
A FORMAL-NUMERICAL APPROACH TO

DETERMINE THE ACCURACY OF A PARALLEL

ROBOT IN A 6D WORKSPACE

J-P. Merlet

INRIA

France

Abstract: The positioning error of a parallel robot is conditioned by the measurement errors on the

leg lengths, these two quantities being linearly related through the pose-dependent jacobian matrix of

the robot. An important design problem is to determine the extremum of the positioning errors over

a prescribed 6D workspace. This is a difficult problem as the jacobian matrix has a complex formula-

tion, involving thousands of terms. We present the preliminary result for an algorithm that estimate the

positioning error with an arbitrary accuracy.

1 Introduction

Parallel robots have been extensively studied this recent years and are now starting to appear as commer-

cial products for various applications, hence the interest for their optimal design. Among other criterion

checking the positioning accuracy is an important part of the design process. Surprisingly this issue has

been largely ignored in the literature: Patel [4] has studied the positioning error on a trajectory, Roppo-

nen [5] these errors for a given pose, while Masory [1] uses a specific hardware to evaluate the accuracy

of a parallel robot. But to the best of the author knowledge, the problem of determining the maximal

errors has not been addressed in the literature. In this paper we consider a Gough-type 6 d.o.f. parallel

manipulator (figure 1) constituted of a fixed planar base plate and a planar mobile plate connected by

6 articulated and extensible links. The pose of the platform may be adjusted by changing the length of

SSM
C y

x

A1

A2
A3

A4

A5

A6

B1

B2

B3

B4

B5

B6

A2

A1

A4

A6

A3

A5

mobile

base

1

2

3

4

5

6

O

C

Figure 1: Gough platform

the six legs. A reference frame (O, x, y, z) is attached to the base and a mobile frame (C, xr , yr, zr) is

attached to the moving platform. The leg i is attached to the base with a ball-and-socket joint whose

centre is Ai, while it is attached to the moving platform with an universal joint whose centre is Bi. Let

ρi be the leg lengths (the distance between Ai and Bi), X a 6-dimensional vector defining the pose of the

end-effector: the three first components of X are the coordinates of C in the reference frame, while the

three last components are three parameters describing the orientation of the end-effector. In this paper

we will use the Euler angles ψ, θ, φ. The errors on the leg length measurements ∆ρ and the positioning

errors on the end-effector ∆X are related as follows:

∆ρ = J−1∆X ∆X = J∆ρ (1)

where J is the jacobian matrix of the robot and J−1 its inverse. In our problem the measurement errors

∆ρ are known, i.e. we have −ǫi ≤ ∆ρi ≤ ǫi, and we are interested in finding the extremal values of each

component of ∆X. Hence the later equation is the one we are interested in. Unfortunately we have a

convenient analytical formulation only for J−1; a row of this matrix may be written as:

J−1
i =

AiBi

ρi

CBi ×
AiBi

ρi

(2)

Although this matrix may be easily expressed in terms of the pose parameters, its inverse has a complex

formulation [2]. The maximal value of the positioning error on the i-th pose parameters may be written

as:

∆Xi =

j=6∑

j=1

|Jij |ǫj

Even if we assume that we have been able to compute the jacobian matrix, we will have to determine the

maximal value of ∆Xi for all the poses in the prescribed workspace. Clearly this is a difficult optimisation

problem.

Now we must examine why we must compute the maximum of the positioning errors. Two main

reasons may justify this computation:

• prove that a given robot design has a maximal error less than a given threshold ǫ

• compare the positioning accuracy of two robots with different dimensions

It must be note that in both cases it is not necessary to determine the exact value of the maximal

positioning error ∆X . This may be shown easily in the former case: assume that we are able to determine

a number G such that we can guarantee that G− µ|∆X | ≤ G+ µ, where µ is an arbitrary error margin.

Now suppose that G+µ < ǫ or G−µ > ǫ: then we have determined that in the first case the robot verify

the desired accuracy property while in the second case that it fails. Otherwise we cannot answer the

question and we will have to decrease µ and start again. Note however that if we are free to fix the value

of µ at will, then we may get a very good approximation of the exact value of the maximal positioning

error.

Thus our main goal will not to compute the error exactly but up to the given accuracy µ. A direct

result is that the computation time will be quite low for relatively large µ: in the two problems presented

above we will start with large µ and reduce its value only if the result is indeterminate. This approach

will be, in general, quite efficient.

2 Positioning errors and algorithm principle

Let Si be the matrix obtained from J−1 by substituting the i-th column of J−1 by the vector ∆ρ. By

solving the linear system (1) we get the positioning error on Xi as:

∆Xi =
|Si|
|J−1|

Let Sj
i be the minor of Si obtained by removing the i-th column and j-th row of this matrix. We have:

∆Xi =

∑j=6

j=1
(−1)i+j∆ρj |Sj

i |
|J−1| (3)

We define now the semi inverse jacobian matrix M by its i-th row:

Mi = (AiBi CBi × AiBi) (4)

A direct consequence of this definition is that:

|J−1| =
|M |

∏k=6

k=1
ρk

|Sj
i | =

|M j
i |∏k 6=j

k=1,6 ρk

(5)

It must be noted that contrary to |J−1|, |Sj
i | the expressions |M |, |M j

i | have no denominator. Reporting

these results in equation (3) we get:

∆Xi =

∑j=6

j=1
(−1)i+j∆ρj |M j

i |ρj

|M | (6)

Consider now that the pose parameters should lie in some workspace W and let UM
ij be the maximal

absolute value of (−1)i+j |M j
i |ρj/|M | for all the possible poses in the workspace. A consequence of

equation (6) is that:

TM
ij =

j=6∑

j=1

−ǫjUM
ij ≤ ∆Xi ≤ Tm

ij =

j=6∑

j=1

ǫjU
M
ij (7)

Assume now that we want to determine the extreme values ∆mXi,∆
MXi of ∆Xi with a given accuracy

µ, i.e. we want to find 2 quantities V m
i , V M

i such that:

Vm
i − µ ≤ ∆mXi ∆MXi ≤ V M

i + µ

Initial values for V m
i , V M

i may be obtained by taking random poses in the workspace. If we are able to

compute bounds on Tm
ij , T

M
ij for all poses in the workspace and update V m

i , V M
i in such way that

V m
i − µ ≤ Tm

ij TM
ij ≤ V M

i + µ (8)

then V m
i , V M

i may be considered as extremal values of the positioning error, up to the accuracy µ. So

the basic principle of our algorithm for computing the extremal values of ∆Xi is

1. initialize V m
i , V M

i by computing the positioning error at poses randomly selected in W

2. compute bounds on Tm
ij , T

M
ij for all poses in W

3. if these bounds satisfy the inequalities (8) return V m
i , V M

i as extremal values of the positioning

error

4. otherwise split W in smaller subset. In each subset compute the positioning error at some randomly

selected poses and update V m
i , V M

i if necessary. Then repeat the process for each subset and return

the largest extremal values obtained for all the subsets.

We have now to explain how to perform step 2 of this algorithm and how to split W in smaller subsets.

3 Finding bounds on the positioning errors

We have to determine bounds on the extremal values of a sum of terms, each of them having the generic

form ρ|Mm|/|M |, where Mm is a minor of M . This sum has a very complex formulation, so we will

consider independently each term of the sum, find bounds on the extremal values of each term and

consider that the bounds on the sum is the sum of the bounds on each term. Each term is still a complex

function of the pose parameters and of the geometry of the robot, as defined by the location of the joints

of the robot. So we have decided to use the symbolic computation software MAPLE to compute a generic

form for the determinants |Mm|, |M |. According to the structure of the elements of the matrix J−1 these

determinants may be written generically as:

|..| =

a=n∑

a=1

Fa

Fa = Cax
iyjzk cosl(ψ) sinm(ψ) cosn(θ) sino(θ) cosp(φ) sinq(φ)

where the Cjs are numerical constants. When running our algorithm a MAPLE program will calculate

each determinant and determine all its basic components Fa, that it will then write in a result file, each

line representing one Fa as a set of float number (for Ca) and 9 integers representing i, j, k, l,m, n, o, p, q.

We will then use a method called interval analysis [3] to evaluate lower and upper bounds for the Fa.

Interval analysis is similar to real analysis except that real variables are replaced by intervals and that

specific rules are used for each basic arithmetic operations.

More generally if Xi = [xi, xi] with xi ≤ xi denotes an interval it is possible to define all the arithmetic

operators (and more complex functions) for intervals. For example the ”+” operator for intervals will be

defined as:

X1 +X2 = [x1 + x2, x1 + x2]

With this method we are able to compute lower and upper bounds on any function for given ranges for

the input parameters. For example being given 6 ranges for the variables x, y, z, ψ, θ, φ we are able to

compute two real number F−
a , F

+
a such that we can guarantee that for any value of the variable in their

ranges we have F−
a ≤ Fa(x, y, z, ψ, theta, φ) ≤ F+

a (note that some implementation of interval analysis

operators take into account round-off errors to get guaranteed bounds).

A drawback of interval analysis is that the resulting bounds may be largely over estimated (e.g. the

bounds for the function x2+x when x ∈ [−1, 0] are computed as [-1,1], while the real bounds are [-1/4,0]),

but they will get closer to the exact values as soon as the size of the input ranges decrease. Thus for given

ranges on the pose parameters we are able to compute bounds on ρ, |Mm| and |M | and consequently

bounds on ρ|Mm|/|M | which in turn enable to compute bounds on the positioning errors.

4 The bisection process

Suppose that the workspace W is defined as a set of ranges, one for each pose parameters. We will call

this type of workspace an extended box or EB for short. To create the subsets of W that are necessary

in our algorithm we will bisect each range of the workspace: if the initial range is [x1, x2], the bisection

process will lead to the two ranges [x1, (x1+x2)/2], [(x1+x2)/2, x2]. Thus, if none of the pose parameters

has a constant value, we will get 26 = 64 new EBs as a result of the bisection process. These EBs will be

stored in a list and the algorithm will be used for each EB in the list until all the EBs in the list have

been processed.

5 Dealing with other types of workspace

We have described in the previous section an algorithm to compute the extremal values of the positioning

errors if the workspace is an EB. This algorithm allows us to deal with other type of workspace. Assume

for example that the workspace is defined as three ranges for the orientation parameters and a geometric

object (e.g. a sphere) as the possible location of the origin of the end-effector. We will assume that we

are able to define an EB which include the workspace W so defined and that we may define a test T for

an EB which return 0 if the EB is outside W , 1 if the EB is fully inside W and 2 if only a part of the

EB is inside W . The previous algorithm will be modified at the bisection level where the test T will be

applied on each EB resulting from the bisection. If the test returns 0 we just discard the EB, if it returns

1 we compute the positioning errors for this EB and update if necessary the current extremal values of

the positioning errors. If the test returns 2 and the positioning errors for this EB may be larger than the

current extremal values, then we store the EB in the list without updating the current extremal errors. A

similar approach enable to deal with a workspace defined in terms of bounds on the articular coordinates

i.e. we are able to compute the extremal positioning errors for all reachable poses of the end-effector.

6 Experimental results

In this section we will assume that the error ǫ on the measurement of the articular coordinates is 1/100. We

will assume that the accuracy µ with which we want to calculate the extremal values of the positioning

errors are µ∆x = 0.0291, µ∆y = 0.1329, µ∆z = 0.0189, µ∆θx
= 0.0018rd, µ∆θy

= 0.00086rd, µ∆θz
=

0.005rd (these values have been selected as 10 % of the extreme positioning errors computed for a

few random poses in the workspace). The computation time has been established on a SUN Ultra 1

workstation.

The origin of the end-effector is located in a workspace defined by x, y ∈ [−5, 5], z ∈ [45, 50].

First we assume that the orientation of the end-effector is constant and defined by ψ = θ = φ = 0.

We get the maximal positioning errors as ∆x = ±0.145762, ∆y = ±0.664774, ∆z = ±0.0946431, ∆θx =

±0.0092133rd, ∆θy = ±0.004327rd, ∆θz = ±0.025138rd in a computation time of 0.1 s. If we decrease

by half the value of the µs or divide them by 10 we get the same result for the positioning errors in

0.16s and 8.95s respectively. We assume now that the angle ψ may vary in the range [-5,5] degree. The

computation time with the same accuracy than above becomes 31.6 seconds.

Then we assume that both angles ψ, θ may vary in the range [-5,5] degrees. The computation time

drastically increase and become about 11h.

7 Improving the efficiency

As may be noted in the previous section the efficiency of the algorithm is pretty good up to a 4D

workspace, but drastically decrease as soon as we move to a 5D workspace. We will now suggest three

possibilities to improve the efficiency.

7.1 Improving the bounds on the determinants

7.1.1 Using the nested form

We have seen that we expand all the determinant involved in the calculation as an expression involving

a sum of generic terms Fa. But it is well known in the field of interval arithmetics that the Horner (or

”nested” form) of an expression leads, in general, to better bounds. For example we have considered

previously the expression x2 +x with x in the range [−1, 0] and we haven that the corresponding interval

evaluation was [-1,1]. If we consider now the nested form x(x + 1) of this expression we get the interval

evaluation [−1, 0] and we have reduced by the two the width of the interval evaluation.

The nested form of the determinants can be computed by MAPLE but the main difficulty is to use it

in a program. To deal with this problem we will use a parser that has been developed in our laboratory.

This parser is able to read the analytical expression of a function written in a file and, being given ranges

for the unknowns, will compute the interval evaluation of the function. Using this parser is somewhat

slower than a direction evaluation of the expression but it is expected that the decrease in the width of

the interval evaluation will drastically increase the efficiency of the algorithm.

7.1.2 Evaluation o the trigonometric expressions

In the determinants appear the sine and cosine of the orientation angles. These quantities are clearly

not independent but are considered as such in term of interval analysis. For example if at some point

appears the quantity sinψ + cosψ, the interval evaluation of this quantity for ψ in [0, 2π] will be [-2,2],

while the exact value is [−
√

2,
√

2]. We have developed a program that is able to detect such expression

and substitute it by a procedure that will compute better bounds.

7.2 Decreasing the number of EB

For a 6D workspace the bisection process will lead to up to 64 new EB’s each of which in turn may

lead to 64 new EB’s. Consequently the number of EB stored in the list is quickly growing. To avoid

this effect we may use a well known method in the field of interval analysis: instead of bisecting the

EB in all its 6 dimensions, we may bisect only one of them. This may have a very large impact on the

efficiency. Indeed the bisection of an EB along one dimension leads to 2 new EB’s. Imagine now that the

algorithm is able to calculate that the maximal positioning error cannot be obtained for these 2 EB’s,

and consequently that they have not to be added to the list. We will evidently get a similar result by

using the algorithm described in section 4 but at the cost of examining 64 EB’s, instead of only 2. As

bisecting along one dimension will lead in the worst case to the same number of new EB’s as bisecting

along all the dimensions, it may be seen that bisecting along one dimension may be a better approach.

It remains to determine which of the 6 dimensions should be selected as the bisected dimension. A

classical approach for this problem is to use the ”smear” function. Let G(X) be a function of X =

{x1, x2, . . . , xn} and we define sj as

sj = Max{| ∂G(X)

∂xk∂xj

|(xj − xj)}

where the jacobian ∂G(X)/∂xk∂xj is evaluated using interval analysis. In some sense sj is a measure of

the influence of the variable xj on the value of G, which is weighted by the width of range on xj . As a

consequence the direction which will be bisected is the one which has the larger sj .

8 Conclusion

We have presented here a preliminary approach to deal with one of the difficult problems related to

parallel robots: determining the extreme values for the positioning errors for given ranges on the errors

on the measurements of the articular coordinates. The experimental results show that our algorithm

perform pretty well for workspace of dimension up to 4, while being quite slow for larger dimension.

We have suggested ways to improve the efficiency of the algorithm, which are currently being imple-

mented.

References

[1] Masory O. and Jihua Y. Measurement of pose repetability of Stewart platforms. J. of Robotic Systems,

12(12):821–832, 1995.

[2] Mayer St-Onge B. and Gosselin C. Singularity analysis and representation of spatial six-dof parallel

manipulators. In J. Lenarc̆ic̆ V. Parenti-Castelli, editor, Recent Advances in Robot Kinematics, pages

389–398. Kluwer, 1996.

[3] Moore R.E. Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics,

1979.

[4] Patel A.J. and Ehmann K.F. Volumetric error analysis of a Stewart platform based machine tool.

Annals of the CIRP, 46/1/1997:287–290, 1997.

[5] Ropponen T. and Arai T. Accuracy analysis of a modified Stewart platform manipulator. In IEEE

Int. Conf. on Robotics and Automation, pages 521–525, Nagoya, May, 25-27, 1995.

