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Abstract

We propose in this paper a global approach to the problem of proximity and force-based control

in robotics applications. A general model of interactions between a sensor and its environment

allows to define the concept of interaction screw. Then, a general approach to the control of

redundant systems is applied to the generalization of the classical hybrid control scheme. An

analysis of the robustness of this scheme shows the importance of knowing the null space of a

jacobian operator associated with the problem. After shortly recalling how the scheme applies to

the case of non-contact sensors, the problem of force control is treated through an example. The

similitude of the two problems reflects in the fact that either virtual or real forces and torques

can be considered. Calculation of a hybrid control requires determining a compliance frame and

the directions which are either force or position controlled. In our approach the compliance frame

and its partition are automatically determined from the measurements by estimating the null

space aforementioned. Some applications of this improved control to surface following tasks are

presented.

1 Introduction

We are interested in this paper in the design of sensor-based control loops with the
point of view of Automatic Control. We consider the class of high data rate sensors
like force, proximity, local range, and local visual sensing. The robotics literature in
this domain is mostly centered on the concept of ‘hybrid control’, issued from studies
in force control (see for example [3, 4, 6, 7, 12]). The use of proximity sensors in a
control loop has been less investigated, although work has also been done in this area
( [11], for example).The use of a vision system inside a control loop rises also as a new
domain of interest ( [2, 8]).

Our objective here is to show how most sensor-based applications, despite certain
specific aspects, may be treated within a unified control framework, and to point out the
importance of the knowledge of the null space of a certain Jacobian operator associated
with the problem. The paper is organized as follows. Firstly basic concepts about task
functions and stability are recalled; then, the main features of the approach are briefly
presented and applied to sensor-based tasks. The specific use of force sensors is studied
through an example and some experimental results are given. For more details on the
approach, only briefly presented here, the reader is referred to [9] and [10].
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2 Background

2.1 The Concept of Task Function

Let us consider a rigid robot, the dynamic equation of which is

Γ = M(q)q̈ + N(q, q̇, t) with dim (q) = dim( Γ ) = n (1)

Equation 1 is a state equation of the system (with natural state vector (q, q̇)), which
fully describes its dynamics. The user’s objective, i.e. the task to be performed,
may be characterized by an associated output function, or, more precisely, may be
expressed as the problem of regulating some C2 n-dimensional function e(q, t) , called
task-function, to zero during the given time interval [0, T ] of the task. The simplest
example of task-function is e(q, t) = q − qd(t), where qd(t) is a desired trajectory
specified in the joint space of the robot.. As explained in [9], where other situations
are discussed, the regulation of the task-function e(q, t) is a well-conditioned problem
only if this function possesses some properties. One of them is the existence and
uniqueness of a C2 ideal trajectory qr(t) such that e(qr(t), t) = 0, with t ∈ [0, T ], and
qr(0) = q0 where q0 is a given initial condition. Another one, very important, is the
regularity of the task-Jacobian matrix ∂e

∂q
in the vicinity of qr(t). When all the required

conditions are satisfied, efficient and robust control laws may then be derived.

2.2 The Central Stability Condition

Given equation 1, and a task function e(q, t), a control scheme has to be designed. A
general control expression is obtained by extending the exact decoupling/linearization
approach to the case where ‘approximations’ are allowed. This leads to ( [9]):

Γ = −kM̂(
∂̂e

∂q
)−1G(µDe +

∂̂e

∂q
q̇ +

∂̂e

∂t
) + N̂ − M̂(

∂̂e

∂q
)−1f̂ (2)

where f is a term appearing in the second differentiation of e ( ë = ∂e
∂q

q̇ + f), G and

D are positive matrices, and µ and k are positive scalar control gains. Except for
µ, D and G, all terms are allowed to be nonlinear functions. The ‘hatted’ terms are
allowed to be approximations of the corresponding functions. Sufficient conditions for
the closed-loop system to be stable are given and discussed in [9]. A particularly
important condition of matrix positivity is :

∂e

∂q
(
∂̂e

∂q
)−1 > 0 (3)

which indicates how the term ∂̂e
∂q

should be chosen with regard to the ‘true’ task Jaco-

bian matrix ∂e
∂q

.

3 Use of Exteroceptive Sensors

3.1 Modeling of Interactions

A sensor (S) is linked to a rigid body (B) with related frame FS. The environment
with which (S) interacts is assumed to be an object (T) associated with a frame FT .
The output of (S) is a p−dimensional vector sensor signal denoted s̄. A fixed reference
frame F0 is also given. The position of (B) is an element r̄ of the Lie group of the



displacements, SE3. This is a 6-dimensional differential manifold. Its tangent space
is se3 and the dual se∗

3
. A screw, H , is an element of se3, characterized by its vector

u and the value H(O) of its field in some point O. We will write: H = ( H(O), u ).
When expressed in a given frame, H is represented by a vector in R6. The velocity
screw of a frame Fk with respect to a frame Fl is denoted as Tkl.

Let us consider one component sj of s̄. Our basic assumption is that sj is a C2

function of the relative position r̄ of (S) with respect to (T) only:

sj : r̄ ∈ SE3 7−→ sj(r̄) ∈ R (4)

Now, we suppose that (S) belongs to a robot, so that the joint coordinates q constitute
a local chart of SE3. As for the motion of (T) with respect to F0 it can be parametrized
by the independent time variable t. Then, we may write:

sj = sj(q, t) (5)

Since the differential of sj is a mapping from se∗
3

to R, we also have:

ṡj =
∂sj

∂r̄
•

dr̄

dt
= Hj • TST (6)

where • denotes the screw product operation. Let us now suppose that the sensor (S)
is positioned on the last body, (B6), of a six-jointed robot. Then, in F0 and according
to 6:

ṡj = [uT
j HT

j (O6)](q, t)J6(q) q̇ − [uT
j HT

j (T )](q, t)

[

VT (t)
ωFT

(t)

]

(7)

where J6 is the Jacobian matrix associated with the frame F6 linked to (B6), with
origin O6 , and T is a fixed point of (T).

The equation 6 (or 7) shows that all information about the variations of the
sensor/environment interactions is carried by the interaction screw Hj . Unfortunately,
our knowledge of Hj is only usually partial. As a consequence, only approximate

models of Hj are used in practice.
Consider now the complete sensor (S) with output vector s̄.We will say that a set

of p compatible constraints: s̄(r̄) − s̄d = 0 determines a virtual linkage between (B)
and (T). When a frame and a basis are chosen, the virtual linkage is characterized by
the 6 × p interaction matrix:

L =

[

u1 ... up

H1(P ) ... Hp(P )

]

(8)

evaluated at some point P .The concept of virtual linkage determines the motions which
may be sensor-controlled and the ones which remain ’free’. When using a force sensor,
this virtual linkage corresponds to a physical linkage.

4 Sensor-based Tasks

From now on, we suppose n = 6, consider SE3 as our working space, and express all
screw in a frame linked to the sensory system. In many applications the regulation
of sensor outputs has to be combined with other objectives such as, for example,
trajectory tracking. Such tasks are often referred to as hybrid tasks. Usually, a partial
specification of the global task leads to the derivation of a sensor-based task vector
e1(q, t) made of m ≤ n independent components. It appears that, generally, whenever



the regulation of sensor signals constitutes the main task which is to be complemented
by a secondary objective, we are in fact dealing with a problem of redundancy. In
the next subsection, we recall and summarize some general results about redundancy,
taken from [9].

4.1 Some Results About Redundant Tasks

It is known that a way of treating the problem of redundancy consists of minimizing
a secondary cost-function under the constraint of achieving a primary task constraint
(see [10] for example). Thus, we denote as J1 = ∂e1

∂r̄
the (m × n) Jacobian matrix

associated with e1, assumed to be full-rank, and as hs a secondary cost function to be
minimized under the constraint e1 = 0, with gradient gs = ∂hs

∂r̄
.

In order to be able to minimize hs under e1 = 0 we have to determine the subspace of
motions which are left free by this constraint. This means that one has to know the Null

Space N(J1) of J1 or equivalently the Range Space R(JT
1
) along the ideal trajectory,

qr(t) of the robot. In practice, this knowledge is equivalent to the knowledge of a m×n

matrix-valued function W such that: (property P1):

R(W T ) = R(JT
1

) (or N(W ) = N(J1) ) alongqr(t) (9)

or equivalently such that:
{

rank(W ) = m

(I − W †W )JT
1

= 0 along qr(t)
(10)

Once such a matrix is known, a possible global task function that can be associated
with the problem is:

e = W †e1 + α(I − W †W )gs (11)

where α is a positive scalar function. If, in addition to the property P1, the chosen
matrix W also satisfies the property P2:

J1W
T > 0 along qr(t)

then (see [9] for more details), it is possible to show that the global task-Jacobian
matrix ∂e

∂r̄
is such that:

∂e

∂r
(In + γ (In − W †W ) ) > 0 along qr(t) (12)

for any positive scalar function γ equal to, or larger than some positive function γm

which depends on α. If α is small ‘enough’, then γm = 0 and ∂e
∂r̄

is positive.
The reason for trying to satisfy the property 12 is that, in this case, it is not

necessary to know the Jacobian ∂e
∂r̄

explicitly in order to derive a stable control. Indeed,

the important control stability condition 3, ∂e
∂q

( ∂̂e
∂q

)−1 > 0 (with ∂e
∂q

= ∂e
∂r̄

∂r̄
∂q

) is then
satisfied by choosing:

(
∂̂e

∂q
)−1 = (

∂r̄

∂q
)−1 (In + γ (In − W †W ) ) (13)

For small values of α, one can also take ∂̂e
∂q

= ∂r̄
∂q

= J6. Therefore, the property P2

is particularly important when the exact computation of ∂e
∂q

is not possible (the case

of most sensor-based tasks) or when it is wished to simplify the control expression



without creating unstability. This property also explains why some hybrid control
schemes may still work when no variational model of the sensor outputs is used in the
control expression.

A particular case, often encountered in practice, is when the subspace N(J1(q, t))
is invariant on the set of solutions of e1(q, t) = 0.Then it is possible to choose W as a
constant matrix.

In summary, when W is chosen so as to satisfy P1, the regulation of e(q, t) to zero
yields the (constrained) minimization of hs. By further restricting the choice of W

so as to satisfy P2, it is possible to provide the global task Jacobian matrix with a
positivity property which can in turn be exploited at the control level. Obviously,
when J1 is known, both properties P1 and P2 are automatically satisfied by choosing
W = J1. However, the satisfaction of P1 only requires the knowledge of R(JT

1
) along

qr(t). The invariance of this subspace on the manifold defined by the primary constraint
e1 = 0 indicates that W can be calculated independently of the secondary objective.
Furthermore, even when P1 is slightly transgressed in practice, the regulation of the
task function 11 may still constitute a well-conditioned control problem, although the
secondary cost function is no longer usually minimized.

The application of these general results to the specific case of sensor-based tasks is
discussed in the next section.

4.2 Application to Sensor-based Tasks

In order to simplify the notation, it will be assumed that all screws and related matrices
are evaluated at the same point Q and expressed in the basis of a single frame F .

Recall that L(r̄, t) (= (∂s̄
∂r̄

)
T
) is the 6 × p interaction matrix associated with the

problem. Its rank m ( m ≤ min (p, 6)) is assumed to be constant and known along the
ideal trajectory of the robot. We will also restrict the discussion to the following set
of sensor-based task functions:

e1(q, t) = D(t)s̄(r̄, t) − σ(t) = D(t)s̃ (14)

where
* D(t) is a (m× p) full rank combination matrix, defined by the user and such that

the (m × 6) matrix DLT is also of full rank m along the trajectory of the robot.
* σ(t) is a m-dimensional reference vector chosen by the user.
* s̃ = s̄ − D†σ

When D is a square matrix (i.e. when p = m), the task associated with e1 is
equivalent to having each sensor output sj regulated around an ideal value sr,j.

The Jacobian matrix associated with the sensor-based task is:

J1 =
∂e1

∂r̄
= DLT (15)

From 15, and since DLT is of rank m, we have:

R(JT
1
) = R(L) (16)

This last relation reminds us that the knowledge of the vector subspace R(JT
1

) is
equivalent to the knowledge of the screw subspace S spanned by the interaction screws.

According to 11 and 14, one may then consider the following global task function:

e = W †Ds̃ + α(I6 − W †W )gs (17)



where W should ideally be chosen so as to satisfy P1 along qr(t). According to 16,
this is equivalent to having:

R(W T ) = R(L) (18)

Because of the dimension of W , this property is also equivalent to having W T =
(w1.....wm), where the set {wj} , j = 1...m is any basis of the interaction screw
subspace S. Because of 15, the property P2 becomes in this case:

DLT W T > 0 (19)

Then, if the choice of W is W = DLT or if D is determined from the prior knowledge
of a basis of S according to D = WL, properties P1 and P2 are both satisfied.

In practice, the ‘true’ interaction matrix L usually has to be replaced by some
approximation L̂(t) evaluated along the trajectory actually followed by the robot. In
some cases this estimated matrix may be is determined off-line, or derived from a
simplified model of the virtual linkage that seems adequate [9]. In other cases, the
off-line estimation may be complemented or replaced by an on-line estimation scheme,
as explained further.

Then, a possible choice for D is:

D = WL̂ (20)

In this case the property P1 is satisfied if R(L̂) = R(L), while the property P2 is

satisfied if WL̂LT W T > 0. The analogy with force based control loops comes from
that, by using 20 in 17 the global task function may also be written:

e = SF̃ + (I − S)αgs (21)

where S = W †W is the orthogonal projection operator on the subspace of constrained
motions, and where F̃ = L̂s̃ can be interpreted as a virtual force of contact in the case
of non-contact sensors. Then

∂F̃

∂r̄
= L̂LT (22)

and the matrix L̂LT can be interpreted as the stiffness matrix of a ”virtual generalized
spring” composed of the sensing system and the target.

5 Application to Force Based Control Loops. An example

We consider the problem of moving the robot’s end-effector along the edge of a planar
surface while applying a constant contact force. Let :

• F denote the screw measured by the force sensor. It is a vector in R6 when
expressed in a frame linked to the end-effector, the origin of which is chosen as
the point of contact.

• n be the unit vector normal to the edge

• fd denote the desired intensity of the contact force.

Then a possible task-function to be associated with the force control problem is :

e1 = [nT 0]F − fd (23)



The corresponding Jacobian matrix is:

J1 = [nT 0]
∂F

∂r̄
(24)

with a stiffness matrix of the form :

∂F

∂r̄
= k

[

nnT 0
0 0

]

, k > 0 (25)

Therefore:
J1 = [knT 0] (26)

and a matrix W which obviously satisfies the properties P1 and P2 is :

W = [nT 0] (27)

As for the secondary objective, it may consist of minimizing a cost-function hs such as
the square of the distance between the cartesian position of the end-effector and some
desired position parametrized by the variable t. Examples of functions hs are given in
[9].

By using 23 and 27 in 17, we then obtain the following global task function:

e = SF −

[

n

0

]

fd + α(I − S)gs (28)

with the selection matrix :

S = W †W =

[

nT n 0
0 0

]

(29)

This task function may also be written in the familiar form :

e = S(F − Fd) + α(I − S)gs (30)

where

Fd =

[

n

0

]

fd (31)

has the meaning of a desired screw.
Obviously, depending on the relative positionning of the chosen frame linked to the

end-effector with respect to the normal of the surface, the selection matrix S may, or
may not be, diagonal.

The important fact, pointed out by relations 28 and 29, is the necessity of knowing
the vector n normal to the surface in order to be able to calculate the value of the task
function at any time. One can think of several methods to estimate n:

• use of the force measurements. If the contact is frictionless the force measurement
may be used to determine the normal n (see [4]). If there is friction, the friction
force has to be estimated and substracted from the measured force.

• use of a prior knowledge of the normal to the surface in a fixed frame F0. Then, n

can be recovered from the computation of the end-effector orientation with respect
to F0.

• use of the motion of the end-effector when it is in contact with the surface, knowing
that the velocity of the end-effector is normal to n.



These methods have been experimentally tested with a Scara robot and an AICO 6
componant force sensor with 200 Hz sampling frequency. The robot controller was a
multi-processor (68020 and 68881 CPU) AICO controller.

In a first experiment the normal n is initially estimated from the force measurement.
Then, during the motion of the robot, and as long as the points are approximately
aligned, the normal is calculated from the estimation of a vector tangent to the contour.
The trajectory followed by the end-effector is shown in figure 1 and the evolution of
the measured force intensity is represented in figure 2. The desired force value was
2.5N and the velocity of the manipulator was 8mm/s. The average measured intensity
is 2.61N and the standard deviation equal to 0.658 N2. This method has been also
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Figure 1: The followed trajectory with the controller using an estimation of the normal through the

force measurements

Force

0.000 1.813 3.626 5.438 7.251 9.064 10.877 12.690 14.503 16.315 18.1280.000

0.545

1.091

1.636

2.182

2.727

3.273

3.818

4.364

4.909

5.455

Figure 2: The force measurements with the controller using an estimation of the normal through the

force measurements

successfully tested to perform fine insertion with clearance less than 10 µm, no chamfer
and an horizontal insertion axis, and to turn a crank [5].

In the second experiment, an a priori model of the contour, obtained after imple-
menting a geometrical method called probing is used. This ”probing” method [1] is a
technique which applies to polygonal contours, and it roughly consists of the following:
according to some predetermined optimal strategy the manipulator comes into contact
with the contour a finite (and minimal) number of time, so as to determine the location



of the vertices. The contact between the manipulator and the contour is detected by
the force sensor. The vertices are then connected together so as to obtain a geomet-
rical model of the contour. During the force control experiment this model is in turn
used to determine the normal to the contour at any location of the end-effector. The
end-effector’s velocity is the same as before, and the measured force intensity is shown
in figure 3. Its average value is 2.506N with a standard deviation of 0.355 N2. During,

0.000 5.779 11.559 17.338 23.118 28.897 34.677 40.456 46.236 52.015 57.7950.744

1.225

1.707

2.189

2.671

3.153

3.634

4.116

4.598

5.080

5.561

Force(N)

Figure 3: The force measurements with the controller using a reference model of the contour

both experiments, the main difficulty was the passage of the contour edges where the
normal to the contour is not uniquely determined and where there is a risk of loosing
the contact. The solution of this problem required the addition of specific strategies
to the control algorithm. Obviously, any prior knowledge of the contour’s geometry is
also useful at this point.

6 Conclusion

The unified approach proposed in this paper enables to deal with various sensors (con-
tact or non-contact sensors) using the same basic algorithms. The task function ap-
proach enables to design robust control scheme as soon as the null space of the jacobian
operator associated to the task is determined. We have shown that, for the case of force
sensor, it is possible to calculate this null space, using various methods. Experiments
(which are currently under way) for the surface following problem show that this ap-
proach is really effective.

References

[1] J.D. Boissonnat, M. Yvinec: Probing a scene of non convex polyhedra,
INRIA Research Report n◦1110, October 1989

[2] J.T. Feddema, C.S.G. Lee, O. Mitchell: Automatic selection of image fea-

tures for visual servoing of a robot manipulator, IEEE Conference on
Robotics and Automation, Scottsdale, USA, May 1989

[3] M.T.Mason: Compliant motion, in ’Robot Motion, Planning and Control’,
Brady and al., 1st edition, Cambridge, the MIT Press, 1982



[4] J.P. Merlet: C-surface theory applied to the design of an hybrid force-

position controller, IEEE Conference on Robotics and Automation, Raleigh,
USA, April 1987

[5] J.P. Merlet: Manipulateurs parallèles, 3eme partie : Applications, INRIA
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