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Abstract

Mechanism theory has always been a favorite field of study for mathematicians. But although many

powerful results are available, still various open problems remain, especially when one deals with closed-loop

mechanisms. This is basically due to the complexity of the equations which have to be solved, even for the

most simple mechanism.

The introduction of symbolic computation and of new mathematical tools is of great help for solving many

mechanism theory problems. We present a survey of problems arising in this field which are illustrated by

examples, some of them being unsolved at this time.

1 Introduction

Mechanism theory deals with kinematics chains i.e. rigid bodies (called links) connected by joints. These joints
enable motion between the links and are characterized by the type of motion they allow. The main joints
allow only one motion, either a rotation around a given axis (rotary joint) or a translation along one given axis
(prismatic joint). More complex joints can be constructed with these basic joints, e.g. the ball-and-socket joint
enabling every rotation around a point. Note that a finite set of parameters defines the status of the joint. For
example for a rotary joint the rotation angle fully defines the joint. The independent parameters of the joints
will be called the articular coordinates of the mechanism.

Among all the joints in a mechanism some may be actuated (i.e. a motor enables to change the value of the
parameter of the joint) and the other joints are passive. The parameters of the actuated joints are the input of
the mechanism.

It is usual to distinguish two special links in a mechanism: the base link which is fixed to the ground and the
end-effector whose position/orientation is the output of the mechanism. The number of parameters which are
required to define the position/orientation of the end-effector is called the number of degrees of freedom (DOF) of
the mechanism. For planar mechanisms this number is a most 3 (two translations and one rotation) and 6 (three
translations and three rotations) for spatial mechanisms. The parameters describing the position/orientation
of the end-effector are called the generalized cartesian coordinates of the mechanism.

In order to control all the n degrees of freedom of the end-effector it is necessary that the mechanism has
at least n independent actuated elementary joints. A mechanism with m > n independent actuated joints is
called a redundant mechanism but we will restrict ourselves to the case where m = n.

We introduce now the degree of connection of a link as the number of rigid bodies which are connected to
the link. At this points we may define two kinds of kinematics chains:
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• open-loop kinematic chains: all the links have a degree of connection of two except the base and the
end-effector which have a degree of connection of one.

• closed-loop kinematic chains: at least one link has a degree of connection greater or equal to three or the
degree of connection of the end-effector is greater than one.

Figure 1 shows examples of open- and closed-loop planar kinematics chains with only rotary joints.

end-effector

base

passive joint

actuated rotoid joint

Figure 1: On left an open-loop planar kinematic chain, on right a closed-loop kinematic chain.

2 Classical problems in the field of mechanism theory

When studying a mechanism classical problems arise:

• determining the relation between the articular coordinates of the actuated joints and the generalized
cartesian coordinates. The direct kinematics consists in determining the generalized cartesian coordinates
for a given set of articular coordinates. The inverse kinematic problem is finding the opposite relation.

• determining the workspace of the end-effector, i.e. the limited region which can be reached by the end-
effector owing to constraints on the joints (for example a limited range for a prismatic actuator or no
intersection between the links).

• determining the singular configurations of the mechanism. In the general case there is a linear relationship
between the actuator velocities and the velocities of the end-effector, but this relation is no more valid for
some special configurations of the mechanism.

• the design or synthesis problem: for a given type of mechanism find the geometry of the mechanism such
that the trajectory of the end-effector contains a given set of points, called the precision points.

The above problems involve solving algebraic equations or inequalities which are deduced from the geometry of
the mechanism. All of them are of great practical interest: the kinematics problems are to be solved to control
the mechanism, the workspace and synthesis problems are useful for the design of robots and the singularities
are essential as a mechanism can suffer a breakdown when crossing a singular configuration..
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3 Some results

Very elegant results has been established in the past, especially for planar mechanisms. I will mention a result
established by Freudenstein which has shown that it is always possible to design a planar mechanism such that
the trajectory of the end-effector (or at least a part of it) corresponds to a given algebraic curve [1].

3.1 The four-bar mechanism

Another well-studied mechanisms is the so-called four-bar mechanism (figure 2). Basically the end-effector is a
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Figure 2: The four-bar mechanism.

triangle with two vertices connected by two segments to the base. At the extremities of the segments rotary
joints enable a rotation. Note that both the base and the end-effector have a degree of connection of two
and consequently, the four-bar mechanism is a closed-loop mechanism. If the joint at OA is actuated then
point C of the end-effector will describe a curve (the coupler curve) which happens to be a sextic [5] which
has at most four double points. This sextic has a full circularity i.e. it intersects the imaginary circle three
times at the circular imaginary points. Although this mechanism is one of the most simple planar mechanism
the equation of the sextic is rather complex. For example the synthesis problem with three or four precision
points has been solved [4] but it is only recently that a solution to the nine precision points synthesis has been
proposed [16]. Solving this synthesis problem is equivalent to solve a system of four fourth-degree polynomials
in four unknowns. The solution proposed by Wampler uses the numerical method called continuation which
has been successfully used for solving kinematics problems [15].

3.2 The 6R manipulator

As for spatial kinematic chains, a classical problem is the resolution of the inverse kinematic of the 6R robot.
Most industrial robots are open-loop kinematic chains with only rotary joints. A 6-DOF robot will have 6 such
joints, all actuated. The articular coordinates are the 6 rotation angles θi of the joints and the generalized
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cartesian coordinates are the 3 coordinates of the center of the end-effector together with the three angles
describing the orientation of the end-effector. If the θi angles are known it is easy to calculate the generalized
cartesian coordinates but the opposite problem is far more complex and it is only recently that the final result has
been established. First it has been shown that by combining the algebraic equations from the direct kinematic
it is possible to obtain a 16th-order polynomial in one unknown [12] which can be solved numerically and in
some cases leads to 16 real roots. Reducing a system of algebraic equations to a polynomial in one unknown is a
common practice in kinematics. This method has however drawbacks as a complex polynomial is obtained from
an initial set of usually simple equations. Consequently, some numerical problems may arise when computing
the coefficient of the final polynomial. Another drawback is that no-closed form solution will be obtained. An
alternative has been proposed by Wampler which used the continuation method on the original set of equations
to get all the solutions [14].

3.3 Parallel robots

3.3.1 Planar mechanisms

The most difficult problems in the field of mechanism theory appear when dealing with closed-loop mechanism.
However new results have been obtained recently. These advances will be illustrated by examples dealing with a
special kind of robot: the parallel manipulator. Figure 3 shows an example of planar parallel manipulator, called
the 3−RPR manipulator, as the end-effector is linked to the the ground by three identical chains consisting of
a rotary joint (R) connected to the ground, followed by an active prismatic joint (P) which is connected to the
platform by a rotary joint (R). By changing the length of the three prismatic actuators it is possible to control
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Figure 3: The 3 − RPR parallel manipulator.The end-effector is the gray triangle.

the position and orientation of the end-effector. Consequently, this closed-loop mechanism is a three DOF robot.
Consider the inverse kinematics problem for this mechanism, i.e. find the link lengths (the distance between
the points Ai, Bi) for a given position/orientation of the end-effector. As the end-effector location is known it
is easy to determine the coordinates of the Bi points in the reference frame. By construction the location of
the Ai are known. Consequently, computing the norm of the vector AiBi is straightforward. Solving the direct
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kinematic is far more complex and basically the problem can be reduced to solving a set of three algebraic
equations in three unknowns. First of all the solution may be not unique. The maximum number of solutions
can be established in the following manner. Suppose we disconnect the mechanism at one joint (say B3). We
get therefore two mechanisms: a four-bar mechanism (A1B1B

1
3B2A2) and a circular mechanism (A3B

2
3). A

solution of the direct kinematic is obtained when the points B1
3 , B2

3 are at the same location. Consequently,
the solutions are the real intersection points of the coupler curve of the four-bar mechanism (i.e. a sextic) and
a circle. Using Bezout’s theorem we deduce that there is no more than 12 intersection points. But remind
that the circularity of the coupler curve is 3 and the circularity of a circle is 1. Consequently, among the 12
intersection points, six are the circular imaginary points and therefore the number of real intersection points is
no more than 6.

The system of equations of the inverse kinematic can be combined to obtain a 6th-order polynomial in one
of the unknown [3] and examples with 6 real solutions have been found. Figure 4 shows an example of such
a configuration: the coupler curve intersects a circle in 6 different points. A particular example illustrates the

coupler curve

Figure 4: The coupler curve (in thin line) intersects a circle (in dashed line) in 6 different locations.

influence of algebraic geometry in kinematics. Assume that the (A1, A2, A3), (B1, B2, B3) points lie on two
lines. For this special case the degree of the direct kinematics polynomial is reduced to 3 but each root leads to
two positions for the end-effector, thus there is also 6 potential solutions. But Sturm’s method has enabled us
to show that the polynomial has at most 2 real solutions and consequently the direct kinematic has at most 4
solutions [2].

3.3.2 Spatial mechanisms

The concept of parallel robots can be extended to build 6-DOF robots. Figure 5 shows an example of such a
manipulator. The end-effector is a triangular platform which is connected to the ground by 6 legs. At each
extremity of one leg there is a ball-and-socket joint and in each leg a prismatic actuator enables to change the
leg length. Similarly to the planar robot by changing the leg lengths we can control the position/orientation of
the platform. The inverse kinematic is straightforward and leads to a set of 6 algebraic equations, but the direct
kinematic is much more complex. It is however possible to show that there will be at most 16 solutions [8]. The
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Figure 5: On left a 6-DOF parallel robot.

basic idea of the demonstration is first to notice that each of the Bi is connected to two legs and consequently
is only able to move on a circle. The mechanism can therefore be replaced by a new mechanism with only
three legs, attached to the platform by a ball-and socket joint and to the base by a rotary joint (figure 5, on
right). Then we disconnect one of the leg at one of the Bi points (say B3) and get two mechanisms: a circular
mechanism and a mechanism called the RSSR mechanism. Using one of Cayley’s theorems [5] it is possible to
show that the coupler surface of the RSSR (i.e. the surface described by B3) is of order 16 with a circularity
of 8. As the solutions of the direct kinematics are the intersection points of the coupler surface and the circle
there cannot be more than 16 solutions. This claim has been verified as it is possible to deduce from the inverse
kinematic equations a 16th-order polynomial in one variable. This polynomial may have 16 real solutions [8].

3.3.3 Singular configurations

We have seen that for parallel manipulator determining the leg lengths ρ when the cartesian coordinates X are
known is straightforward. Let

ρ = F (X)

From this relation it is easy to deduce the linear relation between the articular velocities ρ̇ and the cartesian
velocities Ẋ.

ρ̇ = J−1(X)Ẋ

where J−1 = ((∂F/∂X)) is a 6x6 matrix called the inverse jacobian matrix of the robot. For a given ρ̇ there
will be in general an unique Ẋ except if J−1 is singular. The configurations where J−1 is singular are called
the singular configurations of the robot: the velocity of the platform may be non zero although the articular
coordinates do not change and consequently the robot cannot be controlled. The determinant of the inverse
jacobian matrix is also used for determining the forces in the legs τ for given forces and torques F acting on
the platform as

τ = J−TF
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A consequence is that the articular forces are obtained by dividing some quantity by the determinant of the
inverse jacobian matrix. Consequently the forces increase as the robot comes close to a singular configuration
which may cause a breakdown. For finding this configurations we may try to compute the determinant of J−1.
But the expression of this determinant is huge and finding its roots is a difficult task. Another approach is to
notice that the rows of J−1 are the Plücker vectors of the lines associated to the legs. If J−1 is singular then
we have a linear dependency between the lines, which can occur only for some special geometric configurations
of the lines as stated by Grassmann geometry. The problem is thus reduced to find the cartesian coordinates
such that these special configurations occur and this leads to rather simple conditions [10].

3.4 Workspace of parallel manipulators

Consider a 6-DOF parallel manipulator. The position/orientation of its end-effector is therefore described by a
set of 6 parameters: the coordinates of its center and three angles describing its orientation. In practice there is
always a limitation on the leg lengths and mechanical limits on the passive joints. Furthermore some positions
of the end-effector cannot be reached as they will lead to an intersection between some legs. Consequently
the position which can be reached by the center of the end-effector, the workspace of the robot, is a limited
region of the physical space. But as we have to deal with a region in a 6-parameters spaces there is no human
readable representation of the full workspace. However it is usually admitted to represent a restriction of the
full workspace by assigning some fixed values to some of the parameters. For example it is usual to fix the
orientation of the end-effector and one of the coordinates of the center of the end-effector (for example the x, y
coordinates of the center remain free). The reduced problem is now to compute the border of planar cross-
sections of the workspace. This problem can be stated as an algebraic problem as we have to deal with algebraic
inequalities in the unknowns. For example the leg lengths can be expressed as polynomials in x, y which have
to verify the limitation on the lengths. But the geometrical meaning of these polynomials is used to simplify
the problem and leads to compute the intersection of simple geometric objects: circles for the constraints on
the leg length, polygons for the mechanical limits on the joints and conics when dealing with the intersection
of the legs [8]. Figure 6 shows an example of such cross-sections.

4 Open problems

4.1 Intersection of two coupler curves

The maximal workspace of a robot is the region which can be reached by the center of the end-effector with at
least one orientation. Consider a planar 3 − RPR parallel robot with some limitations on the leg lengths and
assume that the center of the end-effector is one of its vertice (say B3). It is easy to show that a location of B3

will belong to the border of the maximal workspace if at least one of the leg length has an extremal value. Thus
the border of the maximal workspace is the intersection of the trajectory obtained when one or two actuators
have a maximal value. For only one actuator the extremal location of B3 are circles and when two have an
extremal values the trajectory of B3 is the coupler curve of the four bar mechanism A1B1B3B2A2. Therefore
to compute the border we have to calculate the intersection of the coupler curves of the four bar mechanisms
whose link lengths are the combination of the extremal leg lengths.

Innocenti has shown that in general two coupler curves have at most 18 intersection points. He has then
exhibited a 18x18 matrix whose determinant is a polynomial of 18th order and enables to compute the solution
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Figure 6: A 3D view of the workspace of a parallel manipulator for a fixed orientation of the end-effector.

of the intersection problem [6]. Unfortunately Innocenti was not able to obtain this polynomial although the
matrix is spare. Instead he takes 19 particular values for the unknowns, compute numerically the determinant
and get a linear system of 19 equations in the coefficients of the polynomial. But this method is not robust and
is computer intensive. For the maximal workspace problem the four bar mechanisms have the same connection
points to the ground and the same coupler but differ by the lengths of their links (figure 7). In that particular
case it can be shown that there cannot be more than 12 intersection points but finding an algorithm for
computing the intersection is still an open problem.

4.2 Maximal workspace of a spatial parallel robot

The concept of maximal workspace can be extended to spatial parallel manipulators. It is assumed that the leg
lengths are constrained to lie in some given intervals and we want to determine all the possible position of the
center of the end-effector which can be reached with at least one orientation. At this time no method has been
proposed to solve this problem. The even simpler problem is a given location of the center of the end-effector
inside the maximal workspace? has no known solution. Basically this problem is to show that it exists three
unknowns (the three orientation angles) which satisfy a set of 12 inequalities (the inverse kinematic equations).

4.3 Direct kinematics of a general parallel manipulator

A general parallel manipulator is a mechanism with two bodies connected by 6 legs, whose attachment points
are in a general position on the bodies. It has been recently shown that the direct kinematic problem of a
general parallel manipulator will have at most 40 solutions (complex and real) [13],[7],[11]. But no practical
algorithm is known to determine these solutions. What is the maximum number of real solutions? In the case
where the base points and platform points lie in two planes an algorithm is known [9] but no configuration with
more than 16 real solutions have been found.
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Figure 7: For determining the maximal workspace of a planar parallel manipulator it is necessary to compute
the intersection of the coupler curves of two four bar mechanisms.

Another problem can be stated as follows. Consider a parallel manipulator which has been mounted in
some initial configuration. Assume now that an algorithm exists for determining all the solutions of the direct
kinematic problem. Among the set of solutions is there one unique solution which can be reached from the
initial configuration without dismantling the manipulator or crossing a singular configuration?

4.4 Intersection of a cycloid and a circle

Not all problems in mechanism theory are algebraic. Here is an example of open problem which involves a non-
algebraic curve. Assume that a planar 3−RPR parallel manipulator has to move from an initial configuration
M1 to a final configuration M2, the intermediate configurations being obtained by linear interpolation. As the
center of the platform translates along the segment M1M2 the platform will rotate around it and consequently
the vertices Bi of the platform will lie on an arc of cycloid. Assume now that we have some restriction on the
leg lengths of the robot i.e. the lengths ρ has to belong to the interval [ρmin, ρmax]. Consequently each Bi has
to lie in an annular region with center Ai and radii ρmin, ρmax. Assume now that we want to verify that the
trajectory of the robot is feasible i.e. there is no violation of the leg lengths constraints on the whole trajectory.
We have thus to check that the arcs of cycloid lie fully inside the annular regions (figure 8). As we may assume
that the initial and final point are valid position we have therefore to check is there is no intersection between
the arcs of cycloid and the circles.

5 Conclusion

Algebraic geometry plays an essential role in mechanism theory as most of the equations used to describe the
geometric model of a mechanism are algebraic. The main problems that have to be solved are:
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Figure 8: When the platform moves on the segment M1M2 point B3 describe an arc of cycloid (in thin line). If
the trajectory is feasible this arc should lie inside an annular region centered in A3 (in dashed line). Here the
trajectory is not feasible.

• find the number of real solutions and the solutions of a system of algebraic equations.

• find if there are some unknowns which satisfy a system of algebraic inequalities (although the values of
the unknowns need not to be necessarily determined).

• being given a set of inequalities with n unknowns find the border of the region of the n parameters space
for which the system of inequalities is satisfied.

An advantage of mechanism theory is that the algebraic equations have in general a geometric meaning which
may often help to solve the problem. But it remains that the equations which are used in this field are often huge,
even for the simplest mechanism, and consequently constitute an important challenge for algebraic geometry
with a potentially huge field of applications.
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