H of the strip is minimized, considering a fixed
width W. Each object i has dimensions hi (height), and wi (width),
8i ¼ 1,y, n. The position of an object on the rectangular area is
identified by the Cartesian coordinates of its bottom left corner xi,
yi. The model of the 2D strip-packing problem can be formulated
as follows:

Minimize H

Subject to

xi þwipW ; 8i 2 N (1)

yi þ hipH; 8i 2 N (2)

xi þwipxj or xj þwjpxi or (3)

yi þ hipyj or yj þ hjpyi; 8ði; jÞ 2 N; iaj (4)

xi þ yiX0; 8i 2 N. (5)

A feasible solution must fulfill the following constraints: the
object must be within the rectangular area, and must not overlap
approaches for two-dimensional strip-packing.... Engineering
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with any other object. The perfect packing problem considers that
all objects must be placed on the rectangular area without overlap
nor holes, i.e.

P
iANwihi ¼WH. For guillotinable strip-packing

problem a solution has the property that it can be obtained by a
sequence of cuts parallel to the axes, each of which crosses either
the entire length, or width, or the remaining connected rectan-
gular piece. Any guillotinable problem on n objects with a perfect
packing has at least 2n�1 perfect packings.
3. Exact methods

The following two complete methods for strip packing are
based on a branch and bound strategy. A branch and bound
method is introduced in Lesh et al. (2004) to solve 2D rectangular
perfect packings. They only consider the problems with solution
where the whole area is used by objects. That means that there
are no free space in the solution. The main idea of this approach is
to cut branches when it is impossible in order to put a new object
without generating a hole. It allows the algorithm to quickly try a
new branch. The tests carried out show that the method is a good
option when the problem has less than 30 rectangles. The optimal
solution has been obtained by this method for the five instances of
problems category N1, N2, and for four of the five instances in
category N3. These problem instances have been proposed in
Hopper and Turton (2001) and are for perfect packing in a fixed
area of width ¼ 200 and height ¼ 200. They differ in the number
of objects N1 considers 17 objects, N2 has 25 objects and N3 has 29
objects. These instances can be efficiently solved using a complete
method. Therefore, they are not very interesting to compare
among methods coming from the heuristic and metaheuristic
community. In the worst case, the algorithm needs around 10 min
to solve the more complex instance of 29 objects. The time
reported on the paper is the waiting time to obtain a solution and
the tests were done in a Linux machine with 2000 MHz Pentium
processor with unoptimized Java.

Martello et al. (2003) consider a 2D rectangular strip packing
without object rotations. They present very good results for
problems with the same instances than the Lesh et al. paper with
less than 30 rectangles. They also evaluate other benchmarks with
encouraging results, including problems with 200 objects. How-
ever, the Hopper’s instances are perfect strip-packing problems,
known to be very hard ones. The key idea of the Martello et al.
algorithm is to use a computed lower bound by relaxing the
constraint of the object area by dividing the object on a set of
slides to be placed on the container. In order to find a real solution,
the algorithm must merge the pieces to re-construct the object.
The most important contribution is the way to compute the lower
bound for the branch and bound procedure. Their best results are
obtained for the Hopper’s instances. The conclusion of this review
is that new metaheuristics proposals must be evaluated using
hard instances from the Hopper’s perfect strip-packing bench-
marks with more than 30 objects, as easier problems can
efficiently be solved with complete methods.
4. Heuristics-based methods

4.1. Based on bottom-left (BL) heuristic

The work of Baker et al. (1980) introduced the bottom-left
heuristic, which orders the objects according to their areas. The
objects are placed at the top and pushed down and left as much as
possible. This method was improved by Chazelle (1983) and called
bottom left fit (BLF): each object is located at the most bottom and
left possible place. Hopper Hopper and Turton (2001) presented
Please cite this article as: Riff, M.C., et al., A revision of recen
Applications of Artificial Intelligence (2009), doi:10.1016/j.engappa
BLD which is an improved strategy of BL, where the objects are
ordered using various criteria (height, width, perimeter and area)
and the algorithm selects the best result obtained. Lesh et al.
(2005) and Lesh and Mitzenmacher (2006) focus their research on
improving BLD heuristic. They named their new heuristic BLD*. At
the beginning, BLD* constructs a list of the objects according to a
decreasing criteria (height, width, or other). On its turn, an object
is placed according to a probability p. If the object is not accepted,
the algorithm searches for another one beginning from the first
object not yet accepted in the list. This makes a perturbation of
the initial order. The distance between both orders is called the
Kendall-tau distance or bubble-sort distance. It counts the
number of bubble-sort swaps that could be required to transform
the initial order into the perturbed one. This strategy is called
Bubble Search (Lesh and Mitzenmacher, 2006), and can be applied
to any constructive algorithm in order to randomize a fixed
ordering. As in GRASP, this strategy repeats greedy placements
with this randomized ordering until a time limit is reached. In the
BLD* approach, they also include the rotation capability. The
decision to rotate the object is made according to the following
rules:
�

t a
i.20
The algorithm evaluates both orientations and selects the one
allowing a lower bottom left position in the container area.

�
 The algorithm evaluates both orientations and selects the one

where the center of the object has the lower position.

�
 The algorithm evaluates both orientations and selects the one

that has a lower upper right position.

The results reported indicate that the upper right corner is the
most suitable decision, and the best order is to take the objects
from the smallest to the biggest width. Finally, Lesh et al. conclude
that this method with bubble search is the best one to solve the
most well-known benchmarks, including Hopper’s benchmarks.
They have compared the algorithm with the work of Iori et al.
(2003) and the Lesh et al. algorithm shows better results than Iori
et al’s. approach for the Hopper’s greater instances ht13 to ht18.

4.2. Based on best-fit heuristic

Burke et al. (2004) have proposed a best fit (BF) that uses a
dynamic ordering for the rectangles to be placed. The algorithm
goes through the available places from the most bottom left one,
and selects for each place the rectangle that best fits in it (if it
exists). It is used for hybrid metaheuristic approaches.

4.3. For guillotinable problems

The heuristics first fit decreasing height (FFDH) and next fit
decreasing height (NFDH) proposed in Coffmann et al. (1980) and
best fit decreasing height (BFDH) proposed initially in Mumford-
Valenzuela et al. (2003) are very similar. In each of them, the
objects are vertically oriented and ordered from the highest to the
lowest. Each object is packed in a rectangular sub-area of the
container in the bottom left corner. The width of the sub-area is
given by the container, and the height is given by the first object
packed in this sub-area. In NFDH, the object is placed left justified,
on the same sub-area than the previous object if it fits. Otherwise,
a new sub-area is created, and the object is placed left justified
into it. With FFDH, the object is placed left justified, on the first
sub-area where it fits. If there is no sub-area where the object can
be placed, a new sub-area is created and the object is placed left
justified. In BFDH, the object is placed left justified on the sub-
area where it fits, for which the remaining horizontal space is
minimum. BFDH has shown to be useful for guillotinable
pproaches for two-dimensional strip-packing.... Engineering
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problems and it has been tested using well-known problems from
the literature. Bortfeldt (2006) introduces a genetic algorithm that
generates an initial population using a BFDH* heuristic, which is
an improvement of BFDH. It uses the following rules:
�

P
A

Object rotations are allowed, thus when the algorithm searches
to include the current object into a sub-area it tests both
orientations and selects the best one.

�
 Before creating a new sub-area, the algorithm searches on

the holes produced on the right of the sub-areas, dividing the
available hole on guillotinable holes and tries to include
the bigger object in the hole, which is on the most left side of
the available area.

For all instances of the Hopper’s benchmarks, the results
obtained by the algorithm are better than the ones from
Ratanapan et al., Dagli et al., Kroger, Schnecke, Iori et al.’s. and
Mumford-Valenzuela et al.’s.

Zhang et al. (2006) introduced a recursive heuristic HR for
problems with guillotine constraint. When the first object is
positioned in the container (on the bottom left corner), it
identifies two remaining areas. It recursively continues placing
the remaining objects. To improve the performance of the
heuristic, the authors present a deterministic algorithm that gives
priority to the objects with bigger areas. Zhang et al. claim that
their algorithm quickly obtains good results on Hopper’s bench-
marks. For the heuristic, the most difficult problem in time was C7,
which considers 196 objects with 36.07 s, but having a very good
gap from the known optimal solution of a 1.8%. The results of
these tests have been summarized, it is thus difficult to know
which problems have really been solved. The key idea is to find a
good order of objects for any positioning heuristic.
Class Stripwidth Objects

C1 20 16-17-16

C2 40 25

C3 60 28-29-28

C4 60 49

C5 60 73

C6 80 97

C7 160 196-197-196

Fig. 1. Hopper’s Instances for perfect packing.
5. Metaheuristic approaches

These and the other low-level heuristics have been used in
metaheuristic approaches, as tabu search, simulated annealing,
and genetic algorithms (GAs). The first idea is to build an initial
solution with a low level heuristic, and to perform a local search
on the layout. Neveu et al. (2007) have presented an incremental
move, which allows additions and removals of rectangles. They
also implement a generic metaheuristic using this move obtaining
competitive results.

Other researchers prefer to work on the order of objects for
each positioning heuristic. Soke and Bingul (2006) present a
genetic algorithm (GA) and a simulated annealing (SA) algorithm
named GA+BLF and SA+BLF, respectively, both of which try to find
the best order for the objects to be placed in the container using
the BLF strategy. Thus, the problem being treated here is not
where to put the objects, but how the solution is focused on
finding the best sequencing order of the objects. They do not allow
rotation. The paper is focused on comparing their hybrid genetic
approach versus their hybrid-simulated annealing. They have
specifically analyzed the influence of the crossover operator for
the genetic algorithm, and temperature cooling for the simulated
annealing-based algorithm. The comparison is done using pro-
blems with 17 and 29 pieces from Hopper’s benchmarks. The
major drawback of this paper is that there is no comparison with
other existing approaches.

In the case of fixed orientation problems, the best approach to
our knowledge appears to be the GRASP-based approach de-
scribed in Alvarez-Valdes et al. (2005). This approach repeats the
following two-phases: the rectangles are first placed by a
randomized BF-like constructive phase. Then the solution is
lease cite this article as: Riff, M.C., et al., A revision of recent
pplications of Artificial Intelligence (2009), doi:10.1016/j.engappai.
passed through a variable neighborhood search (VNS), and the
obtained solution is kept only if it is better than the previous one.

On the other hand, Bortfeldt (2006) introduced a genetic
algorithm called strip packing genetic algorithm layer (SPGAL)
and obtained the best known results in the literature for problems
that allow the rectangles to be rotated. The algorithm generates an
initial population using BFDH* heuristic, which is an improve-
ment of BFDH initially proposed in Mumford-Valenzuela et al.
(2003). This heuristic works with a layer structure that takes into
account the guillotine cut constraint. The genetic algorithm
directly performs a search in this layer structure. For problems
without the guillotine cut constraint, a post-optimization proce-
dure breaks this layer structure. The same genetic algorithm is
used in Bortfeldt and Gehring (2006) for larger instances (1000
pieces). It is divided in GA-1, GA-2, GA-3 and GA-4, each of them
initialized with different parameters. The procedure is only
applied to problems with the guillotine cut constraint, because
the post-optimization procedure is negligible for large instances
(Bortfeldt and Gehring, 2006).

Burke et al. Burke et al. (2006) hybridize the best fit heuristic
with metaheuristic approaches such as tabu search (BF+TS),
simulated annealing (BF+SA) and genetic algorithms (BF+GA).
BF+SA has obtained the best results.
6. Benchmarks

We resume the results for the Hopper’s instances for classes of
problems C1,y, C7. The characteristics of these classes are
resumed in Fig. 1. Each class is identified by the number of
objects to be placed and the stripwidth. A class is composed by
three different instances.

GA+BLF and SA+BLF have been proposed by Hopper. In these
algorithms, object rotation is allowed. In the test reported in Iori’s
work object rotation is not allowed, and they have only tested
C1,y, C6. The algorithm found these solutions in less than 32 s. In
HR before applying the algorithm, each object is vertically
oriented, and then object rotations are forbidden. For SPGAL, the
tests are reported with rotations (SPGAL-R) and without rotations
(SPGAL). For BLD*, the reported results are only for problems C5

and C6, without rotation. A solution is found in 60 s. The reactive
grasp algorithm (Alvarez-Valdes et al., 2005) is with fixed
orientation of the objects. The Martello’s paper reports the results
for the tests with at most 30 rectangles using a complete branch
and bound method. Considering these instances, i.e. C1, C2 and C3,
their algorithm was unable only to solve two problems of C3 (ht07,
approaches for two-dimensional strip-packing.... Engineering
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C1 C2 C3 C4 C5 C6 C7 Average

GA+BLF 4 7 5 3 4 4 5 4.57

SA+BLF 4 6 5 3 3 3 4 4

BF+SA 0 6.25 3.33 1.67 1.48 1.39 1.77 2.27

Iori 1.59 2.08 2.15 4.75 3.92 4.00 - 3 .98∗

HR 8.33 4.45 6.67 2.22 1.85 2.5 1.8 3.97

SPGAL-R 1.7 0.0 2.2 0.0 0.0 0.3 0.3 0.6

SPGAL 1.59 2.08 3.16 2.70 1.46 1.64 1.23 1.98

BLD∗ - - - - 2 2.4 - 2 .2∗

R-GRASP 0 0 1.08 1.64 1.10 0.83 1.23 0.84

Martello B & B 0 0 2.15 0 .71∗

Fig. 2. Gap from the optimal solution. ‘‘*’’ means a partial average that is computed using only the available results.
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ht08). Fig. 2 shows the percentage from both the optimal solution
to the best solution found (gap % ¼ (bestfound�opt)/opt) and the
average for each algorithm.

The optimum value can be obtained for 12 of the 21 problems.
However, none of ten algorithms is able to find all of the 12
optimum. The best results obtained by SPGAL-R which is able to
find 9 of the 12 optimum and which gives solutions very closed to
the optimum for the other problems, and the worst ones are
obtained by GA+BLF. SPGAL-R and R-GRASP have the best average
for all problems. Almost none of the algorithms can give very good
or good results for all problems, which means that each one is
more adapted to a specific kind of problems or to a specific
configuration. Algorithms like BLD* or Martello B&B are very
difficult to evaluate as they have been tested with a very few
number of problems.

The most used benchmarks with known optimal solutions are
from Hopper and Turton (2001) and Iori et al. (2003). Recently, a
new set of 360 new instances of larger strip-packing problems
have been proposed in Bortfeldt and Gehring (2006). Optimal
solutions for these instances are unknown which only permit to
compare algorithm among themselves. However, a comparison
point could be made by the algorithm proposed in Bortfeldt
(2006).
7. Conclusions

This survey presents a synthetic overview of the latest
advances in solving the two-dimensional strip-packing problem.
The increasing number of papers published about the strip-
packing problem during the last three years in journal and
international conferences makes very difficult the task to compile
all the existing approaches. Because, we are interested in both
Metaheuristics and Heuristics methods, we can then conclude for
our further researches that:
�
 It is absolutely not interesting to compare new incomplete
algorithms using Hopper’s benchmark problems N1 and N2,
because they can be efficiently solved by complete branch and
bound techniques.

�
 The most recent research that has shown the best results with

benchmarks as a genetic algorithm proposed by Bortfeldt
(2006) using the BFDH* heuristic.
Please cite this article as: Riff, M.C., et al., A revision of recen
Applications of Artificial Intelligence (2009), doi:10.1016/j.engappa
�
 The approach proposed in Zhang et al. (2006) is an inexpensive
heuristic that could be further studied to be incorporated in a
population algorithm, which could improve the exploration of
the search space. It is important to note that in the Zhang et
al’s. approach the HR heuristic could never find a solution, even
if the algorithm tries with all the possible objects ordering.
This is a major drawback of this technique compared to BF. In
the BF approach, we know that it exists at least one object
ordering which is able to find a solution.

Our future research will both focus on designing inexpensive
methods and improving existing ones to solve strip-packing
problems. One of the major challenge is to be able to solve large
problems that are part of the hardest ones.
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