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Abstract: This paper presents geometrical algorithms for the determination of various workspaces
of planar parallel manipulators. Workspaces are defined as regions which can be reached by a reference
point C located on the mobile platform. First, the constant orientation workspace is determined. This
workspace is defined as the region which can be reached by point C when the orientation of the moving
platform is kept constant. Then, the maximal workspace, which is defined as the region which can be
reached by point C with at least one orientation, is determined. The maximal workspace is also referred
to as the reachable workspace. From the above regions, the inclusive workspace, i.e., the region which
can be attained by point C with at least one orientation in a given range, can be obtained. Then, the
total orientation workspace, i.e., the region which can be reached by point C with every orientation of the
platform in a given range, is defined and determined. Finally, the dextrous workspace, which is defined
as the region which can be reached by point C with any orientation of the platform, can be determined.
Three types of planar parallel manipulators are used to illustrate the algorithms. Each of the workspaces
will be determined for each of the types of manipulators. The algorithms developed here are useful in
the design and motion planning of planar parallel manipulators.

1 Introduction

Parallel manipulators have been proposed as mechanical architectures which can overcome the limitations
of serial robots [1]. Several mechanical architectures of parallel mechanisms can be found in the literature
(see for instance [1]). Parallel manipulators lead to complex kinematic equations and the determination
of their workspace is a challenging problem. However, the solution of this problem is very important in
the design and trajectory planning of the manipulators. Some researchers have addressed the problem of
the determination of the workspace of parallel manipulators [2], [3], [4],[5].

In this paper, the problem of the determination of the workspaces of planar three-degree-of-freedom
parallel manipulators is addressed. Algorithms are proposed for the determination of the maximal
workspace, a problem which has been elusive to previous analyses. Moreover, this leads to the defi-
nition and determination of the total orientation workspace.

Planar three-degree-of-freedom parallel manipulators are composed of three kinematic chains connect-
ing a mobile platform to a fixed base. Different types of manipulators are obtained depending on the
nature of these chains. Three types of such manipulators are now defined. The manipulator of particular
interest in this study is referred to as the 3−RPR manipulator. In this manipulator, the mobile platform
is connected to the base via three identical chains consisting of a revolute joint attached to the ground
followed by an actuated prismatic joint which is connected to the platform by a revolute joint (figure 1).
Only the prismatic joints are actuated. Henceforth, the center of the joint connecting the ith chain to
the ground will be denoted Ai and the center of the joint connecting the ith chain to the platform will
be referred to as Bi. A second type of planar parallel manipulator is the 3 − RRR robot in which the
three kinematic chains connecting the platform to the base are composed of two links and three revolute
joints. The joint attached to the ground is the only actuated joint in each of the chains (figure 2). This
mechanical architecture has been studied by Gosselin [6] and Ma [7] and has been mentioned by Hunt [1].
For this manipulator, the center of the joint connecting the two links of the ith chain will be referred to
as Mi. Moreover, the length of the links of the ith chain will be noted li1 (for link AiMi) and li2 (for link
MiBi).
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Figure 1: The 3 −RPR parallel manipulator.
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Figure 2: The 3 −RRR parallel manipulator
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The third type of planar parallel manipulator studied here is denoted 3 − PRR since each kinematic
chain is constituted of a prismatic actuator fixed to the base and a link attached both to the actuator
and the moving platform by revolute joints (figure 3).
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Figure 3: The 3 − PRR planar parallel manipulator

For each of the three manipulators, a fixed reference frame is defined on the base and a moving
reference frame is attached to the platform with its origin at a reference point C. The position of the
moving platform is defined by the coordinates of point C in the fixed reference frame and its orientation
is given by the angle θ between one axis of the fixed reference frame and the corresponding axis of the
moving frame.

For the 3−RPR and 3−PRR manipulators, the workspace limitations are due to the limitations of
the prismatic actuators. The maximum and minimum length of the prismatic actuator of the jth chain
are denoted ρjmax, ρ

j
min. These values will be referred to as extreme values of the joint coordinates. For

the 3 −RRR manipulator, workspace limitations are either due to the geometry of the links or to some
restrictions on the rotation of the revolute joints attached to the base. It is assumed here that these
planar mechanisms are designed in such a way that no mechanical interference can occur between the
links.

Furthermore, an annular region is defined as the region which lies between two concentric circles with
different radii. The circle with the largest radius will be referred to as the external circle and the smaller
circle will be referred to as the internal circle. The internal circle may not exist.

The dimensions of the manipulators which are used in the examples are given in the appendix. In
what follows, the presentation of the various workspaces will focus on the 3 −RPR manipulator. Then,
brief explanations on how to obtain the equivalent workspaces for the other types of planar parallel
manipulators will be given.

2 Constant orientation workspace

The constant orientation workspace is defined as the region which can be reached by the reference point
C when the moving platform has a constant orientation.
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2.1 Case of the 3 − RPR manipulator

The algorithm for the determination of the boundary of this workspace is well known and has been
described in [8] and [5].

It is first observed that for any position of C on the boundary of the workspace, at least one of link
length should be at one of its extreme values. Indeed, if this condition is not met, the platform may move
in any direction and therefore C cannot be located on the boundary of the workspace. Now, the region
which can be reached by a point Bi is considered. This region is an annular region Ci whose external
circle is centered at Ai with radius ρjmax and whose internal circle has the radius ρjmin. In what follows,
the external circle is denoted Cei and the internal circle Cii . Since the orientation is fixed, the vector CBi

is constant. Consequently, when Bi lies in the annular region Ci, C also lies in an annular region CiC
whose circles have the same radii as the circles of Ci but whose center is obtained by translating Ai by
the vector BiC. If a point C lies in the workspace, then it must belong to the three regions CiC and
therefore the workspace is the intersection of these three annular regions.

From the foregoing, it is easy to deduce that the boundary of the workspace consists of circular arcs.
A very simple algorithm can be used to determine these arcs. First, all the intersection points of each of
the circles belonging to the CiC with all the other circles are computed. Then, each circle is considered
and the intersection points which have been found in the first step are ordered. The circle is therefore
split into circular arcs. Each of these circular arcs is then tested, i.e., a point on the arc is used as the
position of point C and the inverse kinematic problem is computed using the orientation imposed to
the platform. If this computation leads to all the legs having a valid length, then the circular arc being
tested is an element of the boundary of the workspace. If no intersection point is found for a given circle,
a random point is taken on the circle and the condition is verified for this particular point. Examples
are presented in figure 4. The orientation of the platform of the manipulator is defined as the angle
between the x axis of the fixed frame and the line going from B3 to B1. On a SUN 4-60 workstation the
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Figure 4: Examples of constant orientation workspaces for manipulator 1 of the appendix (in thin and
dashed lines). The region within the thick line is the maximal workspace which will be presented in the
next section. For this manipulator, the joint limits are ρ1 ∈ [8, 12], ρ2 ∈ [5, 15], ρ3 ∈ [10, 17]

computation time for this algorithm is approximately 4-5 ms.
If the revolute joint attached to the ground cannot fully rotate, then point Bi cannot reach the full

annular region Ci but only an angular sector of Ci. From this sector a similar sector can be determined
for C and the workspace is obtained as the intersection of the three angular sectors.
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2.2 Case of the 3 − RRR manipulator

For this manipulator, a point Bi must lie inside an annular region Ci whose center is Ai with radii li1 + li2
and |li1 − li2|. As was the case for the 3 − RPR manipulator, point C is consequently inside an annular
region which is obtained by translating Ci by vector BiC. The workspace is therefore the intersection of
the three annular regions. In order to compute this intersection the algorithm described in the previous
section remains valid.

2.3 Case of the 3 − PRR manipulator

For this type of manipulator, the analysis of the region which can be reached by a point Bi leads to two
different types of regions (figure 5).

• if ρimax− ρimin ≥ 2li2 then the reachable region will consist of a rectangle of height ρimax− ρimin and
width 2li2 topped by two half-circles of radius li2 (figure 5, left).

• if ρimax − ρimin < 2li2 then the reachable region will consist of the same zone minus the intersection
of the two circles of radius li2 centered in z = ρimax, z = ρimin, z being the axis of the linear actuator
(figure 5, right).
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Figure 5: The reachable zone for a point Bi of a 3 − PRR manipulator (in grey).

The reachable regions for C are of the same type and their intersection defines the constant orientation
workspace. The intersection algorithm is slightly more complex since it involves generalized polygons,
i.e., polygons whose edges may be segments or circular arcs. A possible algorithm for computing this
intersection has been described in a previous paper [4].

3 Maximal workspace

The maximal workspace is defined as the region which the reference point C can reach with at least one
orientation. It shall be noted that the maximal workspace will depend upon the choice of the reference
point.

The determination of the maximal workspace has been addressed by Kassner [9] who pointed out that
the boundary of this workspace is composed of circular arcs and of portions of sextic curves. However,
he was only able to compute them with a discretization method. The same observation was made by
Kumar [10] but was not used in the principle of the workspace computation. Indeed Kumar uses necessary
conditions on the screw motion for a point to be on the boundary of the workspace, but this method
cannot be used for a manipulator with prismatic actuators.

One of the objectives of the present work is to determine geometrically the boundary of the maximal
workspace.
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3.1 Determining if a point is in the maximal workspace

3.1.1 Case of the 3 −RPR and 3 −RRR manipulator

First, a simple algorithm is derived to determine if a location of the reference point is in the maximal
workspace, this being equivalent to determining if there is at least one possible orientation of the platform
for this location.

For a given position of C, point B1 can move on a circle C1
B with center C and radius ||CB1||. The

intersection of C1
B with the annular region C1, corresponding to the constraint for leg 1, is computed.

If there is no intersection, circle C1
B is entirely located either inside or outside region C1. This can be

determined easily by choosing a point at random on circle C1
B and testing if this point is inside Ce1 and

outside Ci1. If this condition is satisfied, then any orientation is allowed for the platform, with respect to
the constraints on leg 1. If the point is outside Ci then no orientation is allowed for the platform and C
is outside the maximal workspace.

It is now assumed that some intersection points between C1
B and Ce1 , C

i
1 have been found. For each of

these intersection points there is a unique orientation angle possible for the platform. These angles are
ordered in the interval [0, 2π] in order to obtain a set of consecutive intervals. Then, in order to determine
which intervals define valid orientations for the platform, the middle value of each interval is used as the
orientation of the platform and the constraints on leg 1 are tested for the corresponding configuration. A
similar procedure is performed for the legs 2 and 3. For leg i, various intervals are obtained and the set
Iin of possible orientations of the platform with respect to the constraint on the leg can be determined
(figure 6). The intersection I∩ of these lists is then determined by computing the intersection of all the
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Figure 6: For a given position of C the regions which can be reached by the Bi’s define three lists
{I1
l },{I

2
m},{I3

n} of intervals for the orientation of the moving platform. If C is in the maximal workspace
the intersection of these lists must be non empty. On the right it may be seen that the intersection is
empty as there is no intersection between {I1

l } and {I3
m}.

sets of three intervals {I1 ∈ I1
n, I2 ∈ I2

n, I3 ∈ I3
n}. If I∩ is not empty then C belongs to the maximal

workspace and furthermore I∩ defines the possible orientation for the moving platform at this point.
For the 3−RRRmanipulator, it has been shown that the constraints on the Bi’s are such that Bi must

lie inside an annular region. Consequently the algorithm presented above for the 3 −RPR manipulator
also applies to the 3 −RRR manipulator.

3.1.2 Case of the 3 − PRR manipulator

The region which can be reached by the points Bi of this manipulator has been determined in section 2.3.
The intersection of these regions with the circles C1

B, C
2
B, C

3
B is then computed. Using the intersection
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points, three sets of intervals of the orientation of the platform — such that for each set the constraints
on one leg are satisfied — can be determined. Once this is accomplished, the algorithm presented in the
previous section can be used for the rest of the procedure.

3.2 Determination of the boundary of the maximal workspace

For purposes of simplification, it is first assumed that the reference point on the platform is chosen as one
of the Bi’s, for example point B3. The general case will be presented later on as a generalization of the
present discussion. If a location of B3 belongs to the boundary of the maximal workspace then at least
one of the legs is at an extreme value. Indeed, assuming that B3 is on the boundary without satisfying
this condition would mean that B3 is capable of moving in any direction which is in contradiction with
B3 being on the boundary of the workspace. Note that the configuration with three legs in an extreme
extension may define only isolated points of the boundary since they are solutions of the direct kinematics
of the manipulator, a problem which admits at most 6 different solutions [11].

3.2.1 Boundary points with one extreme leg length

In order to geometrically determine the points of the boundary for which one leg length of the manipulator
is at an extreme value, the kinematic chain AiBiB3 is considered as a planar serial two-degree-of-freedom
manipulator whose joint at Ai is fixed to the ground. It is well known that this manipulator is in a
singular configuration when the joint centers Ai, Bi, B3 are aligned. Consequently, the positions of B3

belonging to the boundary of the workspace are such that Ai, Bi, B3 lie on the same line.
For instance, consider leg 1: two types of alignment are possible. Either A1B1B3 or A1B3B1 (or

B3A1B1) are aligned in this order as shown in figure 7. Consequently, point B3 lies on a circle CB3

A1

B3

B2

B1

A1

B1

B2

B3

A1

B1B2

B3

Figure 7: If a point on the boundary is such that a leg i has an extreme extension then the points
Ai, Bi, B3 are aligned.

centered at Ai. As B3 moves on CB3
, points B1, B2 will move on circles denoted CB1

, CB2
. Valid

positions of B3 on this circle are such that the corresponding positions of B1, B2, B3 respectively belong
to the annular regions C1, C2, C3 (figure 8).

Let α denote the rotation angle of leg 1 around A1. The intersection points of circle CBi
with the

annular region Ci is then computed. All the intersection points define specific values for the angle α and
the orientation of the platform. These values are ordered in a list leading to a set of intervals Ii. It is then
possible to determine which intervals are components of the boundary of the workspace by taking the
middle point of the arc and verifying if the corresponding pose of the platform belongs to the workspace.

As mentioned in the previous section various types of alignment are possible and some of them will
lead to a component of the boundary, i.e., the motion of the platform along some direction will be
forbidden. The possible cases are:

1. leg 1 in maximal extension, points A1B1B3 aligned in this order.

2. leg 2 in maximal extension, points A2B2B3 aligned in this order.

3. leg 1 in minimal extension, points B3A1B1 aligned in this order.
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arcs on the circle CB3
such that all the Bi belongs to the annular regions Ci can be components of the

maximal workspace boundary. The valid arcs of CB3
for a given Bi are shown in dashed lines and denoted

ci. The arcs for which all the constraints are satisfied are shown in thick lines.

4. leg 2 in minimal extension, points B3A2B2 aligned in this order.

5. leg 1 in minimal extension, points A1B3B1 aligned in this order.

6. leg 2 in minimal extension, points A2B3B2 aligned in this order.

7. leg 1 in maximal extension, points B3A1B1 aligned in this order.

8. leg 2 in maximal extension, points B3A2B2 aligned in this order.

The arcs which are obtained after studying these different cases are placed in an appropriate structure
and will be denoted phase 1 arcs.

3.2.2 Boundary points with two extreme leg lengths

The case for which the reference point lies on the boundary of the workspace while two leg lengths of the
manipulator are in an extreme extension is now investigated. Since the reference point is point B3, only
the cases where the legs with extreme lengths are legs 1 and 2 needs to be considered.

When legs 1 and 2 have a fixed length, the trajectory of point B3 is the coupler curve of a four-bar
mechanism (figure 9). This mechanism has been well studied [12],[13],[14] and it is well known that the
coupler curve is a sextic. Consequently it can be deduced that the boundary of the maximal workspace
will be constituted of circular arcs and of portions of sextics.

Four sextics will play an important role in this study. They are the coupler curves of the four-bar
mechanisms with lengths (r, s) (figure 9) corresponding to the various combinations of extreme lengths
for legs 1 and 2, i.e., (ρ1

max, ρ
2
max), (ρ1

max, ρ
2
min), (ρ1

min, ρ
2
min), (ρ1

min, ρ
2
max).

Some particular points, referred to as the critical points will determine the circular arcs and the
portions of sextic which define the boundary of the maximal workspace. The critical points can be of
five different types, thereby defining five sets of such points.

The first set consists of the intersection points of the sextics and the annular region C3: in this case
the three leg lengths are at an extreme value. Therefore, knowing these extreme values, these points are
solutions of the direct kinematics problem [15]. This problem can be solved numerically and is known to
lead to at most 6 solutions [11].

The second set of critical points consists of the intersection points of the sextics with the phase 1 arcs.
In this case the length of legs 1 and 2 are defined by the sextics and the length of leg 3 is the radius of the
arc. Consequently, these points can also be obtained from the solution of the direct kinematic problem.
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Figure 9: The four-bar mechanism.

This problem is solved and the points which belong to the arcs are retained. These points will also be
critical points for the arcs.

A third set of critical points are the multiple points of the sextics. Finding these multiple points is a
well known problem (see for instance Hunt [14]). In general, there are at most four double points and no
triple point.

The fourth set of critical points for the sextics will be the limit points of the coupler curve. Indeed,
for some value of the leg lengths the four-bar mechanism may not be a crank, i.e., the angle φ is restricted
to belong to some intervals. Each position of B3 corresponding to one of the bounds of the intervals is a
critical point.

The last set of critical points for the sextics consists of the set of intersection points between the
sextics. Determining the intersection of two coupler curves is a difficult problem. Recently Innocenti has
proposed an algorithm to solve this problem [16]. It can be shown that in the general case there will
be at most 18 real intersection points and in Innocenti’s method these points are obtained by solving
an 18th degree polynomial. However, it is pointed out that, in the present case, the coupler curves are
obtained for four-bar mechanism which differ only by the lengths r, s. In this particular case it can be
shown that there will be at most 12 real intersection points. Moreover, Innocenti’s algorithm is difficult
to implement, not very robust and time consuming. Therefore a simpler numerical algorithm has been
used here.

3.2.3 Determination of the portions of sextic belonging to the boundary

Any portion of sextic belonging to the boundary must lie between two critical points. For each critical
point Ti the unique pair of angles φi, ψi corresponding to Ti is determined. For a given value of φ, there
are in general two possible solutions for ψ which are obtained by solving a second order equation in the
tangent of the half-angle of ψ.

First, the Ti’s are sorted according to the expression which is used for determining the corresponding
angle ψi, thereby giving rise to two sets of Ti’s. Each of these sets is then sorted according to an increasing
value of the angle φ. Consequently, the sextics are split into arcs of sextics, some of which are components
of the boundary of the maximal workspace (figure 10). A component of the boundary will be such that
for any point on the arc a motion along one of the normals to the sextic will lead to a violation of the
constraints while a motion along the other normal will lead to feasible values for the link lengths. Any
other combination implies that the arc is not a component of the boundary of the maximal workspace. In
order to perform this test, the inverse jacobian matrix for the middle point on the arc is computed as well
as the unit normal vectors n1,n2 of the sextic at this point. Then the joint velocities are calculated for
a cartesian velocity directed along n1,n2. The sign of the joint velocities obtained indicates whether or
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Figure 10: Point B3 lies on a sextic when two leg lengths are at an extreme value. This sextic (in thick
lines) is split into arcs between critical points. Some of these arcs will be a component of the boundary
of the maximal workspace.

not the arc is a component of the boundary. For instance, for a sextic corresponding to a maximal value
of the lengths of links 1 and 2, if the joint velocities ρ̇1, ρ̇2 are both positive for a cartesian velocity along
n1 and both negative for a cartesian velocity along n2, then this arc of sextic is part of the boundary.
A similar procedure is used to identify the circular arcs which are components of the boundary. To this
end, the phase 1 arcs, for which the critical points — the intersection points with the sextics and the
extreme points of the arcs — have been determined, are considered. Every arc between two critical points
is examined to determine if the arc is a component of the boundary by using the same test as for the
arcs of sextic. The boundary of the maximal workspace is finally obtained as a list of circular arcs and
portions of sextics.

3.2.4 Exception

In general, for a given value of angle φ of a four-bar mechanism,there exist at most two possible values
for angle ψ. However, if p = r, φ = 0 and c = s, then angle ψ can assume any value in the interval [0, 2π].
Consequently in this case the sorting algorithm presented above must use the values of angle ψ instead
of angle φ.

3.2.5 Examples

The maximal workspace of the manipulators described in the appendix are shown in figures 11,12,13.

3.2.6 Reachable regions

Any arc of circle obtained from the phase 1 arcs is necessarily either a component of the boundary or is
rejected. None of them can be fully inside the maximal workspace. This is not true for the arcs of sextics
and some of them will be eliminated because they are fully inside the maximal workspace.

Some of these arcs will exhibit an interesting feature. If the intervals for the orientation of the moving
platform in the neighborhood of the arc are examined, it is possible that one of the intervals will vanish
when crossing the arc. If the arc splits the maximal workspace into two parts and if the initial assembly
of the manipulator is such that its orientation belongs to the interval which vanishes when crossing
the arc, then the part of the workspace to which the initial assembly belongs is in fact the maximal
workspace for this initial assembly. Any point in the other part of the workspace cannot be reached
without disassembling the robot. Therefore, for each of the internal arcs of sextic whose extreme points
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Figure 11: On the left: the maximal workspace for manipulator 1 with ρ1 ∈ [8, 12], ρ2 ∈ [5, 15], ρ3 ∈
[10, 17](computation time: 4216ms). On the right: the maximal workspace for manipulator 2 with
ρ1 ∈ [8, 12], ρ2 ∈ [5, 15], ρ3 ∈ [10, 17](computation time: 5699ms).
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Figure 12: On the left: the maximal workspace for manipulator 3 with ρ1 ∈ [8, 12], ρ2 ∈ [5, 15], ρ3 ∈
[10, 17](computation time: 14016ms). On the right: the maximal workspace for manipulator 4, ρ1 ∈
[8, 12], ρ2 ∈ [5, 15], ρ3 ∈ [10, 17](computation time: 1983ms).
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Figure 13: The area within the thick lines is the maximal workspace of manipulator 3 with ρ1 ∈ [5, 20],
ρ2 ∈ [5, 20], ρ3 ∈ [5, 20]. The dashed and thin lines represent the constant orientation workspace for
various orientations of the platform.

are on the boundary of the workspace, the interval of orientation is examined by taking a random point
on the arc and computing the orientation intervals for points on both side of the arc, in the vicinity of
the arc. If one of the intervals vanishes on the arc then the arc is labeled as a separating arc which may
be a component of the maximal workspace for an initial assembly of the manipulator. Figure 14 shows
an example of a separating arc.
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Figure 14: . The maximal workspace of a manipulator is in fact not necessarily its maximal workspace
for any initial assembly. The separating arcs of the sextics allow the determination of the real maximal
workspace. Here, a manipulator has been initially assembled with point B3 positioned at (7,20) and
with an orientation θ = 270◦. For this initial assembly, the maximal workspace is the portion of the
total maximal workspace to the right of the thick line. For the initial orientation θ = 225◦ the maximal
workspace is the total workspace (manipulator 1, ρ1 ∈ [8, 12], ρ2 ∈ [5, 15], ρ3 ∈ [10, 17]).

3.2.7 Computation time

The computation time of the boundary of the maximal workspace is heavily dependent on the result.
On a SUN 4-60 workstation this time may vary from 1500 to 15000 ms. The most expensive part of the
procedure is the calculation of the intersection of the sextics.
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3.2.8 Maximal workspace for any reference point

In the above discussion, it was assumed that the reference point was located on point B3. To compute
the maximal workspace for any reference point, a similar algorithm can be used. Basically, only the
complexity of the algorithm will be increased. Indeed, not only the eight circles of type C1, C2 have to
be considered but also the four circles centered at A3 which correspond to the case where the length of
link 3 has an extreme value. Similarly, only the four sextics which are obtained from the extreme values
of the length of links 1 and 2 have been considered in the previous section. However, the twelve sextics
which can be obtained from all the possible values for the extreme lengths of links 1, 2, 3 must now be
considered. Hence, all the algorithms presented above can be applied to the general case.

3.3 Case of the 3 − RRR manipulator

The determination of the maximal workspace of this manipulator can performed using the algorithm
described above. Indeed, the procedure is identical with the exception that the extreme values of the leg
lengths are replaced by the sum and the difference of the link lengths on each of the legs. Additionally,
it is pointed out that the simple algorithm based on the intersection of annular regions presented in [5] is
incomplete because it does not take into account the portions of the boundary which are obtained when
two legs are at one of their limits (portions of sextics).

3.4 Case of the 3 − PRR manipulator

Similarly to the 3 − RPR manipulator, a point will lie on the boundary of the workspace if at least one
of the prismatic joints is at an extreme value.

If only one leg is at an extreme value, point B3 will be on the boundary of the workspace if and only if
pointsMi, Bi, B3 are aligned. PointB3 then belongs to a circle centered inMi (figure 15). If two prismatic

A1

B2

y

xO

B3

B1

M1

Figure 15: If only one leg is at an extreme value and B3 is on the boundary of the maximal workspace
then points Mi, Bi, B3 are aligned. Point B3 is therefore located on a circle centered in Mi.

joints are at an extreme value, then point B3 lies on the coupler curve of a four-bar mechanism whose
joint centers are points M1 and M2. Therefore, the algorithm developed for the 3 − RPR manipulator
can also be applied to the 3 − PRR manipulator.

4 Inclusive maximal workspace

The inclusive workspace is defined as the set of all the positions which can be reached by the reference
point with at least one orientation of the platform in a given interval referred to as the orientation interval.
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This workspace will be denoted IMW. Hence, the maximal workspace is simply a particular case of IMW
for which the prescribed orientation interval is [0, 2π]. In what follows, it is assumed that the orientation
of the moving platform is defined by the angle between the x axis and the line B3B1. Moreover, it is also
assumed that the reference point of the moving platform is B3.

4.1 Case of the 3 − RPR manipulator

The computation of the boundary of the IMW is similar to the computation of the boundary of the
maximal workspace. First, it is recalled that it is simple to determine if a point belongs to the IMW since
one can compute the possible orientations of the moving platform at this point. It is also clear that a
point lies on the boundary if and only if at least one of the link lengths is at an extreme value.

Consider first the circles described by B3 when points Ai, Bi, B3 lie on the same line. For each position
of B3 on the circles, the orientation of the moving platform is uniquely defined. The valid circular arcs
must satisfy the following constraints:

• the points B1, B2, B3 lie inside the annular regions C1, C2, C3.

• the orientation of the moving platform belongs to the orientation interval.

The determination of these arcs is thus similar to obtaining the arcs when computing the maximal
workspace boundary. The main difference is that building the Ii intervals involves the consideration of
the rotation angle α such that the orientation of the moving platform corresponds to one of the limits of
the orientation interval.

Similarly, when the sextics are considered, the positions of B3 for which the orientation of the moving
platform is at one of the limits of the orientation interval will be added in the set of critical points.

To verify if a particular arc is a component of the boundary, the orientation for a point taken at
random on the arc is examined to determine if it belongs to the orientation interval. Then the test using
the inverse jacobian matrix allows to determine if the arc is a component of the boundary.

Typically the computation time for an IMW is about 1000 to 2000 ms on a SUN 4-60 workstation.
Figures 16,17 present some IMW for various orientation intervals.

4.2 Case of the 3 − RRR manipulator

As mentioned before, the maximal workspace of the this type of manipulator is very similar to the
maximal workspace of the 3 −RPR manipulator. Hence, the same conclusion can be drawn for the IMW

and its determination can be performed using the algorithm proposed in the preceding subsection. The
minimum and maximum lengths of the legs are substituted by the sum and difference of the link lengths
on each of the legs.

4.3 Case of the 3 − PRR manipulator

Again, the procedure resembles the procedure outlined above for the 3−RPR manipulator. It is required
to take into account the orientation intervals in the computation of the phase 1 arcs and the portions of
sextics.

5 Total orientation workspace

This section addresses the problem of determining the region reachable by the reference point with all
the orientations in a given set [θi, θj ] which will be referred to as the orientation interval. This workspace
will be denoted as TOW.
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Figure 16: IMW of manipulator 1 for various orientation intervals (the orientation intervals always begin
at 0). The limits are ρ1 ∈ [2, 8], ρ2 ∈ [5, 25], ρ3 ∈ [10, 25].
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Figure 17: IMW of manipulator 2 for various orientation intervals (the orientation intervals always begin
at 0). The limits are ρ1 ∈ [2, 8], ρ2 ∈ [5, 25], ρ3 ∈ [10, 25].
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5.1 Case of the 3 − RPR manipulator

It is relatively easy to determine if a point belongs to this workspace since it is possible to compute the
possible orientations for any position of the reference point. For a point belonging to the boundary of
the TOW , one leg will be at an extreme value. Indeed, if a point belongs to the boundary, at least one of
the legs must be at an extreme value. However, two legs cannot be at an extreme value since in that case
the orientation of the moving platform is unique and consequently the point cannot belong to the TOW.

Assume that for a point on the boundary the orientation of the moving platform is one of the bounds
of the interval,i.e., θi or θj while the length of leg i is at an extreme value. As Bi moves on the circle of
the annular region Ci corresponding to the value of the leg length, point B3 moves on a circle Ciw with the
same radius whose center is obtained by translating the center of Ci by the vector BiB3, which is fixed
since the orientation of the moving platform is known. Any point in the TOW must lie within the circle
Ciw. Therefore if the bounds θi, θj and all the possible Bi’s are considered, any point of the TOW must be
inside the 12 circles with center and radii (A3,ρ

3
max),(A3, ρ

3
min), (A1 + B1B3, ρ

1
max),(A1 + B1B3, ρ

1
min),

(A2 + B2B3, ρ
2
max), (A2 + B2B3, ρ

2
min).

Assume now that a point on the boundary is reached with an orientation different from θi, θj and that
the length of link 1 has an extremal value, say ρ1

max. When the orientation of the moving platform lies in
the orientation interval, B1 belongs to an arc of circle defined by its center B3, its radius ||B3B1|| and the
angles θi, θj . As the point belongs to the TOW the arc must lie inside the annular region C1. Furthermore
this arc is tangent at some point to the external circle of C1 since B3 lies on the boundary of the TOW

(figure 18). This tangency implies that point B3 lies on a circle of center A1 and radius ρ1
max− ||B1B3||.

B3

C1

A1

θj

θi

Figure 18: Point B3 belongs to the boundary of the TOW with the length of link 1 being ρ1
max. Con-

sequently B1 lies on a circular arc with center B3, radius ||B3B1|| and angles θi, θj . This arc must be
included in the annular region C1 and is tangent at some point to the external circle of C1.

Any point within the TOW must be inside this circle. Four such circles may exist, whose center and radii
are (A1, ρ

1
max − ||B1B3||), (A1, ρ

1
min − ||B1B3||), (A2, ρ

2
max − ||B2B3||), (A2, ρ

2
min − ||B2B3||).

If a point B3 belongs to the TOW it is necessary that the point is included in the 16 circles which have
been determined. Consequently the boundary of the TOW is the intersection of these sixteen circles. Note
that for the last four circles, theoretically only the arcs for which the orientation of the moving platform
is inside the orientation interval have to be considered. However, such arcs will be determined by the
intersection of the circle with some of the initial twelve circles. The intersection algorithm described in
the section devoted to the constant orientation workspace can be used to determine the intersection of
the circles.

Figures 19,20 illustrate some examples of TOW. The computation time is approximately 100 ms on a
SUN 4-60 workstation.
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Figure 19: Examples of total orientation workspaces for manipulators 1 and 2 with ρ1 ∈ [2, 8], ρ2 ∈ [5, 25],
ρ3 ∈ [10, 25].
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Figure 20: Examples of total orientation workspaces for manipulators 3 and 4 with ρ1 ∈ [2, 8], ρ2 ∈ [5, 25],
ρ3 ∈ [10, 25].
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5.2 Case of the 3 − RRR manipulator

The same algorithm is used with ρimax replaced by li1 + li2 and ρimin by |li1 − li2|.

5.3 Case of the 3 − PRR manipulator

Let AMi , A
m
i be the extreme positions of point Mi. The regions which will be used in the algorithm are

• the reachable region of B3

• circles with center AM1 , Am1 +B1B3, radius l12

• circles with center AM2 , Am2 +B2B3, radius l22

The last two items are obtained for an orientation of the moving platform equal to one of the bounds of
the orientation interval. For a fixed position of Ai when the orientation of the moving platform lies within
the orientation interval, point B3 lies on a circle with center Ai and radius li2−||BiB3||. Consequently as
Ai moves between AMi , A

m
i , point B3 lies inside a region composed of a rectangle whose width is equal to

the range of the linear actuator and whose height is 2(li2 − ||BiB3||), topped by two half-circles centered
at AMi , A

m
i with radius li2 − ||BiB3|| (figure 21). These regions are computed for links 1 and 2 and their

li
2

Am
i AM

i

Figure 21: The region described by point B3 when the orientation of the moving platform describes the
orientation interval.

intersection with the region reachable by B3 defines the TOW.

6 Dextrous workspace

The dextrous workspace is the region which can be reached by the reference point with any orientation.
Note that the dextrous workspace is a particular case of TOW.

Kumar [2] has used screw theory to determine the boundary of the dextrous workspace for the 3−RRR
manipulator. However, his method cannot be used for manipulators with linear actuators and cannot
be easily modified to take into account the mechanical limits on the joints. In [5] and [3], geometrical
algorithms for the determination of the dextrous workspace of a 3−RRRmanipulator have been presented.
The algorithm presented in this section is similar to these algorithms.

6.1 Case of the 3 − RPR manipulator

Let C1 be a point belonging to the dextrous workspace. Since any orientation of the moving platform is
allowed, any Bi belonging to the circle centered in C1 with radius ||CBi|| has to lie inside the annular
region Ci. Consequently C1 must belong to the annular region CAi centered in Ai whose radii are
ρimin + ||CBi|| and ρimax − ||CBi||. This annular region will exist if and only if ρimax − ρimin ≥ 2||CBi||
(figure 22). Therefore the dextrous workspace is the intersection of the three regions CAi. Figure 23
shows an example of dextrous workspace. Mechanical limits on the joints can easily be included in this
algorithm.
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Figure 22: The dextrous workspace for C if only the constraint on link 1 are taken into account.
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Figure 23: Dextrous workspace for manipulator 4 (ρ1 ∈ [2, 8], ρ2 ∈ [5, 25], ρ3 ∈ [10, 25], computation
time: 80ms).
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6.2 Case of the 3 − RRR manipulator

Similarly to the 3−RPR manipulator, points Bi must be included in an annular region Ci. Consequently
the possible region for C with respect to the constraint on link i is the annular region CAi centered in
Ai whose circles radii are |li2 − li1| + ||CBi|| and li1 + li2 − ||CBi||. This region will exist if and only if
li1 + li2 > ||CBi|| and li1 + li2 − |li2 − li1| > 2||CBi||. The dextrous workspace is the intersection of the three
regions CAi. This algorithm is similar to the one presented in [5].

6.3 Case of the 3 − PRR manipulator

In the section devoted to the constant orientation workspace, the region which can be reached by the
points Bi was computed. Therefore the possible positions for C must be determined such that a circle
centered in C with radius ||CBi|| is fully inside the reachable region for Bi. A simple geometrical
reasoning allows to show that such a region will exist if and only if li2 > ||CBi||. There are two possible
types for this region (figure 24):

• if ρimax − ρimin > 2li2: a rectangle of height ρimax − ρimin and width 2(li2 − ||CBi||) topped by two
half-circles with radius li2 − ||CBi|| (figure 24, left)

• if ρimax−ρ
i
min < 2li2: the intersection of two circles centered in z = ρimax with radius li2−||CBi||, l

i
2+

||CBi|| and the intersection of two circles centered in z = ρimin with same radius, z being the axis
of the linear actuator (figure 24, right).

li
2

li
2

ρi
max − ρi

min

li
2

ρi
max − ρi

min
u

u

u

u

u

u

li
2

Figure 24: The dextrous workspace for C when only the constraints on link 1 are taken into account (in
grey, u = ||CB1||).

The dextrous workspace is the intersection of these three regions and the algorithm described in [4] can
be used to compute this intersection.

7 Conclusion

Geometrical algorithms for the determination of the boundary of various workspaces for planar parallel
manipulators have been described. These algorithms are exact (no discretization is used) and in general
their computation time is small, except for the maximal workspace.

The determination of the workspaces is very useful in the context of design or motion planning of
parallel manipulators.
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Appendix

The dimensions of the manipulators used in the examples of this paper are defined in figure 25 and their
numerical values are presented in table 1.

F (c3, d3)

C(c2, 0)
x

y

A(0, 0)

Φ

θ

B(x, y)

D

E

l1

l3

l2

ρ2

ρ1

ρ3

Figure 25: Definition of the dimensions of the manipulators.

Manipulator Type l1 l2 l3 c2 c3 d3 θ

1 RPR 25 25 25 20 0 10 60
2 RPR 20.839 17.045 16.54 15.91 0 10 52.74
3 RPR 25 25 25 20 10 17.32 60
4 RPR 2 2 2 10 5 8.66 60

Table 1: Dimensions of the manipulators used in the examples (all the angles are in degrees).
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