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A Formal-Numerical Approach for Robust
In-Workspace Singularity Detection

J.-P. Merlet, Member, IEEE

Abstract—Singularity is a major problem for parallel robots as
in these configurations the robot cannot be controlled, and there
may be infinite forces/torques in its joints, possibly leading to its
breakdown. Hence, such a configuration must usually be avoided,
and certifying the absence of singularity within a prescribed
workspace or on a given trajectory is essential for a practical use
of this type of robots. Singularity conditions are usually quite
complex, and therefore a purely analytical analysis is difficult. We
present here an algorithm that combines formal and numerical
calculations for detecting singularity or closeness to a singularity
within an arbitrary workspace or trajectory. This algorithm has
the very important advantage of being able to deal with any robot
mechanical structure and to manage uncertainties in the robot
control and in the robot modeling.

Index Terms—Interval analysis, inverse Jacobian, parallel robot,
singularity.

I. INTRODUCTION

PARALLEL robots have been extensively studied these
last few years and are now used as commercial products

for a large variety of applications (e.g., packaging, telescopes,
machine-tool, and fine positioning). However, their study is
still young compared with their serial counterparts. Singularity
analysis is one of the many problems that have to be investi-
gated, and we recall briefly this topic.

A first approach to introduce singularity is to consider
the mechanical equilibrium of parallel robots. Let be a
six-dimensional wrench applied on the end-effector that should
be counterbalanced by the internal forces/torques in the joints of
the structure. Static analysis allows to establish a linear relation
between the joint forces/torques , and the wrench as

(1)

where is the transpose of the inverse Jacobian matrix ,
which depends on the pose of the robot. Given , we may
calculate the joint forces by solving the linear system (1). Each
joint force will be obtained as a ratio whose denominator is the
determinant of . Clearly, the poses in which this determinant
cancels are problematic: as soon as the robot gets closer and
closer to such a pose, the determinant will get closer and closer
to 0, thereby leading to larger and larger joint forces. Such large
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forces have led to the breakdown of some academic and indus-
trial prototypes, although this has not been largely advertise. A
singular pose (or singularity) is thus defined as a pose in which
the matrix is singular.

Note that (1) is valid for any robot, whatever its degrees of
freedom (DOF). Indeed, for robots having less than 6 DOF, it is
usual to write a reduced linear system, with matrix , which
involves only the actuated joint forces/torques and the wrench
associated to the controlled DOF of the robot. Still, the end-
effector is a rigid body on which may be applied an arbitrary
wrench; hence, (1) has to be used, although it is necessary to
have more elements in . Furthermore, it has been shown that

may be singular, while is not. For example, this is the
case of the 3-UPU robot, as shown by Bonev and Zlatanov [1]
and later on by Di Gregorio [2].

Hence, regardless of the robot, a singularity analysis has to
consider first the matrix, which we will call the full
inverse Jacobian, and not the reduced inverse Jacobian matrix.
The reduced matrix will be considered if and only if it may be
shown that the singularity of corresponds exactly to the
singularity of .

Singularity may also be introduced by analyzing the veloci-
ties relations. Let be the 6-D twist of the end-effector, and
let be a joint velocities vector, which is constituted of the ac-
tuated joint velocities, possibly augmented by if the robot has
less than 6 DOF. The end-effector and joint velocities are lin-
early related by

(2)

In a singularity, there are nonzero twists that are solutions
of the system (2) for a zero-joint velocities vector. The end-ef-
fector exhibits infinitesimal motion although the actuators are
locked: the robot can no longer be controlled. The loss of con-
trol and infinite joint force clearly justify an in-depth singu-
larity analysis. This is not an easy task, although to the best
of the author’s knowledge it is possible to establish the ma-
trix analytically for all parallel robots (in this paper, we
will assume that this matrix is available). However, the com-
plexity of its determinant, whose cancellation characterizes a
singularity, increases very quickly with the number of DOF of
the robot, although a compact form may sometime be obtained
by using Grassmann–Cayley algebra [3]–[5]. Still, for a given
robot, symbolic computation may allow is to establish a closed
form of the determinant as a function of the pose parameters,
even for 6-DOF robots [6]. However, if the geometrical param-
eters of the robot are added as unknowns, it may become impos-
sible to get a closed form of the determinant.
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To analyze the structure of singularity, it is possible to use
Grassmann line geometry that provides geometrical conditions
for a linear dependency between the rows of the inverse Jaco-
bian and allows us to establish an exhaustive classification of
singularities [7]. However, the geometrical approach does not
provide direct clues as to the location of the singularity. Hence,
it may not be the most appropriate for determining if there is
a singularity for a robot with DOF in a -dimensional
motion variety (if , the objective is to check a trajectory,
while if part of the robot workspace is checked). As men-
tioned earlier, singularity detection is critical for a practical use
of parallel robots. Still, to the best of the author’s knowledge,
a singularity detection algorithm has never been proposed, al-
though schemes for avoiding badly conditioned poses may be
found [8]–[14]. Let us define the robot useful workspace for a
given task as the part of its workspace in which the end-effector
will be the most commonly located. We may accept a relatively
large offline computation time to check the useful workspace as
it will not be necessary later on to verify online that the robot tra-
jectories included in the useful workspace are singularity-free.
However, it may happen that the robot may have to execute from
time to time motion varieties such as trajectories that may lie (at
least partly) outside its useful workspace. Hence, checking the
singularity on -dimensional motion varieties is also of in-
terest, but, in that case, the computation time of the singularity
detection algorithm should be as low as possible. Uncertainties
occur at two levels:

• for motion varieties, there will be unavoidable
control errors;

• in all cases, there will be differences between the real ge-
ometry of the robot and its theoretical model.

However, the task at hand may impose a safe verification of
the absence of singularity in spite of these uncertainties (e.g.,
for medical applications or for safety reasons in large systems).
The purpose of this paper is to provide a guaranteed singularity
detection scheme, even in the presence of numerical round-off
errors and bounded uncertainties for the geometrical and con-
trol parameters. Note that the singularity detection scheme pre-
sented in this paper may be modified to locate singularities. Due
to space constraints, these modifications will not be exposed
here, but the principle of a singularity localization scheme for a
trajectory may be found in [15].

II. SINGULARITY DETECTION

We consider an -DOF robot whose pose is defined by
parameters grouped in the vector . This robot
is constrained to move within a -dimensional variety
which we will call the motion variety that is defined by the end-
user. We will assume that this variety is parametric, i.e., each
pose belonging to the variety is such that

(3)

where is a set of parameters allowing to
describe the variety, which each being constrained to lie in
the range [0, 1]. Examples of such variety are:

TABLE I
ALGORITHM 1: SINGULARITY DETECTION SCHEME: jJJJ j > �?

• a box workspace defined by
: the pose parameter has to lie in the range ,

where are known constants;
• a trajectory defined by , where the parameter

is the time and is an arbitrary analytical function.
It will be assumed that the motion variety has only a single com-
ponent and is fully included in the configuration space of the
robot (i.e., the set of poses that can be reached by the robot).
For a given motion variety, this assumption may be verified by
using the algorithms presented in [16] and [17].

The purpose of our detection scheme is to determine if there
is a pose in the motion variety such that the absolute value of

is lower than or equal to a given threshold . If
is set to 0, we will be able to determine if a singularity occurs
within the motion variety. If , its value should be chosen
in such way that a pose with the absolute value of lower
than is unsafe from a control viewpoint. In other words, the
determinant is chosen as an index to measure the closeness to a
singularity as it is not possible to define a proper mathematical
“distance” between a pose and a singularity [18]–[20].

For a given motion variety, we assume that we are able to
select a value for each parameter so that we obtain a pose
belonging to the variety for which we may assert that

or . This assumption is not strictly necessary but
will simplify the explanation of the algorithm. Without lack of
generality, we will assume in the remainder of this paper that
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. If , a singularity will occur within the
variety if we are able to find a pose at which

. If and if we are able to find a pose at which
, we will estimate that the robot will be too

close to a singularity for a safe control. Our singularity detection
algorithm is based on the determination of such a pose .

This determination may be seen as a special optimization
problem, for which we have simply to prove that the minimal
value of the determinant will be lower than or equal to . Usu-
ally, it will not be possible to solve analytically this optimization
problem, and numerical optimization methods cannot guarantee
that we will find a pose , even if one such pose exists in the
motion variety. Furthermore it appears that optimization pro-
cedures have some difficulties minimizing or maximizing the
determinant over a given motion variety: for instance, Maple
fails to determine the minimum of the determinant of a Gough
platform over a simple 6-D workspace even if there is no uncer-
tainty on the robot geometry.

We will use a method that allows us to evaluate bounds for
the minimal and maximal values of when the parameters

are constrained to lie in some ranges included in [0, 1], i.e.,
we will determine two values such that
for any instance of the in their ranges. These bounds will be
numerically safe but may overestimate the minimum and max-
imum of . The calculation of these bounds is obtained with
interval analysis, which is a method that is briefly introduced in
Section II-A.

A. Interval Analysis

An interval is defined as the set of real ’s such
that . The width of the interval is defined
as , while its mid-point is .

Here, we illustrate basic notions of interval analysis; inter-
ested readers may find a detailed explanation of the underlying
theory in [21]–[24]. Interval analysis relies on interval arith-
metics, the purpose of which is to determine guaranteed bounds
for the minimum and maximum of a given function over
ranges for the unknowns with a minimal number of calcula-
tions. This determination is called an interval evaluation of the
function and leads to a range that varies according to the
ranges for the unknowns. If denotes the ranges for the un-
knowns and is a particular instance of the values of the un-
knowns within , then we have

(4)

An interval evaluation may be calculated in different ways. The
simplest is called the natural evaluation, which consists of using
specific interval versions of all mathematical operators used in
the function (interval version exists for all classical operators).
For example, the addition of two intervals and

is defined as . Natural evaluation may
be simply illustrated with when lies in the range
[3, 5]. In that case, we can safely state that, for any instance
of in [3, 5], then lies in [9, 25], in [6, 10] and, conse-
quently, lies in . Summing the interval for and

leads to , which constitutes
the interval evaluation of over the range [3, 5]. Interval eval-
uation may also be obtained using other methods (e.g., Taylor
expansion or centered form), but they will not be used in our
algorithm. This example shows that simple operations are re-
quired by interval arithmetic, but also one of the drawbacks of
the method. Indeed, clearly for any in [3, 5], the value of lies
in [3, 15]: hence interval arithmetic overestimates the values of
the minimum and maximum of the function. This occurs be-
cause we have multiple occurrence of the same variable in
which are considered to be independent during the calculation.
However, this overestimation has the following properties:

• it does not always occur: for example, if was defined as
, then there will be no overestimation of the function

for the range [3, 5];
• let us define an interval evaluation as , the

real minimum and maximum of the function over a given
range and the size of the overestimation as

: in our example, the size of the overestimation is
4. However, this size decreases with the width of the input
range. For example, assume that the input range for is

: the size of the overestimation for is 4 for , 2
if , 0.2 if and becomes eventually 0 if

Furthermore, there are ways to decrease the size of the
overestimation.

• An interval evaluation is sensitive to the analytical form of
the function. For example, may also be written
as , for which the interval evaluation is [3,
15], hence being exact. There is no known algorithm to de-
termine the optimal analytical form of a function to be used
by interval arithmetic, but the simple rule of rearranging
the function to decrease the number of occurrences of the
variable is usually efficient. For algebraic expressions, the
use of Horner (or “nested”) form is usually effective. For
our example, may be written as and the natural
evaluation of this form for is [3, 15] and is hence
optimal. The Horner form of allows us to prove that there
is no in [3, 5], for which will be strictly lower than 3.

• Derivatives and their interval evaluation may be used. In
our example, the derivative of is , whose natural
evaluation over [3, 5] is [4, 8]. This implies that the deriva-
tive is always positive over the range [3, 5], from which we
deduce that the minimum and maximum of will be ob-
tained for equal to 3 and 5, thereby leading to an exact
interval evaluation.

An interesting property of interval arithmetic is that it can
be implemented to take into account round-off errors. For ex-
ample, if a calculation involves the number , then there is
clearly no computer floating-point number able to represent this
number. There are two successive floating-point numbers
such that and and, for any calculation in-
volving this number, the computer will round it to the that
is the closest to (for instance, on a Pentium PC, the calcu-
lation of in C leads to instead of 0).
In interval arithmetic, the number will be represented by
the range so that any interval evaluation involving this
number will always include the exact value of the calculation.
Numerous packages of interval arithmetic are available, and our
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implementation of the singularity detection scheme is based on
BIAS/PROFIL.1

Note that taking into account round-off errors allows one to
safely compute the determinant at a given pose. If the lower
bound of the interval evaluation of the determinant is greater
than or its upper bound is lower than , then we may safely
assert that the absolute value of the determinant is greater than

at this pose, which is the starting point of the algorithm as
mentioned in the previous section. We must emphasize that
round-off errors, which are often not considered in robotics,
should be dealt with for critical applications and, if they are
not so frequent, they may still occur even in simple cases. A
classical example of this phenomena, due to Rump, may be
observed when computing the floating-point value of

for . Classical scientific software
will return the value , interval evaluation computed
in C is , while the real value is

.

III. ALGORITHM PRINCIPLE

Our singularity detection algorithm is based on a classical
branch-and-prune algorithm, but uses efficient heuristics to
drastically improve the computation time.

A box is defined as a set of ranges , one for
each motion variety parameter , i.e., to each box is associated
a part of the variety. The mid-point or center of the box is the
point whose coordinates are the mid-point of the ranges of the
box. The box is defined as the box for which all of the
have as range [0, 1], hence fully covering the variety. The width

of a box is defined as the largest width of its ranges.
We assume that we are able to calculate an interval evaluation

of for the ranges of (the methods that
may be used to calculate this interval evaluation are presented in
Section III-A). A list of boxes will be used by the algorithm:
this list is indexed by which will also be the iteration number
of our algorithm, and will denote the th box of the list. When
starting, the algorithm has a single element , but, during the
processing, boxes will be added to the list: will be the total
number of boxes in the list at iteration .

Bisection of a box consists of choosing
one of the motion parameters and splitting its range

into two ranges whose union will be . It is usual to
bisect at the mid-point of the range, i.e., the two ranges re-
sulting from the split are defined as and

. After having bisected the range , the
algorithm creates two new boxes whose ranges will be
identical to the ranges of , except for the parameter : for this
parameter, the box will have the range while the box
will have the range (hence, the union of is ). They
are different strategies for choosing the bisected variable [22],
the simplest one being to choose the variable whose range has
the largest width and its variant in which multiplicative weight

1http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

is affected by the range widths, the selected variable being the
one with the largest weighted width. Note that, according to the
problem at hand, the choice strategy may drastically change the
computation time [22], but, due to space constraints, we will not
elaborate on this subject here.

The algorithm will return SINGULARITY if there is a box
(i.e., a set of poses, part of the variety) for which is guar-
anteed to be lower than for any pose in the set. If no such box is
detected, it will return POSSIBLE PROBLEM if at a given pose
we are unable to determine if is lower or greater than ,
and otherwise the algorithm will return NO SINGULARITY.

We introduce a flag that is initially set to 0 and which will
be set to 1 if interval arithmetic is unable to determine if the
determinant is greater than for a given pose of the robot.

The basic idea of the algorithm is to split into a set of boxes
or, in other words, to separate the variety into small components
until we may safely state the sign of the determinant for each
pose in the variety component. Let us explain now the various
steps of the algorithm.

• Step 5: interval evaluation of for the current box.
• Steps 6–8: for each pose of the motion variety associated

with the current box, is guaranteed to be larger than
; no pose of type may occur in this box. Hence the

box is discarded.
• Steps 10–11: for each pose of the motion variety associated

with the current box, we have and the box is
therefore a set of poses. If , we may even
guarantee that any path between has to cross a
singularity

• Steps 15–18: the width of the box is 0 (i.e., it is associated to
one single pose of the motion variety), but round-off errors
does not allow us to determine if is larger or lower
than . If the remaining of the process does not allow us to
find a box with , then the result of the algorithm
is uncertain.

• Steps 20–28: the interval evaluation of does not
allow us to state if the determinant is larger than for all
poses of the motion variety associated with the current
box. The current box is bisected in such way that the width
of the box on top of the remaining boxes to be processed in

is always decreasing. This allows us to keep the storage
size of to a minimum. Formally, if the determinant of

is larger than when the width of the box is lower
or equal to , then the maximal storage size of should
be , where represents
the integer closest to . For example, if and

we get that the storage size should be 120 boxes,
i.e., floating-point numbers. In
practice, the storage size should be a little bit larger than
this threshold, as when processing box all boxes from 1
to have already been processed but represent additional
needed storage. A good practice is to delete the elements
of the list with index from 1 to as soon as is getting
close to the maximum size of so that the box at position

will become the first box of . One box resulting from
the bisection is stored in place of the current box to save
memory space, while the second one is stored according
to its size either at the end of the list or immediately after
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TABLE II
MODIFICATIONS OF ALGORITHM 1 TO DEAL WITH A

MOTION VARIETY DEFINED BY H (TTT ) � 0

the current box (which requires moving box to
for in ; see steps 25–27).

• Step 33: if this step is reached, then all boxes in have
been processed. For each part of the variety associated with
a box of the list, it has been shown that . As
the whole motion variety has been covered, no singularity
occurs within it

• Step 35: all boxes in the list have been processed, but during
the processing a box with 0 width (i.e., a pose of the motion
variety) has been found for which it was not possible to
assert that or because of round-off
errors. This has been detected at steps 16–18, and flag
has been set to 1. This means that the computer arithmetic
does not allow a safe singularity detection; a multiprecision
software must be used.

Such an algorithm is guaranteed to finish and to return either
SINGULARITY, NO SINGULARITY, or POSSIBLE PROBLEM.
The motion variety may also be defined by a set of inequality
constraints on the motion parameters.
Such a case may be managed as soon as we are able to calculate
an interval evaluation of the inequalities and a box that en-
closes the motion variety. Table II indicates which modification
has to be done in Algorithm 1 to deal with such a case. The main
differences are that we discard the boxes which do not belong to
the variety (step 7) and bisect all boxes that are not guaranteed
to be fully included in the variety.

The proposed method is a classical branch and prune algo-
rithm, and we will discuss in the next sections improvements
that may drastically influence the computation time, which are
among the main contributions of this paper. As for any branch
and prune method, the algorithm worst case complexity is ex-
ponential: it corresponds to the case where there is only a single
pose with in the motion variety. In prac-
tice however, such a situation does not occur frequently, and the
results presented in Section V will show that the experimental
complexity is rather low.

A. Determinant Evaluation

In Algorithm 1, only the interval evaluation of (step
5) is dependent upon the mechanical structure of the robot and
upon the definition of the motion variety. Hence, provided that
we are able to design an external module that is able to cal-
culate such an interval evaluation, we have obtained a generic
algorithm that is totally independent of the robot structure and

from the motion variety; only the number of unknowns and their
range will be needed.

There are different ways to obtain an interval evaluation of the
determinant. In some cases, symbolic computation will allow to
get a closed form of the determinant that may then be evalu-
ated with interval arithmetic. In this paper, we will focus on the
case where symbolic computation will not be able to provide a
closed-form formula for the determinant (which may occur even
for robots having a low number of DOF), although there is a
closed form of the elements of , allowing the calculation of
their interval evaluation. After the interval, evaluations of its el-
ements is obtained as an interval matrix. A classical linear
algebra method such as row or column expansion or Gaussian
elimination may then be used to compute the determinant of this
interval matrix [25]. We have noted that, although the bounds
were usually better with Gaussian elimination than with row or
column expansion, the computational cost of Gaussian elimi-
nation is such that, overall, its use leads to a larger computa-
tion time. We thus preferably use the simplest form of row and
column expansion through a recursive procedure that expands
the determinant with respect to the row or the column having the
lowest mean width. Note, however, that calculating the bounds
for the determinant of based on its interval matrix repre-
sentation will lead, in general, to a large overestimation of the
determinant as the dependency between the elements of are
completely ignored.

B. Improvement Heuristics

We present in the next sections some heuristics that may
considerably improve the efficiency of the singularity detection
scheme.

1) Matrix Conditioning: It is usually recognized that interval
matrices appearing in a linear algebra problem should be pre-
conditioned, i.e., that instead of using the matrix in the reg-
ularity check, we should use a matrix or , where
is a real nonsingular appropriately chosen matrix [25], [24]. The
interest of preconditioning may be explained as follows. Con-
sider that we have to find the bounds of the determinant of
for all poses included in some box . We may calculate the
real inverse Jacobian matrix for the pose corresponding
to the mid-point of the box and evaluate safely its determinant
with an interval evaluation . If is lower than ,
then we have determined that the variety includes a pose close
to a singularity (or a singularity if ), and the algorithm
is completed. Let us assume that and calculate nu-
merically an approximation of the inverse of :
this matrix will be be used as the preconditioning matrix be-
cause it allows the product or to be “closer” to the
identity matrix and, therefore, more appropriate for an interval
evaluation of its determinant. If are the interval eval-
uations of the determinants of (or ), then

is an interval evaluation of the determinant of ,
that may be used in Algorithm 1 instead of the direct evaluation
of the determinant.

Usually, and their products are evaluated numeri-
cally. However, a much more efficient approach is to assume
first symbolic values for the elements of for computing sym-
bolically the product and then to use the analytical form
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of the elements of to evaluate the preconditioned ma-
trix by plugging in the numerical values of
the elements of as values for the element of . Let us
illustrate why this approach is more efficient on the calcula-
tion of the element at the first row and first column of

of a Gough platform (see Section V-B). This element is
obtained as the product of the first row of by the first
column of . The elements of this column may be written
as , where is the coordinate of the center
of the platform and is a term that depends upon the geom-
etry of the robot, the orientation of the end-effector, and the leg
number, but not of . Hence, may be written in two dif-
ferent forms, called form 1 and form 2, as

In form 1, there are six occurrences of , while there is
only one in form 2, leading usually to a better interval eval-
uation for form 2. For example, if the first row of is

and ,
then the interval evaluation of with form 1 will be

and only for form 2. Hence the
symbolic preprocessing allows us to manage efficiently the
dependency between the elements of .

2) Interval Matrix Regularity Check: Here, we will assume
, i.e., we are trying to determine if a singular pose ex-

ists within the motion variety. For a given box , the interval
evaluation of the elements of leads to an interval ma-
trix , i.e., a set of matrices that includes all inverse Jacobian
matrices that may be obtained by instantiating with pose
parameters belonging to , but also matrices that are not in-
verse Jacobian. The heuristic we will present in this section al-
lows us to determine if the set includes a singular matrix.
If for a given pose in the determinant of is strictly pos-
itive and if the proposed heuristic allows us to determine that
there is no singular matrix in , then the determinant of all
inverse Jacobian matrices obtained for a pose in is positive:
no pose of type exists in , and this box may be discarded.
A procedure based on this method will return true if may
be discarded and is used as a filter in step 6 of Algorithm 1.

The regularity test for an interval matrix that we will use has
been proposed by Rohn [26]. We define as the set of all -di-
mensional vectors whose components are either 1 or . For
a given box, we denote by the interval evaluation of
the component of at the th row and the th column.
Given two vectors of , we then define the set of matrices

whose elements are

These matrices thus have elements with fixed numerical values
(which are bounds of the interval evaluations of the elements of

), and there are such matrices since .
It may be shown that if the determinant of all of these matrices

have the same sign, then all of the matrices whose elements
have a value within the interval evaluation of are regular
[27]. Hence, for a 6 6 matrix , if the determinant of 2048
scalar matrices has the same sign, then is regular for the
current box. Note that we have proposed another regularity test
that takes more into account the structure of the Jacobian matrix
but which is more computer-intensive [28].

We may wonder if this theorem may be extended to the case
where we have to show that with larger than
0. Let us define the set of extremal matrices as the set of
scalar matrices derived from by taking as elements for

the lower or upper bound of the elements of . There
are such matrices, and the set is included in . It is
easy to show that, if the determinant of all matrices in is
larger than , then all matrices in also have a determinant
larger than . However, the number of matrices in is so large
(68 719 476 736 for a 6 6 matrix) that implementing a filter
based on this result is not realistic. Determining if the Rohn test
may be extended to this case is an open problem.

IV. DEALING WITH UNCERTAINTIES

Algorithm 1 may be adapted to take into account uncertainties
occurring for two main reasons:

• errors in the robot geometrical modeling: the geometry of
the robot is used for computing the inverse Jacobian matrix,
but the geometry of a real robot will differ from its theo-
retical model as manufacturing errors will always occur;

• errors in the execution of the robot motion: there will al-
ways be deviations between the prescribed motion variety
and the robot real motion due to control errors.

The influence of the manufacturing tolerances may be illus-
trated for a Gough platform whose dimensions are given in
Section V-B. We have introduced an uncertainty of in the
coordinates of all the anchor points, and then we have computed
the exact minimal and maximal values of at various poses.
Compared with the value of calculated without uncertain-
ties, relative variations of 25%–40% have been observed. Much
larger variations may even be observed if we do not consider
the exact minimal and maximal values of but its interval
evaluation. For example, for the same amount of uncertainty, the
exact minimal and maximal values of at a given pose were
established as 108 571 and 176 505 while its interval evaluation
was calculated as .

Hence, if the uncertainty ranges are relatively large, Al-
gorithm 1 may not be able to determine if the variety is
singularity-free as, at most poses, we will be unable to deter-
mine if , and consequently the algorithm will return
POSSIBLE PROBLEM.

In that case, it will be necessary to consider the elements af-
fected by uncertainty as additional variables. A drawback is that
symbolic computation tools may be no more able to calculate a
closed form of the determinant (this is exactly what occurs with
the robots presented in Section V-B). Consequently, we will
have to rely on the method presented in Section III-A to calcu-
late the interval evaluation of the determinant which will largely
overestimate the bounds of . Still, only the number of vari-
ables and the calculation of the interval evaluation of in
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Fig. 1. Gough platform.

Algorithm 1 (step 5) have to be modified to deal with the un-
certainties, and Section V will show that Algorithm 1 is able to
tackle large uncertainties.

V. EXAMPLES AND COMPUTATION TIME

A. Implementation

Algorithm 1 and its variants that are allowed to deal with un-
certainties have been implemented using our C++ interval anal-
ysis library ALIAS,2 which provides already an implementation
of Algorithm 1 for . An interest of this library is that
it is possible to use it directly within Maple. In our case, the
end-user writes a Maple program that calculates and then
calls a specific procedure that generates the necessary C++ code,
compiles it, and then runs the created executable, which returns
the result to Maple. Expert end-users may customize the C++
code within Maple and may even provide their own regularity
heuristics.

This implementation allows one to perform the singularity
check with minimal effort. Note that computing and writing
the corresponding C++ code are necessary regardless of which
method is used for the singularity check. Accordingly, compar-
ison between methods should be based only on the execution
time of the regularity check: this is presented in the following
sections.

B. Robot

For the examples, we consider Gough-type 6-DOF parallel
manipulators (Fig. 1): checking singularities for this type of
robot is probably among the most challenging task as this robot
has a full 6 6 inverse Jacobian matrix (robots with less than
6 DOF will have some 0 elements in their Jacobian matrix). The
robot is constituted of a fixed base plate and a mobile plate con-
nected by six articulated and extensible links. The pose of the

2[Online]. Available: www.inria.fr/coprin/logiciels/ALIAS/ALIAS.html

platform may be adjusted by changing the length of the six legs.
A reference frame is attached to the base, and a mo-
bile frame is attached to the moving platform.
The leg is attached to the base with a ball-and-socket joint,
whose center is , while it is attached to the moving platform
with a universal joint, whose center is . For a given robot, the
components of in the reference frame are assumed to be
known, possibly with some uncertainties. Similarly, the compo-
nents of in the mobile frame are assumed to be known.
Let be the joint variables (the distance between and ),
and be a 6-D vector defining the pose of the end-effector. A
possible parameterization for is to use the reference frame co-
ordinates of as three first components of , while
the three last components are three parameters describing the
orientation of the end-effector that allows one to calculate the
rotation matrix between the mobile and reference frame. In
the examples, we use the Euler angles , but any other rep-
resentation may be used. Using this notation, we may compute
the components of in the reference frame as , while
we have

The length of the th leg is such that and can
thus be calculated being given . It is well known that the th
row of the inverse Jacobian matrix of Gough platform is

(5)

Hence, the inverse Jacobian matrix can be calculated being
given . Note that if we define the row of a 6 6 matrix as

(6)

we may see that

(7)

Therefore, the singular configuration may also be defined as the
configuration for which . It will be better to use this
formula for singularity, as the overestimation of the matrix el-
ements due to interval analysis will be lower compared to the
elements of .

We have considered two robot geometries for the tests. The
coordinates of the leg attachment points and of both
robots are presented in Table III (in this section, all coordinates
and length are expressed in centimeters).

C. Results

All tests are performed on a Dell D400 laptop (1.7 GHz),
and all computation times are given in seconds. In all cases,
we have assumed that it was not possible to determine a closed
form of the determinant. We will present in various tables the
computation time of Algorithm 1, denoted as Reg in the table,
and combinations of this algorithm with heuristics: Rohn check
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TABLE III
COORDINATES OF THE A AND B POINTS FOR ROBOTS 1 AND 2

TABLE IV
COMPUTATION TIME IN SECONDS FOR CHECKING THE 6-D WORKSPACE OF

ROBOT 1 DEFINED BY x ; y IN [�5; 5]; z IN [45, 50] ACCORDING TO THE

ORIENTATION RANGES AND THE HEURISTICS USED IN THE ALGORITHM

(Section III-B2), denoted Rohn in the table, left matrix condi-
tioning, denoted in the table, right conditioning, denoted

(Section III-B1).
1) Singularity in 6-D Workspaces:

a) Exact Geometrical Robot’s Model: For robot 1, we
first consider a 6-D workspace defined by the following ranges:

in and in [45, 50]. We first assume a per-
fect knowledge of the geometry of the robot and check this
workspace for singularity for various orientation ranges using
the basic algorithm and various heuristics: the computation
times are presented in Table IV. This table shows that the
conditioning is by far the most efficient. Note that the compu-
tation time is much higher if, instead of using a symbolically
precomputed , we have calculated numerically

(or ). For example, for the orientation
range , the use of leads to a computation time
of 70.22 s (instead of 0.01) and 79.13 s for (instead
of 34.79).

The efficiency of the use of the conditioned matrix
is confirmed if we enlarge the 6-D workspace. For a 6-D
workspace defined by the ranges in in [45,
50] and the orientation angles in degree, no
singularity is detected in this workspace in a computation time
of 0.19 s (6028 s for Reg Rohn).

If we enlarge the ranges for the orientation angles to
a singularity is detected in the workspace in 0.25 s for Reg,
0.27 s for Reg Rohn, 0.32 s for and .

For robot 2, the workspace is defined by in
in [2800, 3200]. Table V presents the computation time for

the singularity check for various ranges for the orientation an-
gles, assuming no uncertainty in the location of the anchor point.
Note that, for the range degrees, the workspace in-
cludes a singularity.

TABLE V
COMPUTATION TIME (s) FOR THE SINGULARITY CHECK OF ROBOT 2,
WORKSPACE DEFINED AS x ; y IN [�200;200]; z IN [2800, 3200],

FOR VARIOUS RANGES FOR THE ORIENTATION ANGLES AND NO

UNCERTAINTY IN THE LOCATION OF THE ANCHOR POINTS

TABLE VI
COMPUTATION TIME (s) OF THE SINGULARITY DETECTION SCHEME WITH THE

KKKJJJ PRE-CONDITIONING, FOR ROBOT 1, VARIOUS 6-D WORKSPACE AND

UNCERTAINTIES � ON THE COORDINATES OF THE ANCHOR POINTS

b) Uncertainties in the Geometrical Model: We assume
now that we have uncertainties on the location of the anchor
points . We may introduce directly these uncertainties
in the inverse Jacobian (a method denoted by (D) in the table)
or add these uncertainties as unknowns in the Jacobian el-
ements (denoted by (V) in the table). Table VI presents the
computation time of the singularity detection scheme using the

preconditioning for various workspaces and uncertainty
amplitude .

The use of the Rohn test is interesting when the computa-
tion time is relatively large, and having the uncertainties as
additional variables is usually more interesting if the
preconditioning is used in combination with the Rohn test.

Note that we have used a box model for the uncertainties, i.e.,
the real location of the is assumed to lie within a 3-D box
centered at the nominal location of these points. However, others
models may be used as well: for example, we may assume that
the anchor points are located within spheres centered at the nom-
inal location of the anchor points and known radii

by writing the Cartesian coordinates of the anchor
points as

and assigning the range to to
and to .

For robot 2, if we add uncertainties on the location of the an-
chor points directly in the elements of the inverse Jacobian, we
find out that the workspace is singularity-free in almost a con-
stant time of 0.12 s for an uncertainty up to a range of . For
an uncertainty of , the computation time is 0.36 s and the
workspace is still singularity-free. Starting around , the al-
gorithm finds poses for which it cannot determine the sign of the
determinant. If we add the uncertainties as additional unknowns,
it is then determined that the workspace is singularity-free for
an uncertainty of in 5.47 s and in 388 s for an uncertainty
of .

These tests show that Algorithm 1 is rather efficient, even for
large 6-D workspace, especially as it will allow us to avoid any
real-time singularity check for trajectories performed in the 6-D
workspace.
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TABLE VII
COMPUTATION TIME (s) FOR CHECKING TRAJECTORIES T ; T

ACCORDING TO UNCERTAINTIES AND HEURISTICS

2) Singularity on 1-D Trajectories: Two typical trajectories
have been tested for robot 1. The first trajectory is a circular
trajectory in the plane with a constant orientation. For-
mally, it is defined as

where is the time variable and lies in the range [0, 1]. The
second trajectory has a varying orientation

In all of tests, the interval evaluation of the determinant of
is computed based on the elements of the matrix, although it
was possible to obtain a closed form for the determinant if
we assume that there is no uncertainty on the location of the
anchor points and on the trajectory that is followed (for ,
the determinant is constant, and for it is a polynomial in

). Note that, if the location of the anchor
points are given as symbolic values, then Maple is no longer
able to calculate the closed form of the determinant.

The computation time of the singularity detection scheme for
both trajectories, according to the amplitude of the uncertainty
on the coordinates of the anchor points, the control errors on

and on , and the heuristics are presented in
Table VII. For trajectory , the uncertainty ranges are directly
added to the elements of the inverse Jacobian while for trajec-
tory a similar approach leads the algorithm to return POS-
SIBLE PROBLEM. In that case, we must add the uncertainties
on as unknowns. Note that in all cases the trajectories are
singularity-free.

These tests show that, even for a relatively complex trajectory,
checking is real time if uncertainties are not taken into account
and may be performed offline in a very reasonable time for rel-
atively large and reasonable uncertainties.

VI. CONCLUSION

The algorithms proposed in this paper enable us to solve very
important problems for the practical use of parallel robots. Sym-
bolic preprocessing allows one to use generic algorithms that
allow us to deal with any type of robot and with almost any

type of motion variety, while the chosen numerical approach al-
lows one to deal with uncertainty in the geometry of the robot
and in the control. As may be seen from the results, the com-
putation time is in general quite acceptable. It may be further
reduced by using a distributed implementation (all interval anal-
ysis-based algorithms are appropriate for such an implementa-
tion). Prospective work will involve taking more into account
the structure of the elements of the inverse Jacobian matrix in
order to reduce the overestimation of the determinant.
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