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Abstract :We present in this paper a new mechanical architecture for a parallel manipulator. We address the problem
of the determination of the singular configurations of this architecture. Then we show that the direct kinematic problem
has at most 16 solutions and exhibit an algorithm to find all the solutions.

1 Introduction

Many architectures of parallel manipulators have been proposed by various researchers: Fichter [3], Inoue [6], Reboulet [9],
Zamanov [11]. Our purpose is to design a parallel manipulator which will be used as a compliant wrist. Therefore this
manipulator has to be light and its center of mass must be low. In order to increase the workspace and improve the
dynamic behaviour we want to use very simple cylindrical links.

2 The INRIA prototype

The INRIA prototype (figure 1) is composed of a mobile plate and a fixed one, connected by six links whose lengths
are identical. These links (AiBi) are low-diameter cylindrical beams. The prismatic actuators Mi enables to change
the position of the articulation points Ai. By changing the position of these points we are able to control the position
and the orientation of the mobile plate. We define a reference frame (O,x,y, z) and a relative frame linked to the
mobile plate (C,xr,yr, zr). We denote by X = [xc, yc, zc, ψ, θ, φ] the generalized coordinates vector whose componants
are the coordinates of C in the reference frame and the orientation angles of the mobile plate. We denote by ρ =
[za1, za2, za3, za4, za5, za6] the articular coordinates vector where zai is the z-coordinates of Ai. nz denotes the normal
of the mobile-plate.

3 Inverse Kinematics

The fundamental relation between the articular componant zai and the position and orientation of the mobile plate is:

(zc − zai + zui)
2 + (xc − xui)

2 + (yc − yui)
2 = L2

i (1)
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Figure 1: The parallel prototype: the prismatic actuators move the articulation point Ai along a vertical axis.

where xui, yui and zui depend only upon the orientation of the mobile plate and Li is the length of link i. Therefore for
our prototype we have:

L2
i − L2

j = Ti,j(zai, zaj,X) = 0 (2)

4 Singular configurations

The inverse jacobian matrix J−1(X) relates the articular velocities ρ̇ to the cartesian and angular velocities Ẋ:

ρ̇ = J−1(X) Ẋ = (
∂ρ

∂X
)Ẋ (3)

In order to determine the articular velocity vector for a given Ẋ the determinant of J−1(X) must be different from
zero. If in a given configuration X0 the determinant is equal to zero, the robot is uncontrollable, and X0 is a singular

configuration. To determine these configurations, we may try to find the roots of the determinant of the matrix J−1

which is a rather complex non-linear expression. Another approach is based on Grassmann line-geometry and has been
explained in [8] and the mathematical background of this geometry can be found in [1],[2],[10]

5 Determination of the singular configurations

First we have to remind the definition of the Plücker coordinates of lines. A line (∆) can be defined by its Plücker
coordinates. Let us consider two points on the line (∆), M1 and M2 defined in a reference frame Rr with origin R. The
Plücker vector of (∆), denoted P∆ is defined by:

P∆ = [M1M2, M ] with M = RM1 ∧ RM2 = RM1 ∧ M1M2 = RM2 ∧M1M2 (4)



We may also define the normalized Plücker coordinates as:

P′

∆ =
P∆

‖M1M2 ‖
= [S′, M′ ] (5)

5.1 Determination of J
−1(X)

Now let us calculate the matrix J−1(X). Let F be the force vector applied on the mobile plate, M the torque vector
acting on point C and f the articular force vector (the stress in the links). It is well known that:

Γ = (
∂ρ

∂X
)T f = J−T f with Γ = [F, M ] (6)

When, the mechanical system is in equilibrium we have:

6∑

i=0

fini = F

6∑

i=0

(CBi ∧ fini) = M (7)

where ni is the unit vector of the link. Let P′

i be the normalized Plücker vector of link i. Equation (7) can be written as:

6∑

i=0

fiS
′

i = F

6∑

i=0

fi(CBi ∧ S′

i) = M (8)

Therefore:

J−1(X) = P with P = [P′

1,P
′

2,P
′

3,P
′

4,P
′

5,P
′

6 ] (9)

Therefore the degeneracies of J−1(X) are obtained when one of the Plücker vector of the line associated to a link is linearly
dependent of the others Plücker vectors. Grassmann has shown that such a dependency between n Plücker vectors (which
therefore span a variety of rank n − 1) will yield to a geometrical constraint between the n lines. These constraints for
a set of n lines (where n lie in the range [3,6]) have been presented in [8]. We will study now how the various sets of n
lines of our prototype can span a variety of rank n− 1.

5.2 Linear dependency of the sets of lines

5.2.1 Set of three lines

One of the Plücker vectors is a linear combination of the others if the two following geometric conditions are satisfied:
the three lines belong to a plane P and they intersect all a point M (relation C2). The set of three links of our prototype
can be divided into two families. In the first family, two of the links have a common point (for example 1, 2, 3). The
condition C2 is obtained when:

(A1B1 ∧A2B2).A3B3 = 0 A3B3 ∧ A3B1 = 0 (10)

We set za2 to zero and from equations (10) we deduce za1, za3. Then by using the T1,3 we get:

xc = F21(yc, ψ, θ, φ) H21(y2
c , yc, zc, ψ, θ, φ) = 0 (11)

which define the singular configurations obtained for that case.



In the second family the three links have no common point (for example 1, 3, 6). The condition C2 is obtained when:

A1B1 ∧ A1M = 0 A3B3 ∧ A3M = 0 A6B6 ∧ A6M = 0 A1B1.nz = 0 (12)

From these equations we may deduce the coordinates of M and the values of za1, za3, za6. Then using T1,3 and T1,6,
we get the constraint equations:

F22( X ) = 0 G22( X ) = 0 H22( X ) = 0 (13)

5.2.2 Set of four lines

Condition 3a: The four lines belong to a regulus. A regulus is a family of lines which generates an hyperbolöıd of one

sheet. Since an hyperbolöıd of one sheet is doubly ruled, it is generated by two families of lines: the regulus and its
complementary regulus. An interesting property is that if two lines belonging to the same hyperbolöıd intersect then one

line belongs to the regulus and the other to the complementary regulus. For any set of four links of our prototype, there
are at least two links having a common point (an articulation point of the mobile plate). Therefore, we cannot find four
lines which belong to the same regulus.

Condition 3b:The lines belong to two flat pencils, lying in two distinct planes and having a common line . This case may be
divided into two sub-cases. First two pairs of links has each a common point (for example 1,2,3,4). In that case we have:

(A1B1 ∧ A2B2).B1B3 = 0 (A3B3 ∧ A4B4).B1B3 = 0 (14)

These equations being linear in term of xc and yc, we are able to calculate their values. The second sub-case is obtained
when there is only one common point between some of the four links (for example 1, 2, 3, 5). In that case we have:

(A1B1 ∧ A2B2).B1M = 0 (15)

A3B3 ∧ A3M = 0 A5B5 ∧ A5M = 0 (16)

A3B3.nz = 0 A5B5.nz =0 (17)

From equation (17) we deduce za3, za5 We use then three of the four equations (16) to determine the coordinates of M .
Using the remaining equations and T3,5, T1,2 we get:

xc = F3b1(yc, ψ, θ, φ) G3b1( X ) = 0 (18)

Condition 3c: All the lines pass through one point. If we choose the quadruplet 1, 2, 4, 6, the condition is fulfilled if:

A4B4 ∧ A4B1 = 0 A6B6 ∧ A6B1 = 0 (19)

From these equations we deduce za4 and za6 and using T4,6 we get:

xc = F3c(y
2
c , yc, ψ, θ, φ) zc = G3c(y

2
c , yc, ψ, θ, φ) H3c(y

2
c , yc, ψ, θ, φ) = 0 (20)

Condition 3d: The four links are coplanar. Two sub-cases are to be considered. First two pairs of line have each a common
point (for example 1, 2, 3, 4). In that case, we have:

(A1B1 ∧ A2B2).A1B3 = 0 (A3B3 ∧ A4B4).A3B1 = 0 (21)

From the linear system (21), we calculate the variables xc and yc. In the second case there is only one common point
between the links (for example 1, 2, 3, 6). In that case we have:

A1B1.nz = 0 A2B2.nz = 0 A3B3.nz = 0 A6B6.nz = 0 (22)

From these equations we deduce za1, za2, za3, za6,and then we use T1,2 and T3,6 to get the following equations:

xc = F3d(ψ, θ, φ) yc = G3d(ψ, θ, φ) (23)



5.2.3 Set of five lines

Condition 4b:The five lines intersect two skew lines (D1) and (D2). Without loss of generality we will consider the set of
lines 1, 2, 3, 4, 5. First, let us find (D1) and (D2) that intersect four lines. The two skew lines (D1), (D2) can be defined
in two different ways. First D1 ∈ P12 and cross the point B3, D2 ∈ P34 and cross the point B1 (Pij is the plane defined
by the lines i, j). In that case we have:

(A1B1 ∧ A2B2).A1B3 = 0 (A3B3 ∧ A4B4).A3B1 = 0 (24)

These equations define a set of lines (D1, D2) and in this set a pair of line (Da1, Da2) intersect line 5. These lines will be
skew if:

A5B5.nz 6=0 A5B5.n12 6=0 A5B5,n34 6=0 (25)

where nij is the normal to the plane defined by the lines i, j. From equations (24), we calculate the values of xc and yc.
The second way to define (D1, D2) is D1 ∈ (P12 ∩ P34), D2 = B1B3 . The Plücker vector PD1 of the intersection line of
P12, P34 can be calculated as a function of X, ρ. Therefore if line 5 intersect D1 we have:

S′

D1.M
′

5 + S′

5.M
′

D1 = 0 (26)

and line 5 will intersect D2 if:
A5B5.nz = 0 (27)

First, let us set za1 = 0 and calculate za5 from (27). Then T1,5, and equation (26) yield to:

xc = F4b(yc, ψ, θ, φ) G4b(X, za2, za3, za4) = 0 (28)

Condition 4c: The lines define three flat pencils having one line in common but lying in distinct planes and with distinct
centres. Without loss of generality let us consider links 1, 2, 3, 4, 5. We must have:

(A1B1 ∧ A2B2).B1B3 = 0 (29)

(A3B3 ∧ A4B4).B1B3 = 0 (30)

A5B5.nz =0 (31)

Let us set za2 = 0 and deduce za1, za5 from equation (29) and (31). Then by using T1,5 we get:

F4c( X ) = 0 G4c( X, za3, za4 ) = 0 (32)

Condition 4d: The lines either belong to a same plane P or pass through a unique point M , M ∈ P . Let us examine the
different possible cases:

• Links 1,2,3 ∈ P , and 4,5 pass through the same point M . Therefore we have:

(A1B1 ∧A2B2).A3B3 = 0 A5B5 ∧ A5B3 = 0 (33)

From equation (33) we calculate the values of xc, yc and zc.

• The links 1,2,5 ∈ P , and 3,4 pass through M . Thus we have:

A1B1.nz = 0 (34)

A2B2.nz = 0 (35)

A5B5.nz = 0 (36)

We set za5 = 0 and calculate za1, za2 from the equations (34), (35). Using T1,2 and equation (36) we deduce the
following relations:

xc = F4d1(yc, ψ, θ, φ) G4d1(y2
c , yc, ψ, θ, φ) = 0 (37)



• links 1,2 ∈ P , and 3,4,5 pass through the same point M . We have:

(A1B1 ∧ A2B2).B1B3 = 0 A5B5 ∧A5B3 = 0 (38)

We set za2 to zero and find the following relations:

F4d2(y3
c , y

2
c , yc, z

2
c , zc, ψ, θ, φ) = 0 G4d2(y2

c , yc, z
2
c , zc, ψ, θ, φ) = 0 (39)

5.2.4 Set of six lines

Condition 5a: The three lines belonging respectively to the three flat pencils spanned by the links (1,2), (3,4) and (5,6) and
lying in the mobile-plate plane intersect at a unique point M . Therefore we have:

(A1B1 ∧ A2B2).A1M = 0 (A3B3 ∧ A4B4).A3M = 0 (40)

(A5B5 ∧ A6B6).A5M = 0 B1M.nz = 0 (41)

Unfortunately once we have reported the M coordinates in the last equation, we obtain a relation:

F5a( X, ρ ) = 0 (42)

Condition 5b: All the lines meet one line ∆. It can be show that (∆) is the line passing through two articulation points
Bi, Bj . If we consider B3 and B5 we have:

(A1B1 ∧ A2B2) ∧ nz = 0 (43)

We set za1 to 0 and calculate za2 from one of the equation (43). Then using T1,2 and the remaining equation we get:

xc = F5b(ψ, θ, φ) yc = G5b(ψ, θ, φ) (44)

6 Direct Kinematics

6.1 Equivalent mechanism

Let us consider a manipulator with a fixed set of za. Clearly the point Bi is able to describe only a circle whose center is
located on the line joining the two articulation centers of the links associated to this point (for example B1 lie on a circle
whose center is on the line A1, A2). We have shown in [7] that the position of the centers of these circles and their radii
can be calculated from the links lengths and the za. Therefore we may consider that our prototype is now equivalent
to the mechanism described in Figure 2. This mechanism is constituted of three links articulated on revolute joints and
connected to the mobile plate. The links lengths are l12, l34, l56 and the orientation of the links are defined by the angles
p12, p34, p56. For a fixed geometry of this mechanism we will investigate what are the different assembly-modes i.e. we will
find what are the various sets of angle p12, p34, p56 such that the geometry is respected. These angles define the position
of the point Bi and therefore the different configurations of the mobile plate of our prototype i.e. the different solutions
of the direct kinematics problem.

6.2 Maximum number of assembly-modes for the equivalent mechanism

If we dismantle one of the link of the equivalent mechanism we get a RSSR mechanism. It is known [4] that a point of
the coupler of this mechanism describes a sixteenth order surface, the RSSR spin surface.

In order to find the possible configurations of mobile plate we have to intersect this surface with the circle described
by the extremity of the dismantled link: indeed every point on the surface which match the extremity of the dismantled
link will correspond to an assembly mode of the equivalent mechanism.

A sixteenth order surface is intersected by a circle in no more than 32 points. But we have demonstrated in [7] that
the RSSR spin-surface contains the imaginary spherical circle eight times and therefore we deduce that at least 16 points
are imaginary, and therefore there is at most 16 assembly-modes for our prototype.
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Figure 2: The equivalent mechanism of the INRIA prototype

6.3 Polynomial formulation of the direct kinematics problem

Let us consider the equivalent mechanism. The position in the reference frame of the point B1, B3, B5 are fully defined
by the geometry of the mechanism and the three angles p12, p34, p56. As the distances between the Bi are known constant
we may write three equations :

||B1B3|| − d13 = 0 ||B1B5|| − d15 = 0 ||B3B5|| − d35 = 0 (45)

where dij is the distance between point Bi, Bj. In these equations appear the sine and cosine of the unknown angles. Let
us denote :

t12 = tan(
p12

2
) t34 = tan(

p34

2
) t56 = tan(

p56

2
). (46)

The sine and cosine appearing in equations (45) can be expressed as polynomial function of the tij and therefore these
equations are now polynomials in t12, t34, t56. Innocenti [5] has shown that by combining these equations we can get a
polynomial P in t12 only, whose order is 16. Therefore to solve the direct kinematics problem of our manipulator we use its
geometry and the values of its articular coordinates to construct the polynomial P . Then we solve this polynomial in t12,
find the corresponding values of t34, t56 (which are unique for a given t12). From these values we get the three unknowns
angles p12, p34, p56 which define the position of the three points B1, B3, B5 and therefore the position and orientation of
the mobile plate of our manipulator. From the order of the polynomial P we have another confirmation of the fact that
there will be at most 16 solutions to the direct kinematics problem.

A numerical procedure has been implemented and an extensive research has shown that effectively in some cases the
polynomial P may have 16 real roots which means that there will be 16 solutions. Table 1 gives an example of these
cases and the corresponding configurations are shown in Figures 3, 4, 5, 6. It must be noticed that this method involves
a heavy computational burden. Therefore it cannot be used in a real-time context. For real-time application an iterative
procedure has been shown to be very efficient.

7 Conclusion

A light parallel manipulator currently under development at INRIA has been presented. We have addressed the problem
of its singular configurations and its direct kinematics. A geometrical approach enables to find the constraint equations
on the generalized coordinate vector such that the resulting configuration of the manipulator is singular. This approach



solution xc yc zc ψ θ φ

1 -0,0 0,000001 10,0 0,0 10,0 0,0
2 2,473130 0,632074 8,176453 -51,849020 105,730039 52,066359
3 -2,473130 0,632074 8,176453 51,849020 105,730039 -52,066359
4 0,0 -2,601499 7,755148 -180,0 108,417756 180,0
5 -0,496780 -0,294736 3,618337 -60,879349 44,743072 -119,045570
6 0,496780 -0,294736 3,618337 60,879349 44,743072 119,045570
7 -0,034355 -0,008744 2,006402 -54,971335 10,790311 -125,012525
8 0,034355 -0,008744 2,006402 54,971335 10,790311 125,012525
9 0,0 0,003463 1,819111 0,0 2,092780 180,0
10 0,0 0,125864 1,199592 -0,0 20,259768 -180,0
11 -0,0 0,010573 0,920016 180,0 6,487758 0,0
12 0,0 1,558260 -1,257076 -0,0 77,305505 180,0
13 -1,833759 1,900667 -4,541377 -111,759977 109,237706 112,032327
14 1,833759 1,900667 -4,541377 111,759977 109,237706 -112,032327
15 0,0 -2,435690 -5,078887 0,0 101,691828 0,0
16 -0,0 -0,061267 -6,687341 0,0 10,080083 0,0

Table 1: 16 configurations with identical articular coordinates for the INRIA prototype (Euler’s angles in degree).

will enable to determine it some of the singular configurations lie in the workspace of the manipulator. We have shown
that the direct kinematic problem has up to 16 solutions and we have exhibited a set of articular coordinates for which
the mobile plate may effectively be in 16 different positions.



xc = yc = 0, zc = 10

ψ = φ = 0◦, θ = 10◦

xc = −2.47, yc = 0.63, zc = 8.17

ψ = −51.85, θ = 105.73, φ = −52.066

xc = 2.47, yc = 0.63, zc = 8.17

ψ = −51.85, θ = 105.73, φ = 52.066

xc = −0.496, yc = 0.294, zc = 3.618

ψ = −60.87, θ = 44.74, φ = −119.04

xc = 0.49, yc = −0.294, zc = 3.618

ψ = 60.87, θ = 44.74, φ = 119.04

xc = 0, yc = −2.6, zc = 7.75

ψ = −180, θ = 108.41, φ = 180

xc = −0.03, yc = −0.008, zc = 2

ψ = −54.97, θ = 10.79, φ = −125.01

xc = 0.03, yc = −0.008, zc = 2

ψ = 54.97, θ = 10.79, φ = 125.01

Figure 3: Solution 1-4 Figure 4: Solution 5-8



xc = 0, yc = 0, zc = 1.819

ψ = 0, θ = 2.09, φ = 180

xc = 0, yc = 0.125, zc = 1.199

ψ = 0, θ = 20.259, φ = −180

xc = 0, yc = 0.01, zc = 0.92

ψ = 180, θ = 6.48, φ = 0

xc = 0, yc = 1.558, zc = −1.257

ψ = 0, θ = 77.3, φ = 180

xc = −1.834, yc = 1.9, zc = −4.54

ψ = −111.76, θ = 109.237, φ = 112.032

xc = 1.833, yc = 1.9, zc = −4.54

ψ = 111.76, θ = 109.237, φ = −112.032

xc = 0, yc = −2.43, zc = −5.079

ψ = 0, θ = 101.69, φ = 0

xc = 0, yc = 0, zc = −6.687

ψ = 0, θ = 10, φ = 0

Figure 5: Solution 9-12 Figure 6: Solution 13-16
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