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Abstract: Although the concepts of jacobian matrix, manipulability and condition number exist since
the very early beginning of robotics their real significance is not always well understood. In this paper we
re-visit these concepts for parallel robots as accuracy indices in view of optimal design. We first show that the
usual jacobian matrix derived from the input-output velocities equations may not be sufficient to analyze the
positioning errors of the platform. We then examine the concept of manipulability and show that its classical
interpretation is erroneous. We then consider various common local dexterity indices most of which are based
on the condition number of the jacobian matrix. It is emphasized that even for a given robot in a particular
pose there are a variety of condition numbers and that their values are not coherent between themselves but
also with what we may expect from an accuracy index. Global conditioning indices are then examined. Apart
of the problem of being based on the local accuracy indices that are questionable, there is a computational
problem in their calculation, that is neglected most of the time. Finally we examine what other indices may be
used for optimal design and show that their calculation is most challenging.

1 Introduction

We will use a relatively general definition of parallel robots, focusing on non-redundant mechanisms. A parallel
robot is defined as a mechanism having at least two kinematics chains connecting the base to the end-effector,
the purpose being to control n < 6 d.o.f. of the end-effector while the other 6 —n d.o.f. have a constant value
by using n one d.o.f. actuated joints. Furthermore it will be assumed that when the actuator are locked the
mobility of the end-effector is 0 and that the non actuated joints have one d.o.f. Such definition covers the
classical 6 d.o.f. robots such as the Gough [17] and Hexa [39] platforms but also robot with less than 6 d.o.f.
such as the Delta [9] or 3-UPU [47] robots.

Parallel robots are nowadays leaving academic laboratories and are finding their way in an increasingly
larger number of application fields such as telescopes, fine positioning devices, fast packaging, machine-tool,
medical application. A key issue for such use is optimal design as performances of parallel robots are very
sensitive to their dimensioning. Optimal design methodologies have to rely on kinetostatic performance indices
and accuracy is clearly a key-issue for many applications [19]. It has also been a key-issue for serial robots and
consequently this problem has been extensively studied and various accuracy indices have been defined. The
results have been in general directly transposed to parallel robots. The purpose of this paper is to review how
well these indices are appropriate for parallel robots. For that purpose it is necessary to examine the concept
of jacobian and inverse jacobian matrices that are essential when examining the positioning accuracy of the
end-effector.

2 Jacobian and inverse Jacobian matrix

Let X, denotes the generalized coordinates of the end-effector composed of parameters describing the desired
n d.o.f. of the end-effector while X denotes all the generalized coordinates of the end-effector i.e. a set



of parameters that allow to describe completely its pose (translation and orientation). We will impose no
constraints on the choice of the parameters in X (e.g. for a Gough robot with a planar platform the pose may
be represented by the 9 coordinates of 3 particular non-aligned points on the end-effector).

The twist W of the end effector is composed of its translational and angular velocities V, € and the restricted
twist W, is defined as the restriction of W to the n desired d.o.f. of the robot. It is well known that for robot
having at least 2 rotational d.o.f. W is not the time-derivative of X as there is no representation of the
orientation whose derivatives corresponds to the angular velocities. However there exists usually matrices H, K
such that

W = HX X =KW (1)

The internal geometry of the robot may be described by a set of parameters that describe the motion of
some or all of the joints, including the passive, non actuated, one. These parameters are regrouped in the joint
variables vector ©.

The usual definition of the jacobian matrix Jy involves a joint variable vector ®, that is restricted to the
actuated joints and is based on the linear relation between the actuated joint velocities ©, and the restricted
twist W .

W, = JiO, (2)

As in this paper we consider only non-redundant robots the matrix J is square and we will call it the kinematic
jacobian. A feature of parallel robots is that it is usually easy to establish an analytical form for lel while it
is often impossible (or at least very difficult) to obtain Ji. To calculate the inverse kinematic jacobian we may
use a velocity analysis but as mentioned by Gosselin [15] it is also possible to use the kinematic closure-loop
equations whose general form is:

E(X,,0,)=0 (3)

As we have assumed that the robot is non redundant and its mobility is 0 when the actuators are locked there
must be exactly n such equations. By differentiating the system we get
oE . OE

a—(_)a®a + G—)Caxa - Uk®a + VaXa - 0 (4)

Using the restriction of equation (1) to W, and provided that Uy is not singular, we get
I =-U 'V K. W, (5)

The singularity problem of parallel robots has been initially discussed by Gosselin and Angeles [16] and they
distinguish serial singularity (or type 1) obtained when Uy is singular and parallel singularity (or type 2) when
V. is singular. According to this definition in a parallel singularity the end-effector may move while the actuators
are locked, a typical case of positioning errors as the measurements of the actuated joints variables do not change
although there is a displacement of the end-effector. Hence accuracy analysis is also connected to singularity
analysis.

But we may also define other jacobian matrices. We may include parameters in ® that describe the motion
of passive joints, which are usually numerous in parallel robots. Hence ® may be defined as a /N-dimensional
vector (@, ®p) where @), correspond to the parameters of the passive joints and N being the total number of
joints, actuated or not, of the robot.

Although some robot are designed on purpose to have n < 6 controllable d.o.f. while the other d.o.f. are
supposed to have a constant value, still the end-effector is a 6 d.o.f. rigid body and positioning errors on all



d.o.f. should be examined when looking for an optimal design. It is thus interesting to determine an inverse
jacobian that involves the full twist W of the end-effector.
To determine this inverse jacobian matrix we write the kinematics closure-loop equations as

G(©,X) =0 (6)

The total number of unknowns in these equations is NV + n. As we have assumed that the robot mobility is
0 when the n actuators are locked the system of equation G must have a finite number of solutions in that
configuration i.e. the number of equations in G must be equal to the number of unknowns, which is V.
By differentiating equation (6) we get:

oG .. 0G. . . .

—0+ =X=A0O BO® CX=0 7

569 1 ax at+BOp + (7)
where A is a N x n matrix, B is N x (N — n) while matrix C is N x 6. Zlatanov [58] has derived a similar
expression with the difference that he is using the restricted twist W, with the assumption that W, may be
obtained as W, = T®. He proposes to write equation (7) as:

0, O,
(A B CK)| ©, |=L| 6, |=0 (8)
\\% W

where L is N x (N + 6). This may also be written as
~(A B)®=DO=CKW (9)
where D is N x N. Provided that D is not singular we may now derive an inverse jacobian such that
® = -D7ICKW = J'W (10)

where J~! is N x 6. '
In most cases however a velocity analysis allows to eliminate the passive joint velocities @, in (10) to obtain
a simpler inverse jacobian matrix through a relation that relates only ®, to W:

< %‘ ) =J'W (11)

where J;kl is N x 6 and will be called the full inverse kinematics jacobian. The usual inverse jacobian matrix is
the restriction of Jg(l to W,. An important property of the inverse jacobian J=! of (10) is that it has the same
rank than the full inverse kinematic jacobian Jg(l whatever is the pose of the end effector.

Zlatanov determine 6 various cases, that he calls singularity, in which equation (8) has not a generic behavior.
As we are focusing on the motion of the end-effector we will just mention the cases that may involve such motion:

o redundant output (RO): there are W # 0, @, such that (8) is satisfied with @4 = 0. In other words the
end-effector is moving while the actuators are locked (which the usual definition of a singularity) and the
full inverse kinematic jacobian will not have full rank



e increased instantaneous mobility (IIM): when the rank of L is lower than N

It must be noted that equation(10) describes an intrinsic property of the robot. We may change the pose
parameters vector X (e.g. for a Gough robot with a planar platform by choosing as elements of X the 9
coordinates of 3 particular non-aligned points on the end-effector) but will get the same equation.

We may further extend equation (7) to take into account the geometrical parameters P of the robot (e.g. the
location of the anchor points of the legs in a Gough platform). For that purpose the kinematics equations will
be written as G(P,®,X) = 0 and the matrix of the partial derivatives of G with respect to P will allow one
to quantify the influence of the errors on P (due, for example, to manufacturing tolerances) on the positioning
errors of the end-effector. We will not address this issue although this influence may be important for parallel
robots [10, 35, 30, 33, 45, 50, 51] but may partly be decreased by using calibration.

As may be seen there is not a single inverse jacobian matrix but a multiplicity of them. It is also important to
note that elements of the inverse jacobian matrix involving the full twist W of the end-effector will usually not
be homogeneous in terms of units. Hence many properties of this matrix such as its determinant, trace, ... will
not be invariant under a change of units (see [42] for a discussion on the invariance of dexterity indices). This
will also be the case of the inverse kinematic jacobian for robot involving both translation and rotational d.o.f.
for the end-effector. Finally it must be noted that by duality the inverse kinematic jacobian is also involved,
through its transpose, in the static analysis of parallel robots i.e. the relation between the forces/torques in
the joints and wrench on the platform. Hence accuracy indices will be deeply connected to force transmission
indices [8, 26].

In this paper we are interested in the possible motion of the end-effector that cannot be detected under
measurement of the parameters in ®,. This may occur in two different cases:

e unmeasured motion of the active joints: this corresponds to a limitation A®, in the accuracy of the
measurement

e singularity classified by Zlatanov as redundant output (RO) or increased instantaneous mobility (IIM)

To study both cases it is necessary to use the full inverse kinematic jacobian and not only the inverse kinematic
jacobian as emphasized in the example presented in the next section.

2.1 Example: the 3 —UP U robot

Tsai [47] has proposed the 3 — UP U robot as a 3 d.o.f. translation robot (figure 1). Each leg of this robot is
constituted, starting from the base, by a U joint followed by an extensible leg, whose length may be modified by
a prismatic actuator, and which is terminated by another U joint whose axis are the same than the U joint on
the base. This constraint allows theoretically to obtain only translation for the end-effector. This example will
allow us to establish a methodology for determining the full inverse kinematic jacobian and it will also enable to
show the importance of this matrix on a practical example. Indeed such a robot was designed at Seoul National
University (SNU) and was exhibiting a strange behavior in the poses where the legs have an identical length:
although the prismatic actuators were locked, the end-effector was exhibiting significant orientation motion.
Two possible reasons were considered for explaining this phenomena:

e the location of the end-effector was very sensitive to manufacturing tolerances. Indeed this robot has only
in theory 3 translational d.o.f., provided a perfect alignment of the U axis on the base and platform. In
practice such alignment cannot be realized, which may lead to rotational d.o.f. The effect of manufacturing



Figure 1: The 3 — UPU robot

tolerances on the positioning errors has been studied by Han and Parenti-Castelli [18, 34] and although
it was shown that the robot was indeed very sensitive, the large rotational motion observed on the SNU
prototype cannot be explained only by this sensitivity

e the robot was in a singular pose: this was a-priori discarded as the determinant of the inverse kinematic
jacobian was not 0 in any of the incriminated poses

This phenomena was first explained by Bonev and Zlatanov [4] as a constraint singularity and later by DiGrego-
rio, Joshi and Wolf [11, 24, 53] and it has now become a classical example of singularity that cannot be explained
only by looking at the input-output velocities equations i.e. by using only the inverse kinematic jacobian.

To start with, we will determine the analytical form of the full inverse kinematic jacobian. We will denote
by Bi, Bs, Bs the center of the U joints on the platform and by V,  the translational and angular velocities of
the end-effector. The velocity Vg, of point B; is

VBi =V +B;CxQ (12)

Let us define n; as the unit vector of the leg i, p; the length of this leg and p; the prismatic actuator velocity.
We may compute the dot product of the right and left terms of the previous equation:

VBi.ni = p;n; = V.n; + (BiC X Q).Ili =V.n; + (CBi X ni).ﬂ (13)

Now let us define u;, v; the unit vectors of the two joint axis of the U joint at B;, these vectors being the same
for the base and platform. The angular velocity of the leg w; with respect to the base and the angular velocity
of the platform wj, with respect to the leg are

wp = éfélui + o'zf4vi wp = éiBui + o'zfgvi
The angular velocity of the platform is obtained as

Q=w+wp = (92 + éf{;)ui + (&4 + dg)vi



Now define s; = u; X v; and compute the dot product of the right and left terms of the previous equation by
si- We get the constraint equation:
Si.Q =0 (].4)

that states that the end-effector cannot rotate around a line going through B;, whose unit vector is s;. Combining
equations (13, 14) we get the full velocities equations involving the twist W as

( gi ) = Ip'W = < o iiCBi X ni) )W (15)

which establish the full inverse kinematic jacobian. The inverse kinematic jacobian may be extracted from ij(l
as the 3 x 3 matrix whose rows are the n; vectors.

Important information may be gained from this matrix. First of all the rows of the matrix are Pliicker
vectors that describe lines in space. The 3 first rows are the Pliicker vectors of the line associated to the legs
of the robot while the 3 last rows correspond to lines at infinity. Hence the singularity analysis approach based
on line geometry may be applied although the robot has less than 6 d.o.f. As a matter of fact it appears that
for all known parallel robots, the rows of the full inverse kinematics jacobian will always be Pliicker vector,
although to the best of my knowledge no formal proof has been given that this will always be the case. As far
as accuracy analysis is concerned it is important to consider the lower part of Jf_kl. They represent the lines
at infinity that are lying in any plane perpendicular to s;. According to line geometry the three lines will be
dependent if the vectors s; are lying in the same plane or are parallel i.e. if s1.(s2 x sg) = 0. In that case the
platform with locked actuators will exhibit orientation motion that may be infinitesimal or finite according to
the geometry of the robot [4]. It happens that the design of the SNU robot was such that, with actuators of
the same length, the axis of the U joints were all horizontal, leading to parallel vertical s; and therefore to a
rotational singularity.

There are many different types of 3-UPU robots (for example it is possible to exhibit a 3-UPU that has only
rotational motion) and Zlatanov [57] has presented an extensive analysis of the singularity of these robots.

This example has shown that accuracy analysis cannot be decoupled from singularity analysis and that is it
always necessary to consider the full inverse kinematic jacobian.

3 Manipulability

Now that we are on a safe ground as far as the inverse jacobian is concerned. let us consider another classical
concept: the kinematic manipulability whose purpose is to help quantify the manipulator’s velocity transmission
capabilities or, equivalently, the dexterity of the robot.

For a given robot it is realistic to assume that the joint measurement errors are bounded and consequently
so will be the positioning errors. The norm of the bound may be chosen arbitrary as (11) is linear, so that a
simple scaling will allow to determine the positioning errors from the errors obtained for a given bound on the
joint measurement errors. A value of 1 for this bound is usually chosen so that:

la®|| <1 (16)

which leads to
AXTI"TIlAX <1 (17)



If the Euclidean norm is used (16) represents a circle in the joint errors space. This circle is mapped through
matrix J~TJ~! into an ellipse in the generalized coordinates error space. More generally, the mapping transform
the hyper-sphere in the joint errors space into an ellipsoid, usually called the manipulability ellipsoid, in the
generalized coordinates error space. A classical geometrical interpretation of this relation, that may be found
in many text books, is presented for the 2D case in figure 2. It is usually claimed that the size and shape of

A6, J-T -1 Ag
1
/\\
Omin
-1 1
0, Ay
- Omax
AQQ 1 J Ay Omax
/\
1 1 /<
AQl >/0min Az
-1

Figure 2: The mapping between the joint errors space and the generalized coordinates error space induced by
J~TJ according to the norm: on top the Euclidean norm and on bottom the infinity norm.

the ellipsoid are indices of the "amplification” between the joint space errors and the generalized coordinates
errors. More precisely the lengths of the principal axis of the ellipsoid, which correspond to the minimal and
maximal eigenvalues ¢ in, maz of J~1J~1, are considered as an image of the minimum and maximum velocity
amplification factor. The closer these lengths are the closer is the manipulability ellipsoid to a circle. In order
to evaluate this closeness Yoshikawa [54] introduces a manipulability index for serial robot as

m(J) = /|37 (18)

which correspond to the product of the half axis lengths of the ellipsoid.

In fact the use of the Euclidean norm in (16) is not realistic: it implies for example that if one of the joint
measurement error is 1, then by some mysterious influence all the other joint errors become exactly 0. The
appropriate norm is the infinity norm that states that the absolute value of the joint errors are independently
bounded by 1. With this norm equation (16) represents a n-dimensional square in the joint errors space that
is mapped into what we will call the manipulability polyhedron, that includes the manipulability ellipsoid,
in the generalized coordinates errors space and figure 2 illustrates this mapping in the 2D case. Using the
manipulability ellipsoid it is possible to believe that there are perfect mappings having a constant amplification
factor over the whole workspace. This is no more the case with the manipulability polyhedron.



It must be noted that, apart of being more realistic, the mapping with the infinity norm leads to geometrical
object that can be more easily manipulated than the ellipsoid. For example assume that one want to determine
what are all the possible end-effector velocities that can be obtained in 2 different poses of the end-effector.
For that purpose we will have to calculate the intersection of the 2 polyhedra obtained for the 2 poses, a
well known problem of computational geometry, that can be much more easily solved than computing the
intersection of 2 ellipsoids. Finally note that the manipulability index of Yoshikawa characterizes the volume of
the manipulability polyhedron.

But major drawbacks of the manipulability concept are that it mixes arbitrary translational and rotational
capabilities and that it is usually not invariant with respect to the choice of the units. As a consequence it has
been proposed to split the jacobian into its translational and rotational parts and to calculate the manipulability
index for each of them. But this not satisfactory for estimating the amplification factor for motion involving
both translation and rotation.

4 Condition number

A large dimension along a given axis of the manipulability polyhedron indicates a large amplification error. It
is therefore necessary to quantify this amplification factor. Let us consider the linear system:

JIAX = AO

where J=! is a n x n inverse kinematic jacobian matrix. A possible error amplification factor for this system
expresses how a relative error in ® gets multiplied and leads to a relative error in X. It characterizes in some
sense the dexterity of the robot and has been proposed as a performance index. We use a norm such that

1771 AX]] < [JTHIIAX]],

and obtain

AX _ AGO
WX < a2l

[1X]] el

The error amplification factor, called the condition number k, is therefore defined as

K(J) = w(I7H) = 1THI1I1] -
The condition number is thus dependent on the choice of the matrix norm. The most used norms are:

e the 2-norm defined as the square root of the largest eigenvalue of matrix J=TJ~!: the condition number
of J=! is thus the square root of the ratio between the largest and the smallest eigenvalues of J=TJ1,

e the Euclidean (or Frobenius) norm defined for the m x n matrix A by: ||A|| = \/ZET ji? la;j|? or

equivalently as \/tr(ATA): if \; denotes the eigenvalues of J=TJ !, then the condition number is the ratio
between > A? and [] A;. Note that sometime is also used a weighted Frobenius norm in which ATA is
substituted by ATWA, where W is a weight matrix whose purpose is to "normalize” the components of
the matrix



For these two norms, the smallest possible value of the condition number is 1. The inverse of the condition
number, which has a value in [0,1], is also often used. Whatever is the choice for the norm, a value of 0 indicates
that the inverse jacobian matrix is singular. The necessity of specifying the norm and the change that the choice
of the norm induces will be illustrated later on in this section. But we may illustrate it on the simple example
of a serial Cartesian X-Y table. A possible matrix norm is the infinity norm defined as the maximum row sum,
where the row sum is the sum of the magnitudes of the elements in a given row. If we define the reference frame
as the one having the same axis direction than the the two prismatic actuators, then the jacobian matrix of the
robot is the identity, whose condition number using the infinity norm is 1. Now let’s rotate the reference frame
by 45 degrees around the vertical axis: the row of the jacobian matrix will be (v/2/2,—v2/2), (v/2/2,v2/2)
and its condition number using the infinity norm is 2. Hence the claim that every matrix norm is equivalent is
not exactly true from a kinematic view point.

The condition number has the main advantage of being a single number for describing the overall kinematic
behavior of a robot. It is used as an index to describe

e the accuracy/dexterity of a robot [40, 41, 44]

e the closeness of a pose to a singularity [12, 14, 49]. It is in general not possible to define a mathematical
distance to a singularity for robots whose d.o.f. is a mix between translation and orientation: hence the
use of the condition number is as valid an index than any other one.

e as a performance criteria for optimal design and robots comparison [3, 6, 20, 22, 21, 31, 43, 48, 56]
e as a criteria to determine the useful workspace of a robot [7]

The definition of the condition number makes clear that we cannot calculate its analytical form as a function
of the pose parameters except for very simple robot. But robust linear algebra software allows to calculate it
numerically for a given pose.

But for robot having both translation and orientation d.o.f. there is a major drawback of the condition
number: the matrix involved in its calculation are not homogeneous in terms of units. Hence the value of
the condition number for a given robot and pose will change according to the unit choice, while clearly the
kinematic accuracy is constant. To deal with this problem Ma and Angeles [29] and Kim [27] suggested to
define a normalized inverse jacobian matriz by dividing the rotational elements of the matrix by a length such
as the length of the links in a nominal position, or the natural length defined as that which minimizes the
condition number for a given pose. Still the choice of the length remains arbitrary as it just allows to define
a correspondence between a rotation and a translation and as mentioned by Park [36] ”this arbitrariness is an
unavoidable consequence of the geometry of SE(3)”.

The condition number is not an intuitive way to measure the accuracy of a robot. Indeed end-users are more
interested by the mazimal positioning errors than by a relative value. However a condition number may be an
acceptable performance index if:

1. its value is consistent with the maximal positioning errors

2. its calculation over a given workspace is easier than a similar calculation for the maximal positioning
errors

We will examine the later point in the next sections and will focus here on the first point. The simplest way to
examine the consistency of a condition number is to consider a given robot and a set of poses, a configuration



in which it is easy to calculate both the condition number and the maximal positioning errors. We may then
rank the poses according to the maximal positioning errors and compare it with the ranking according to the
condition number.

For that purpose we have used one of our Gough platform prototype and we have chosen three representative
reference poses. They are defined by the coordinates of the center of the platform and the 3 Euler angles as
Pi=x=y=0,2=53cm, v =0,0 =0, & =0 (roughly the pose obtained for the mid-stroke of the actuators),
Py=x =y =0,2=53 cm, ¢ = 30°, # =0, ¢ = 0 (whose orientation is roughly 1/3 of the total possible rotation
around the z axis) and Ps=¢ =y = 10,2=53 cm, ) =0, 8 = 0, ¢ = 0 (close to the border of the translation
workspace for this orientation). We have then computed the absolute value of the maximal positioning error
at these poses, given in table 1, obtained as the sum of the absolute value of the elements of the rows of the
kinematic jacobian, that has been obtained by a numerical inversion of the inverse jacobian. It can be seen in

Pose AXZ AXy AXZ Ang Ang AXQZ
P, 0.1184 | 0.1268 | 0.010087 | 0.1185 | 0.1184 | 0.697
P, 0.1189 | 0.1274 | 0.01266 | 0.1333 | 0.1429 | 0.808
Ps 0.123 | 0.1309 | 0.0372 0.15 0.1663 | 0.7208

Table 1: Maximal positioning errors for the 3 reference poses

this table that the positioning errors are significantly larger for P, and P; compared to P;. As for Ps the errors
are usually larger compared to P except for the rotation around z. Hence as far as accuracy is concerned the
ordering of the poses from the most to the least accurate is Py, P>, P3 and we expect to obtain a similar ordering
for the condition numbers.

For the calculation of the condition numbers we have used both the inverse kinematic jacobian matrix and
a normalized inverse jacobian matrix J ! obtained by dividing the orientation components of the Jljl by 53,
which is roughly the value of the legs lengths at pose P;. The considered accuracy indices will be

e C,: the determinant of J_*
e (5, C3: the 2-norm condition number of J;l, Jt
e Cr,C%: the Frobenius-norm condition number of J-*, J=*

e C3 C3%: the 2-norm and Frobenius norm condition number of the inverse jacobian matrix obtained when
the inverse kinematics equations are based on the coordinates of 3 points of the end-effector. The chosen
points will be all possible triplets in the set B;. We will provide a drawing that describes the result for
all 20 possible combinations in which we will present the ratio x(Ps)/k(Py) and &(Ps)/k(P1).

e M;, M,: the manipulability index of the restriction of Ji to its translation, orientation parts

For all condition numbers we expect to have a value that decreases in the order Py, P>, P3. For the determinant
we expect an absolute value that decrease in the same order. The computed condition numbers for this very
simple test are presented in table 2 (for C3,C% we provide the minimal and maximal value obtained for all
reference points choice) and the relative values of C3, C% are presented in figure 3.

From this very simple analysis we may deduce interesting results:

10



Cq C;, |CP [Cr [CR [C3 c3 MM, M,

Py | 2922 | 75.14 | 63.9 | 152.8 | 70.2 | [9.55,55.47] | [258.8,3204.9] | 12.65 | 0.04266
P, | -24.64 | 75.16 | 73.8 | 154 | 80.9 | [0.62,43.84] | [218.8,2383.6] | 20.451 | 0.0754
Py | -23.93 | 80.65 | 68.4 | 158.3 | 74.7 | [10.06,58.95] | [286.5,3618] | 13.995 | 0.0471

Table 2: Accuracy indices at the 3 reference poses

1.13
1.10 |

C7(P3)

cipy)

0.90 L

0.85 |

0.80 |

0.75 | Cg(PQ)
0.70 L

0.65 |

1 3 5 7 9 11 13 15 17 19 20

Figure 3: The value of C3(P»3)/C3(P1),C3(Ps3)/C3(P1) according to the choice of the 3 reference points on
the platform

e (Cy: the value of this index is coherent with the maximal positioning errors

e (C,: it may be seen that the difference is surprisingly very small between P, P, and significant between
P;3, P,. This is not what we may expect from an accuracy index

e C%: the accuracy ordering between P», P; is not respected
o C: the accuracy ordering is respected but the change between P, and P, is relatively small
e (C%: the accuracy ordering between P, P is not respected

e C3 C3%: for P; the condition number is either very close to the one of P; (C3) or always larger. On the
contrary for P, the condition number is in general significantly smaller than the condition number for
P, and sometime very close but in all cases smaller than the condition number for P;. This completely
disqualify these condition numbers as accuracy indices

11



e M;, M,: the manipulability indices of P, P5 are close while the one of P is significantly larger. According
to the maximal positioning errors this disqualify M; as an accuracy index while M, does not reflect exactly
the orientation errors

Hence none of these condition numbers exhibits a completely consistent behavior with respect to the positioning
errors of this robot. This simple example shows clearly that the concept of condition number has to be carefully
considered when addressing optimal design for robot.

5 Isotropy

An isotropic pose of a robot is defined as a pose where k is equal to 1 and a robot which has only isotropic
poses in its workspace is coined an isotropic robot. Designing a parallel robot that is isotropic in one pose or
is isotropic over its full workspace is often considered as a design objective [1, 2, 5, 13, 46, 52, 55]. A trivial
example of isotropic robot is a serial Cartesian X-Y robot whose kinematic jacobian matrix is the identity. But
this is a surprising denomination as, stricto sensu, isotropy indicates that the performances of a robot should
be the same whatever is the motion direction. Now if we assume that all the actuator velocities of a X-Y robot
are bounded by 1, then the maximal velocity of the end-effector lie in the range [1, \/5] as far as velocity or
accuracy are considered such robot is far from isotropy. Still the concept may have some interest: for example
any Cartesian robot whose actuator axis are not mutually orthogonal will exhibit a ratio between its maximal
velocities over its workspace that will be larger than /2. Hence, instead of using the name ”isotropic robot”
we may consider using the name "maximally regular robot”. Looking for a maximally regular robot is thus
justified but, except for robot having a small workspace [23], designing a robot to be isotropic only in one pose
is less justified.

Note also that for redundant robots the isotropy concept is even less justified. For example Krut [28] exhibits
a redundant robot whose kinematic behavior is the same than a serial Cartesian X-Y table, but whose condition
number is not 1.

6 Global conditioning indices

The condition number is a local indication for the dexterity of a robot. To evaluate the dexterity of a robot
over a given workspace W Gosselin [15] has introduced the global conditioning index (GCI) as:

o dw (2w

Ty 7

which correspond to the average value of 1/k. Clearly this concept makes sense for the optimal design of robot
for which the extremal and average value of any performance are important design factors. The main problem
with the GCI, apart of the validity of the condition number, that has been discussed in a previous section, is
its robust calculation, i.e. its computation as a number that is reasonably close to its true value. Clearly we
cannot expect to obtain a closed-form for the GCI and we must rely on a numerical evaluation. The usual
method is to discretize the workspace using a regular grid, compute 1/x; at each node N; and approximate the
GCI as GCI,, the sum of the 1/k; divided by the number of nodes and by the workspace size. This calculation
may be computer intensive as its complexity is exponential with respect to the number of d.o.f. of the robot.

12



Furthermore this method does not allow to get a bound on |GCI — GCI,|. To deal with this error problem it
is sometimes assumed that if the result GCIL,(m;) with m; sampling points is close to the result GCIL,(m2)
obtained with mqy points, ms being significantly larger than m;y, then GCI,(m2) is a good approximation of the
GCI. This assumption will be true only if the condition number is smooth enough, a claim that is difficult to
support.

To illustrate this problem consider for example a simple planar serial 2R robot with identical link lengths
set to 10. The GCI can be computed very precisely with a numerical integration scheme as it depends only on
a single parameter. We then use the discretization method by sampling the parameter using 10, 20, ..., m,
my = my + 10 points and stop the calculation when the relative error between GCIL,(m1), GCI,(m3) is lower
than 0.5% and approximate the GCI by GCI,(ms). For this example when m; = 50 the relative error is 0.377%
while the relative error on the GCI is still 1.751%, i.e. about 5 times larger. It may be assumed that such error
will even be larger for more complex robot.

A better evaluation will probably be obtained by using Monte-Carlo integration (with an error that decreases
as 1/y/n where n is the number of sampling nodes) or quasi-Monte Carlo. In the previous example (which is
not favorable for Monte-Carlo method as there is only one parameter) we found out that by using the same stop
criteria the relative error on the GCI was reduced to 0.63%. A certified evaluation of the global conditioning
index is therefore an open problem but nevertheless the calculation of such index will probably be computer
intensive.

Another global conditioning index is the uniformity of manipulability defined as the ratio of the minimum
and maximum values of the manipulability index over a given workspace [38]. It suffers from the same problems
than the GCIL.

7 Challenges for accuracy indices

As seen in the previous sections classical dexterity indices are not very adequate for parallel robots. The purpose
of this section is to examine what other possible indices may be of interest, especially in view of optimal design.

A first possibility, that is almost always required by end-users, it to determine the maximal value of the
positioning errors over the workspace [25, 37]. This is a difficult optimization problem as we are looking for a
global optimum and as we do not have an analytic formulation for the objective function. But we must note
that for comparison purpose it is not necessary to compute exactly the maximal errors as soon as we are able
to bound the calculation errors and if the algorithm allows to define upper bounds on this error.

We have presented in a recent paper a a computer intensive method for finding the largest maximal posi-
tioning errors, up to an arbitrary accuracy, of a 6 d.o.f. robot [32]. It is a derivation of a more general algorithm
that allows to determine an approximation of all the design parameters so that the corresponding robots will
have positioning accuracies lower than given thresholds.

We will now outline the principle of this algorithm. If we assume that the pose parameters X; all lie in a
range R;, then interval analysis allows to compute a range for each element of J_ ! that will include any possible
value of the element for any pose whose parameters lie in the ranges R;. Hence J_ !'is an interval matrix J(R)
that depends upon the ranges R;. The maximal positioning errors will always be obtained for extremal values
of the joint measurement errors, that may be fixed arbitrary to -1, 1 and we will denote by A®, any joint
errors vector whose element has a value -1 or 1.

A classical problem in interval analysis is to bound the possible solutions AX of an interval linear system
J(R)AX = A®, ie. to determine a range S; for each AX; so that for any instance of J, ' in J(R) the
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solution in AX; of the linear system ngAX = AQ®, is included in §;. Usually S; is an over approximation
of the solution set for AX;, which will come closer to this solution set as soon as the width of the ranges R;
decreases. With these elements a branch and bound algorithm allows to compute the maximal value of AXj;
up to an arbitrary accuracy. The idea is to compute the maximal value of AX; for a given set of ranges R by
selecting an arbitrary pose in R (e.g. the pose defined by the mid-point of the ranges in R). This maximal
value is used to update a current estimation AXiM of the maximum of AX;. If S; is such that the absolute
value of its lower and upper bounds are smaller than AX} + ¢, where ¢ is the accuracy with which we want
to calculate the maximal positioning error, then there is no pose in R such that |AX;| > AXM. Otherwise we
choose a range in R, bisect it and create two new elements R;, Ry. All these elements will be submitted to the
same process, that will stop when all elements have been processed.

Beware that such algorithm is usually computer intensive and needs to be carefully implemented to be
efficient, as drastic differences in the computation time will be obtained according to the implementation.

But if the values of the maximal positioning errors over a workspace are necessary, they are not sufficient
to determine an optimal design. Clearly the average values of the maximal positioning errors and even their
variance will be needed. Unfortunately there is no known algorithms to compute these accuracy indices and
finding such algorithms is one of the greatest challenge of accuracy analysis.

8 Conclusion

Classical local dexterity indices defined for serial robot, such as the condition number or the manipulability
index, are not very appropriate for parallel robots. Furthermore we have shown that they do no reflect exactly
the positioning accuracy of the robot. Global dexterity indices based on these local indices are therefore
questionable and we have also shown that their guaranteed numerical evaluation (i.e. with a bound on the
calculation error) is an open problem. In our opinion the most appropriate global accuracy indices are the
determination of the maximal positioning errors, their average values and their variance. A real challenge is to
design algorithms for calculating these indices. One may take advantage that it is not necessary to calculate
these indices exactly as soon as it is possible to impose a bound on the calculation error. Indeed for comparison
purposes an approximate value with a guaranteed error will be sufficient.
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