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eAbstra
t: Although the 
on
epts of ja
obian matrix, manipulability and 
ondition number exist sin
ethe very early beginning of roboti
s their real signi�
an
e is not always well understood. In this paper were-visit these 
on
epts for parallel robots as a

ura
y indi
es in view of optimal design. We �rst show that theusual ja
obian matrix derived from the input-output velo
ities equations may not be suÆ
ient to analyze thepositioning errors of the platform. We then examine the 
on
ept of manipulability and show that its 
lassi
alinterpretation is erroneous. We then 
onsider various 
ommon lo
al dexterity indi
es most of whi
h are basedon the 
ondition number of the ja
obian matrix. It is emphasized that even for a given robot in a parti
ularpose there are a variety of 
ondition numbers and that their values are not 
oherent between themselves butalso with what we may expe
t from an a

ura
y index. Global 
onditioning indi
es are then examined. Apartof the problem of being based on the lo
al a

ura
y indi
es that are questionable, there is a 
omputationalproblem in their 
al
ulation, that is negle
ted most of the time. Finally we examine what other indi
es may beused for optimal design and show that their 
al
ulation is most 
hallenging.1 Introdu
tionWe will use a relatively general de�nition of parallel robots, fo
using on non-redundant me
hanisms. A parallelrobot is de�ned as a me
hanism having at least two kinemati
s 
hains 
onne
ting the base to the end-e�e
tor,the purpose being to 
ontrol n � 6 d.o.f. of the end-e�e
tor while the other 6� n d.o.f. have a 
onstant valueby using n one d.o.f. a
tuated joints. Furthermore it will be assumed that when the a
tuator are lo
ked themobility of the end-e�e
tor is 0 and that the non a
tuated joints have one d.o.f. Su
h de�nition 
overs the
lassi
al 6 d.o.f. robots su
h as the Gough [17℄ and Hexa [39℄ platforms but also robot with less than 6 d.o.f.su
h as the Delta [9℄ or 3-UPU [47℄ robots.Parallel robots are nowadays leaving a
ademi
 laboratories and are �nding their way in an in
reasinglylarger number of appli
ation �elds su
h as teles
opes, �ne positioning devi
es, fast pa
kaging, ma
hine-tool,medi
al appli
ation. A key issue for su
h use is optimal design as performan
es of parallel robots are verysensitive to their dimensioning. Optimal design methodologies have to rely on kinetostati
 performan
e indi
esand a

ura
y is 
learly a key-issue for many appli
ations [19℄. It has also been a key-issue for serial robots and
onsequently this problem has been extensively studied and various a

ura
y indi
es have been de�ned. Theresults have been in general dire
tly transposed to parallel robots. The purpose of this paper is to review howwell these indi
es are appropriate for parallel robots. For that purpose it is ne
essary to examine the 
on
eptof ja
obian and inverse ja
obian matri
es that are essential when examining the positioning a

ura
y of theend-e�e
tor.2 Ja
obian and inverse Ja
obian matrixLet Xa denotes the generalized 
oordinates of the end-e�e
tor 
omposed of parameters des
ribing the desiredn d.o.f. of the end-e�e
tor while X denotes all the generalized 
oordinates of the end-e�e
tor i.e. a set1



of parameters that allow to des
ribe 
ompletely its pose (translation and orientation). We will impose no
onstraints on the 
hoi
e of the parameters in X (e.g. for a Gough robot with a planar platform the pose maybe represented by the 9 
oordinates of 3 parti
ular non-aligned points on the end-e�e
tor).The twistW of the end e�e
tor is 
omposed of its translational and angular velo
itiesV;
 and the restri
tedtwist Wa is de�ned as the restri
tion of W to the n desired d.o.f. of the robot. It is well known that for robothaving at least 2 rotational d.o.f. W is not the time-derivative of X as there is no representation of theorientation whose derivatives 
orresponds to the angular velo
ities. However there exists usually matri
es H;Ksu
h that W = H _X _X = KW (1)The internal geometry of the robot may be des
ribed by a set of parameters that des
ribe the motion ofsome or all of the joints, in
luding the passive, non a
tuated, one. These parameters are regrouped in the jointvariables ve
tor �.The usual de�nition of the ja
obian matrix Jk involves a joint variable ve
tor �a that is restri
ted to thea
tuated joints and is based on the linear relation between the a
tuated joint velo
ities _�a and the restri
tedtwist Wa: Wa = Jk _�a (2)As in this paper we 
onsider only non-redundant robots the matrix Jk is square and we will 
all it the kinemati
ja
obian. A feature of parallel robots is that it is usually easy to establish an analyti
al form for J�1k while itis often impossible (or at least very diÆ
ult) to obtain Jk. To 
al
ulate the inverse kinemati
 ja
obian we mayuse a velo
ity analysis but as mentioned by Gosselin [15℄ it is also possible to use the kinemati
 
losure-loopequations whose general form is: E(Xa;�a) = 0 (3)As we have assumed that the robot is non redundant and its mobility is 0 when the a
tuators are lo
ked theremust be exa
tly n su
h equations. By di�erentiating the system we get�E��a _�a + �E�Xa _Xa = Uk _�a +Va _Xa = 0 (4)Using the restri
tion of equation (1) to Wa and provided that Uk is not singular, we getJ�1k = �U�1k VaKaWa (5)The singularity problem of parallel robots has been initially dis
ussed by Gosselin and Angeles [16℄ and theydistinguish serial singularity (or type 1) obtained when Uk is singular and parallel singularity (or type 2) whenVa is singular. A

ording to this de�nition in a parallel singularity the end-e�e
tor may move while the a
tuatorsare lo
ked, a typi
al 
ase of positioning errors as the measurements of the a
tuated joints variables do not 
hangealthough there is a displa
ement of the end-e�e
tor. Hen
e a

ura
y analysis is also 
onne
ted to singularityanalysis.But we may also de�ne other ja
obian matri
es. We may in
lude parameters in � that des
ribe the motionof passive joints, whi
h are usually numerous in parallel robots. Hen
e � may be de�ned as a N -dimensionalve
tor (�a;�p) where �p 
orrespond to the parameters of the passive joints and N being the total number ofjoints, a
tuated or not, of the robot.Although some robot are designed on purpose to have n < 6 
ontrollable d.o.f. while the other d.o.f. aresupposed to have a 
onstant value, still the end-e�e
tor is a 6 d.o.f. rigid body and positioning errors on all2



d.o.f. should be examined when looking for an optimal design. It is thus interesting to determine an inverseja
obian that involves the full twist W of the end-e�e
tor.To determine this inverse ja
obian matrix we write the kinemati
s 
losure-loop equations asG(�;X) = 0 (6)The total number of unknowns in these equations is N + n. As we have assumed that the robot mobility is0 when the n a
tuators are lo
ked the system of equation G must have a �nite number of solutions in that
on�guration i.e. the number of equations in G must be equal to the number of unknowns, whi
h is N .By di�erentiating equation (6) we get:�G�� _�+ �G�X _X = A _�a +B _�p + C _X = 0 (7)where A is a N � n matrix, B is N � (N � n) while matrix C is N � 6. Zlatanov [58℄ has derived a similarexpression with the di�eren
e that he is using the restri
ted twist Wa with the assumption that Wa may beobtained as Wa = T�. He proposes to write equation (7) as:� A B CK �0� _�a_�pW 1A = L0� _�a_�pW 1A = 0 (8)where L is N � (N + 6). This may also be written as� � A B � _� = D _� = CKW (9)where D is N �N . Provided that D is not singular we may now derive an inverse ja
obian su
h that_� = �D�1CKW = J�1W (10)where J�1 is N � 6.In most 
ases however a velo
ity analysis allows to eliminate the passive joint velo
ities _�p in (10) to obtaina simpler inverse ja
obian matrix through a relation that relates only _�a to W:� _�aO � = J�1fk W (11)where J�1fk is N � 6 and will be 
alled the full inverse kinemati
s ja
obian. The usual inverse ja
obian matrix isthe restri
tion of J�1fk to Wa. An important property of the inverse ja
obian J�1 of (10) is that it has the samerank than the full inverse kinemati
 ja
obian J�1fk whatever is the pose of the end e�e
tor.Zlatanov determine 6 various 
ases, that he 
alls singularity, in whi
h equation (8) has not a generi
 behavior.As we are fo
using on the motion of the end-e�e
tor we will just mention the 
ases that may involve su
h motion:� redundant output (RO): there are W 6= 0;�p su
h that (8) is satis�ed with �a = 0. In other words theend-e�e
tor is moving while the a
tuators are lo
ked (whi
h the usual de�nition of a singularity) and thefull inverse kinemati
 ja
obian will not have full rank3



� in
reased instantaneous mobility (IIM): when the rank of L is lower than NIt must be noted that equation(10) des
ribes an intrinsi
 property of the robot. We may 
hange the poseparameters ve
tor X (e.g. for a Gough robot with a planar platform by 
hoosing as elements of X the 9
oordinates of 3 parti
ular non-aligned points on the end-e�e
tor) but will get the same equation.We may further extend equation (7) to take into a

ount the geometri
al parameters P of the robot (e.g. thelo
ation of the an
hor points of the legs in a Gough platform). For that purpose the kinemati
s equations willbe written as G(P ;�;X) = 0 and the matrix of the partial derivatives of G with respe
t to P will allow oneto quantify the in
uen
e of the errors on P (due, for example, to manufa
turing toleran
es) on the positioningerrors of the end-e�e
tor. We will not address this issue although this in
uen
e may be important for parallelrobots [10, 35, 30, 33, 45, 50, 51℄ but may partly be de
reased by using 
alibration.As may be seen there is not a single inverse ja
obian matrix but a multipli
ity of them. It is also important tonote that elements of the inverse ja
obian matrix involving the full twist W of the end-e�e
tor will usually notbe homogeneous in terms of units. Hen
e many properties of this matrix su
h as its determinant, tra
e, : : : willnot be invariant under a 
hange of units (see [42℄ for a dis
ussion on the invarian
e of dexterity indi
es). Thiswill also be the 
ase of the inverse kinemati
 ja
obian for robot involving both translation and rotational d.o.f.for the end-e�e
tor. Finally it must be noted that by duality the inverse kinemati
 ja
obian is also involved,through its transpose, in the stati
 analysis of parallel robots i.e. the relation between the for
es/torques inthe joints and wren
h on the platform. Hen
e a

ura
y indi
es will be deeply 
onne
ted to for
e transmissionindi
es [8, 26℄.In this paper we are interested in the possible motion of the end-e�e
tor that 
annot be dete
ted undermeasurement of the parameters in �a. This may o

ur in two di�erent 
ases:� unmeasured motion of the a
tive joints: this 
orresponds to a limitation ��a in the a

ura
y of themeasurement� singularity 
lassi�ed by Zlatanov as redundant output (RO) or in
reased instantaneous mobility (IIM)To study both 
ases it is ne
essary to use the full inverse kinemati
 ja
obian and not only the inverse kinemati
ja
obian as emphasized in the example presented in the next se
tion.2.1 Example: the 3� UP U robotTsai [47℄ has proposed the 3� UP U robot as a 3 d.o.f. translation robot (�gure 1). Ea
h leg of this robot is
onstituted, starting from the base, by a U joint followed by an extensible leg, whose length may be modi�ed bya prismati
 a
tuator, and whi
h is terminated by another U joint whose axis are the same than the U joint onthe base. This 
onstraint allows theoreti
ally to obtain only translation for the end-e�e
tor. This example willallow us to establish a methodology for determining the full inverse kinemati
 ja
obian and it will also enable toshow the importan
e of this matrix on a pra
ti
al example. Indeed su
h a robot was designed at Seoul NationalUniversity (SNU) and was exhibiting a strange behavior in the poses where the legs have an identi
al length:although the prismati
 a
tuators were lo
ked, the end-e�e
tor was exhibiting signi�
ant orientation motion.Two possible reasons were 
onsidered for explaining this phenomena:� the lo
ation of the end-e�e
tor was very sensitive to manufa
turing toleran
es. Indeed this robot has onlyin theory 3 translational d.o.f., provided a perfe
t alignment of the U axis on the base and platform. Inpra
ti
e su
h alignment 
annot be realized, whi
h may lead to rotational d.o.f. The e�e
t of manufa
turing4



Figure 1: The 3� UPU robottoleran
es on the positioning errors has been studied by Han and Parenti-Castelli [18, 34℄ and althoughit was shown that the robot was indeed very sensitive, the large rotational motion observed on the SNUprototype 
annot be explained only by this sensitivity� the robot was in a singular pose: this was a-priori dis
arded as the determinant of the inverse kinemati
ja
obian was not 0 in any of the in
riminated posesThis phenomena was �rst explained by Bonev and Zlatanov [4℄ as a 
onstraint singularity and later by DiGrego-rio, Joshi and Wolf [11, 24, 53℄ and it has now be
ome a 
lassi
al example of singularity that 
annot be explainedonly by looking at the input-output velo
ities equations i.e. by using only the inverse kinemati
 ja
obian.To start with, we will determine the analyti
al form of the full inverse kinemati
 ja
obian. We will denoteby B1; B2; B3 the 
enter of the U joints on the platform and by V;
 the translational and angular velo
ities ofthe end-e�e
tor. The velo
ity VBi of point Bi isVBi = V +BiC�
 (12)Let us de�ne ni as the unit ve
tor of the leg i, �i the length of this leg and _�i the prismati
 a
tuator velo
ity.We may 
ompute the dot produ
t of the right and left terms of the previous equation:VBi :ni = _�ini = V:ni + (BiC�
):ni = V:ni + (CBi � ni):
 (13)Now let us de�ne ui;vi the unit ve
tors of the two joint axis of the U joint at Bi, these ve
tors being the samefor the base and platform. The angular velo
ity of the leg !l with respe
t to the base and the angular velo
ityof the platform !p with respe
t to the leg are!l = _�iAui + _�iAvi !p = _�iBui + _�iBviThe angular velo
ity of the platform is obtained as
 = !l + !p = ( _�iA + _�iB)ui + ( _�iA + _�iB)vi5



Now de�ne si = ui � vi and 
ompute the dot produ
t of the right and left terms of the previous equation bysi. We get the 
onstraint equation: si:
 = 0 (14)that states that the end-e�e
tor 
annot rotate around a line going throughBi, whose unit ve
tor is si. Combiningequations (13, 14) we get the full velo
ities equations involving the twist W as� _�i0 � = J�1fk W = � ni (CBi � ni)0 si �W (15)whi
h establish the full inverse kinemati
 ja
obian. The inverse kinemati
 ja
obian may be extra
ted from J�1fkas the 3� 3 matrix whose rows are the ni ve
tors.Important information may be gained from this matrix. First of all the rows of the matrix are Pl�u
kerve
tors that des
ribe lines in spa
e. The 3 �rst rows are the Pl�u
ker ve
tors of the line asso
iated to the legsof the robot while the 3 last rows 
orrespond to lines at in�nity. Hen
e the singularity analysis approa
h basedon line geometry may be applied although the robot has less than 6 d.o.f. As a matter of fa
t it appears thatfor all known parallel robots, the rows of the full inverse kinemati
s ja
obian will always be Pl�u
ker ve
tor,although to the best of my knowledge no formal proof has been given that this will always be the 
ase. As faras a

ura
y analysis is 
on
erned it is important to 
onsider the lower part of J�1fk . They represent the linesat in�nity that are lying in any plane perpendi
ular to si. A

ording to line geometry the three lines will bedependent if the ve
tors si are lying in the same plane or are parallel i.e. if s1:(s2 � s3) = 0. In that 
ase theplatform with lo
ked a
tuators will exhibit orientation motion that may be in�nitesimal or �nite a

ording tothe geometry of the robot [4℄. It happens that the design of the SNU robot was su
h that, with a
tuators ofthe same length, the axis of the U joints were all horizontal, leading to parallel verti
al si and therefore to arotational singularity.There are many di�erent types of 3-UPU robots (for example it is possible to exhibit a 3-UPU that has onlyrotational motion) and Zlatanov [57℄ has presented an extensive analysis of the singularity of these robots.This example has shown that a

ura
y analysis 
annot be de
oupled from singularity analysis and that is italways ne
essary to 
onsider the full inverse kinemati
 ja
obian.3 ManipulabilityNow that we are on a safe ground as far as the inverse ja
obian is 
on
erned. let us 
onsider another 
lassi
al
on
ept: the kinemati
 manipulability whose purpose is to help quantify the manipulator's velo
ity transmission
apabilities or, equivalently, the dexterity of the robot.For a given robot it is realisti
 to assume that the joint measurement errors are bounded and 
onsequentlyso will be the positioning errors. The norm of the bound may be 
hosen arbitrary as (11) is linear, so that asimple s
aling will allow to determine the positioning errors from the errors obtained for a given bound on thejoint measurement errors. A value of 1 for this bound is usually 
hosen so that:jj��jj � 1 (16)whi
h leads to �XT J�TJ�1�X � 1 (17)6



If the Eu
lidean norm is used (16) represents a 
ir
le in the joint errors spa
e. This 
ir
le is mapped throughmatrix J�TJ�1 into an ellipse in the generalized 
oordinates error spa
e. More generally, the mapping transformthe hyper-sphere in the joint errors spa
e into an ellipsoid, usually 
alled the manipulability ellipsoid, in thegeneralized 
oordinates error spa
e. A 
lassi
al geometri
al interpretation of this relation, that may be foundin many text books, is presented for the 2D 
ase in �gure 2. It is usually 
laimed that the size and shape of��1 ��2 �x �yJ�TJ�1 �min �max
1 1-1-1

��1��2 �x�y �max�min1
-1 1-1 J

Figure 2: The mapping between the joint errors spa
e and the generalized 
oordinates error spa
e indu
ed byJ�TJ a

ording to the norm: on top the Eu
lidean norm and on bottom the in�nity norm.the ellipsoid are indi
es of the "ampli�
ation" between the joint spa
e errors and the generalized 
oordinateserrors. More pre
isely the lengths of the prin
ipal axis of the ellipsoid, whi
h 
orrespond to the minimal andmaximal eigenvalues �min; �max of J�TJ�1, are 
onsidered as an image of the minimum and maximum velo
ityampli�
ation fa
tor. The 
loser these lengths are the 
loser is the manipulability ellipsoid to a 
ir
le. In orderto evaluate this 
loseness Yoshikawa [54℄ introdu
es a manipulability index for serial robot asm(J) =qjJJT j (18)whi
h 
orrespond to the produ
t of the half axis lengths of the ellipsoid.In fa
t the use of the Eu
lidean norm in (16) is not realisti
: it implies for example that if one of the jointmeasurement error is 1, then by some mysterious in
uen
e all the other joint errors be
ome exa
tly 0. Theappropriate norm is the in�nity norm that states that the absolute value of the joint errors are independentlybounded by 1. With this norm equation (16) represents a n-dimensional square in the joint errors spa
e thatis mapped into what we will 
all the manipulability polyhedron, that in
ludes the manipulability ellipsoid,in the generalized 
oordinates errors spa
e and �gure 2 illustrates this mapping in the 2D 
ase. Using themanipulability ellipsoid it is possible to believe that there are perfe
t mappings having a 
onstant ampli�
ationfa
tor over the whole workspa
e. This is no more the 
ase with the manipulability polyhedron.7



It must be noted that, apart of being more realisti
, the mapping with the in�nity norm leads to geometri
alobje
t that 
an be more easily manipulated than the ellipsoid. For example assume that one want to determinewhat are all the possible end-e�e
tor velo
ities that 
an be obtained in 2 di�erent poses of the end-e�e
tor.For that purpose we will have to 
al
ulate the interse
tion of the 2 polyhedra obtained for the 2 poses, awell known problem of 
omputational geometry, that 
an be mu
h more easily solved than 
omputing theinterse
tion of 2 ellipsoids. Finally note that the manipulability index of Yoshikawa 
hara
terizes the volume ofthe manipulability polyhedron.But major drawba
ks of the manipulability 
on
ept are that it mixes arbitrary translational and rotational
apabilities and that it is usually not invariant with respe
t to the 
hoi
e of the units. As a 
onsequen
e it hasbeen proposed to split the ja
obian into its translational and rotational parts and to 
al
ulate the manipulabilityindex for ea
h of them. But this not satisfa
tory for estimating the ampli�
ation fa
tor for motion involvingboth translation and rotation.4 Condition numberA large dimension along a given axis of the manipulability polyhedron indi
ates a large ampli�
ation error. Itis therefore ne
essary to quantify this ampli�
ation fa
tor. Let us 
onsider the linear system:J�1�X = �� ;where J�1 is a n � n inverse kinemati
 ja
obian matrix. A possible error ampli�
ation fa
tor for this systemexpresses how a relative error in � gets multiplied and leads to a relative error in X. It 
hara
terizes in somesense the dexterity of the robot and has been proposed as a performan
e index. We use a norm su
h thatjjJ�1�Xjj � jjJ�1jjjj�Xjj ;and obtain jj�XjjjjXjj � jjJ�1jjjjJjj jj��jjjj�jj ;The error ampli�
ation fa
tor, 
alled the 
ondition number �, is therefore de�ned as�(J) = �(J�1) = jjJ�1jjjjJjj :The 
ondition number is thus dependent on the 
hoi
e of the matrix norm. The most used norms are:� the 2-norm de�ned as the square root of the largest eigenvalue of matrix J�TJ�1: the 
ondition numberof J�1 is thus the square root of the ratio between the largest and the smallest eigenvalues of J�TJ�1,� the Eu
lidean (or Frobenius) norm de�ned for the m � n matrix A by: jjAjj = qPi=mi=1 Pj=nj=1 jaij j2 orequivalently asptr(ATA): if �i denotes the eigenvalues of J�TJ�1, then the 
ondition number is the ratiobetween P�2i and Q �i. Note that sometime is also used a weighted Frobenius norm in whi
h ATA issubstituted by ATWA, where W is a weight matrix whose purpose is to "normalize" the 
omponents ofthe matrix 8



For these two norms, the smallest possible value of the 
ondition number is 1. The inverse of the 
onditionnumber, whi
h has a value in [0,1℄, is also often used. Whatever is the 
hoi
e for the norm, a value of 0 indi
atesthat the inverse ja
obian matrix is singular. The ne
essity of spe
ifying the norm and the 
hange that the 
hoi
eof the norm indu
es will be illustrated later on in this se
tion. But we may illustrate it on the simple exampleof a serial Cartesian X-Y table. A possible matrix norm is the in�nity norm de�ned as the maximum row sum,where the row sum is the sum of the magnitudes of the elements in a given row. If we de�ne the referen
e frameas the one having the same axis dire
tion than the the two prismati
 a
tuators, then the ja
obian matrix of therobot is the identity, whose 
ondition number using the in�nity norm is 1. Now let's rotate the referen
e frameby 45 degrees around the verti
al axis: the row of the ja
obian matrix will be (p2=2;�p2=2), (p2=2;p2=2)and its 
ondition number using the in�nity norm is 2. Hen
e the 
laim that every matrix norm is equivalent isnot exa
tly true from a kinemati
 view point.The 
ondition number has the main advantage of being a single number for des
ribing the overall kinemati
behavior of a robot. It is used as an index to des
ribe� the a

ura
y/dexterity of a robot [40, 41, 44℄� the 
loseness of a pose to a singularity [12, 14, 49℄. It is in general not possible to de�ne a mathemati
aldistan
e to a singularity for robots whose d.o.f. is a mix between translation and orientation: hen
e theuse of the 
ondition number is as valid an index than any other one.� as a performan
e 
riteria for optimal design and robots 
omparison [3, 6, 20, 22, 21, 31, 43, 48, 56℄� as a 
riteria to determine the useful workspa
e of a robot [7℄The de�nition of the 
ondition number makes 
lear that we 
annot 
al
ulate its analyti
al form as a fun
tionof the pose parameters ex
ept for very simple robot. But robust linear algebra software allows to 
al
ulate itnumeri
ally for a given pose.But for robot having both translation and orientation d.o.f. there is a major drawba
k of the 
onditionnumber: the matrix involved in its 
al
ulation are not homogeneous in terms of units. Hen
e the value ofthe 
ondition number for a given robot and pose will 
hange a

ording to the unit 
hoi
e, while 
learly thekinemati
 a

ura
y is 
onstant. To deal with this problem Ma and Angeles [29℄ and Kim [27℄ suggested tode�ne a normalized inverse ja
obian matrix by dividing the rotational elements of the matrix by a length su
has the length of the links in a nominal position, or the natural length de�ned as that whi
h minimizes the
ondition number for a given pose. Still the 
hoi
e of the length remains arbitrary as it just allows to de�nea 
orresponden
e between a rotation and a translation and as mentioned by Park [36℄ "this arbitrariness is anunavoidable 
onsequen
e of the geometry of SE(3)".The 
ondition number is not an intuitive way to measure the a

ura
y of a robot. Indeed end-users are moreinterested by the maximal positioning errors than by a relative value. However a 
ondition number may be ana

eptable performan
e index if:1. its value is 
onsistent with the maximal positioning errors2. its 
al
ulation over a given workspa
e is easier than a similar 
al
ulation for the maximal positioningerrorsWe will examine the later point in the next se
tions and will fo
us here on the �rst point. The simplest way toexamine the 
onsisten
y of a 
ondition number is to 
onsider a given robot and a set of poses, a 
on�guration9



in whi
h it is easy to 
al
ulate both the 
ondition number and the maximal positioning errors. We may thenrank the poses a

ording to the maximal positioning errors and 
ompare it with the ranking a

ording to the
ondition number.For that purpose we have used one of our Gough platform prototype and we have 
hosen three representativereferen
e poses. They are de�ned by the 
oordinates of the 
enter of the platform and the 3 Euler angles asP1=x = y = 0; z=53 
m,  = 0, � = 0, � = 0 (roughly the pose obtained for the mid-stroke of the a
tuators),P2=x = y = 0; z=53 
m,  = 30Æ, � = 0, � = 0 (whose orientation is roughly 1/3 of the total possible rotationaround the z axis) and P3=x = y = 10; z=53 
m,  = 0, � = 0, � = 0 (
lose to the border of the translationworkspa
e for this orientation). We have then 
omputed the absolute value of the maximal positioning errorat these poses, given in table 1, obtained as the sum of the absolute value of the elements of the rows of thekinemati
 ja
obian, that has been obtained by a numeri
al inversion of the inverse ja
obian. It 
an be seen inPose �Xx �Xy �Xz �X�x �X�y �X�zP1 0.1184 0.1268 0.010087 0.1185 0.1184 0.697P2 0.1189 0.1274 0.01266 0.1333 0.1429 0.808P3 0.123 0.1309 0.0372 0.15 0.1663 0.7208Table 1: Maximal positioning errors for the 3 referen
e posesthis table that the positioning errors are signi�
antly larger for P2 and P3 
ompared to P1. As for P3 the errorsare usually larger 
ompared to P2 ex
ept for the rotation around z. Hen
e as far as a

ura
y is 
on
erned theordering of the poses from the most to the least a

urate is P1; P2; P3 and we expe
t to obtain a similar orderingfor the 
ondition numbers.For the 
al
ulation of the 
ondition numbers we have used both the inverse kinemati
 ja
obian matrix anda normalized inverse ja
obian matrix J�1n obtained by dividing the orientation 
omponents of the J�1k by 53,whi
h is roughly the value of the legs lengths at pose P1. The 
onsidered a

ura
y indi
es will be� Cd: the determinant of J�1k� C2; Cn2 : the 2-norm 
ondition number of J�1k , J�1n� CF ; CnF : the Frobenius-norm 
ondition number of J�1k , J�1n� C32 ; C3F : the 2-norm and Frobenius norm 
ondition number of the inverse ja
obian matrix obtained whenthe inverse kinemati
s equations are based on the 
oordinates of 3 points of the end-e�e
tor. The 
hosenpoints will be all possible triplets in the set Bi. We will provide a drawing that des
ribes the result forall 20 possible 
ombinations in whi
h we will present the ratio �(P2)=�(P1) and �(P3)=�(P1).� Mt;Mo: the manipulability index of the restri
tion of Jk to its translation, orientation partsFor all 
ondition numbers we expe
t to have a value that de
reases in the order P1; P2; P3. For the determinantwe expe
t an absolute value that de
rease in the same order. The 
omputed 
ondition numbers for this verysimple test are presented in table 2 (for C32 ; C3F we provide the minimal and maximal value obtained for allreferen
e points 
hoi
e) and the relative values of C32 ; C3F are presented in �gure 3.From this very simple analysis we may dedu
e interesting results:10



Cd C2 Cn2 CF CnF C32 C3F Mt MoP1 -29.22 75.14 63.9 152.8 70.2 [9.55,55.47℄ [258.8,3204.9℄ 12.65 0.04266P2 -24.64 75.16 73.8 154 80.9 [9.62,43.84℄ [218.8,2383.6℄ 20.451 0.0754P3 -23.93 80.65 68.4 158.3 74.7 [10.06,58.95℄ [286.5,3618℄ 13.995 0.0471Table 2: A

ura
y indi
es at the 3 referen
e poses

1 3 5 7 9 11 13 15 17 19 200.600.650.700.750.800.850.900.951.001.051.101.13
C32 (P2)C3F (P2) C(2P3)C3F (P3)

Figure 3: The value of C32 (P23)=C32 (P1); C3F (P23)=C3F (P1) a

ording to the 
hoi
e of the 3 referen
e points onthe platform� Cd: the value of this index is 
oherent with the maximal positioning errors� C2: it may be seen that the di�eren
e is surprisingly very small between P1; P2 and signi�
ant betweenP3; P2. This is not what we may expe
t from an a

ura
y index� Cn2 : the a

ura
y ordering between P2; P3 is not respe
ted� CF : the a

ura
y ordering is respe
ted but the 
hange between P1 and P2 is relatively small� CnF : the a

ura
y ordering between P2; P3 is not respe
ted� C32 ; C3F : for P3 the 
ondition number is either very 
lose to the one of P1 (C32 ) or always larger. On the
ontrary for P2 the 
ondition number is in general signi�
antly smaller than the 
ondition number forP1 and sometime very 
lose but in all 
ases smaller than the 
ondition number for P3. This 
ompletelydisqualify these 
ondition numbers as a

ura
y indi
es11



� Mt;Mo: the manipulability indi
es of P1; P3 are 
lose while the one of P2 is signi�
antly larger. A

ordingto the maximal positioning errors this disqualifyMt as an a

ura
y index whileMo does not re
e
t exa
tlythe orientation errorsHen
e none of these 
ondition numbers exhibits a 
ompletely 
onsistent behavior with respe
t to the positioningerrors of this robot. This simple example shows 
learly that the 
on
ept of 
ondition number has to be 
arefully
onsidered when addressing optimal design for robot.5 IsotropyAn isotropi
 pose of a robot is de�ned as a pose where � is equal to 1 and a robot whi
h has only isotropi
poses in its workspa
e is 
oined an isotropi
 robot. Designing a parallel robot that is isotropi
 in one pose oris isotropi
 over its full workspa
e is often 
onsidered as a design obje
tive [1, 2, 5, 13, 46, 52, 55℄. A trivialexample of isotropi
 robot is a serial Cartesian X-Y robot whose kinemati
 ja
obian matrix is the identity. Butthis is a surprising denomination as, stri
to sensu, isotropy indi
ates that the performan
es of a robot shouldbe the same whatever is the motion dire
tion. Now if we assume that all the a
tuator velo
ities of a X-Y robotare bounded by 1, then the maximal velo
ity of the end-e�e
tor lie in the range [1;p2℄: as far as velo
ity ora

ura
y are 
onsidered su
h robot is far from isotropy. Still the 
on
ept may have some interest: for exampleany Cartesian robot whose a
tuator axis are not mutually orthogonal will exhibit a ratio between its maximalvelo
ities over its workspa
e that will be larger than p2. Hen
e, instead of using the name "isotropi
 robot"we may 
onsider using the name "maximally regular robot". Looking for a maximally regular robot is thusjusti�ed but, ex
ept for robot having a small workspa
e [23℄, designing a robot to be isotropi
 only in one poseis less justi�ed.Note also that for redundant robots the isotropy 
on
ept is even less justi�ed. For example Krut [28℄ exhibitsa redundant robot whose kinemati
 behavior is the same than a serial Cartesian X-Y table, but whose 
onditionnumber is not 1.6 Global 
onditioning indi
esThe 
ondition number is a lo
al indi
ation for the dexterity of a robot. To evaluate the dexterity of a robotover a given workspa
e W Gosselin [15℄ has introdu
ed the global 
onditioning index (GCI) as:GCI = RW � 1� � dWRW dW :whi
h 
orrespond to the average value of 1=�. Clearly this 
on
ept makes sense for the optimal design of robotfor whi
h the extremal and average value of any performan
e are important design fa
tors. The main problemwith the GCI, apart of the validity of the 
ondition number, that has been dis
ussed in a previous se
tion, isits robust 
al
ulation, i.e. its 
omputation as a number that is reasonably 
lose to its true value. Clearly we
annot expe
t to obtain a 
losed-form for the GCI and we must rely on a numeri
al evaluation. The usualmethod is to dis
retize the workspa
e using a regular grid, 
ompute 1=�i at ea
h node Ni and approximate theGCI as GCIa, the sum of the 1=�i divided by the number of nodes and by the workspa
e size. This 
al
ulationmay be 
omputer intensive as its 
omplexity is exponential with respe
t to the number of d.o.f. of the robot.12



Furthermore this method does not allow to get a bound on jGCI�GCIaj. To deal with this error problem itis sometimes assumed that if the result GCIa(m1) with m1 sampling points is 
lose to the result GCIa(m2)obtained with m2 points, m2 being signi�
antly larger than m1, then GCIa(m2) is a good approximation of theGCI. This assumption will be true only if the 
ondition number is smooth enough, a 
laim that is diÆ
ult tosupport.To illustrate this problem 
onsider for example a simple planar serial 2R robot with identi
al link lengthsset to 10. The GCI 
an be 
omputed very pre
isely with a numeri
al integration s
heme as it depends only ona single parameter. We then use the dis
retization method by sampling the parameter using 10, 20, : : :, m1,m2 = m1 + 10 points and stop the 
al
ulation when the relative error between GCIa(m1);GCIa(m2) is lowerthan 0.5% and approximate the GCI by GCIa(m2). For this example when m1 = 50 the relative error is 0.377%while the relative error on the GCI is still 1.751%, i.e. about 5 times larger. It may be assumed that su
h errorwill even be larger for more 
omplex robot.A better evaluation will probably be obtained by using Monte-Carlo integration (with an error that de
reasesas 1=pn where n is the number of sampling nodes) or quasi-Monte Carlo. In the previous example (whi
h isnot favorable for Monte-Carlo method as there is only one parameter) we found out that by using the same stop
riteria the relative error on the GCI was redu
ed to 0.63%. A 
erti�ed evaluation of the global 
onditioningindex is therefore an open problem but nevertheless the 
al
ulation of su
h index will probably be 
omputerintensive.Another global 
onditioning index is the uniformity of manipulability de�ned as the ratio of the minimumand maximum values of the manipulability index over a given workspa
e [38℄. It su�ers from the same problemsthan the GCI.7 Challenges for a

ura
y indi
esAs seen in the previous se
tions 
lassi
al dexterity indi
es are not very adequate for parallel robots. The purposeof this se
tion is to examine what other possible indi
es may be of interest, espe
ially in view of optimal design.A �rst possibility, that is almost always required by end-users, it to determine the maximal value of thepositioning errors over the workspa
e [25, 37℄. This is a diÆ
ult optimization problem as we are looking for aglobal optimum and as we do not have an analyti
 formulation for the obje
tive fun
tion. But we must notethat for 
omparison purpose it is not ne
essary to 
ompute exa
tly the maximal errors as soon as we are ableto bound the 
al
ulation errors and if the algorithm allows to de�ne upper bounds on this error.We have presented in a re
ent paper a a 
omputer intensive method for �nding the largest maximal posi-tioning errors, up to an arbitrary a

ura
y, of a 6 d.o.f. robot [32℄. It is a derivation of a more general algorithmthat allows to determine an approximation of all the design parameters so that the 
orresponding robots willhave positioning a

ura
ies lower than given thresholds.We will now outline the prin
iple of this algorithm. If we assume that the pose parameters Xi all lie in arange Ri, then interval analysis allows to 
ompute a range for ea
h element of J�1k , that will in
lude any possiblevalue of the element for any pose whose parameters lie in the ranges Ri. Hen
e J�1k is an interval matrix J (R)that depends upon the ranges Ri. The maximal positioning errors will always be obtained for extremal valuesof the joint measurement errors, that may be �xed arbitrary to -1, 1 and we will denote by ��e any jointerrors ve
tor whose element has a value -1 or 1.A 
lassi
al problem in interval analysis is to bound the possible solutions �X of an interval linear systemJ (R)�X = ��e i.e. to determine a range Si for ea
h �Xi so that for any instan
e of J�1k in J (R) the13



solution in �Xi of the linear system J�1k �X = ��e is in
luded in Si. Usually Si is an over approximationof the solution set for �Xi, whi
h will 
ome 
loser to this solution set as soon as the width of the ranges Ride
reases. With these elements a bran
h and bound algorithm allows to 
ompute the maximal value of �Xiup to an arbitrary a

ura
y. The idea is to 
ompute the maximal value of �Xi for a given set of ranges R bysele
ting an arbitrary pose in R (e.g. the pose de�ned by the mid-point of the ranges in R). This maximalvalue is used to update a 
urrent estimation �XMi of the maximum of �Xi. If Si is su
h that the absolutevalue of its lower and upper bounds are smaller than �XMi + �, where � is the a

ura
y with whi
h we wantto 
al
ulate the maximal positioning error, then there is no pose in R su
h that j�Xij > �XMi . Otherwise we
hoose a range in R, bise
t it and 
reate two new elements R1; R2. All these elements will be submitted to thesame pro
ess, that will stop when all elements have been pro
essed.Beware that su
h algorithm is usually 
omputer intensive and needs to be 
arefully implemented to beeÆ
ient, as drasti
 di�eren
es in the 
omputation time will be obtained a

ording to the implementation.But if the values of the maximal positioning errors over a workspa
e are ne
essary, they are not suÆ
ientto determine an optimal design. Clearly the average values of the maximal positioning errors and even theirvarian
e will be needed. Unfortunately there is no known algorithms to 
ompute these a

ura
y indi
es and�nding su
h algorithms is one of the greatest 
hallenge of a

ura
y analysis.8 Con
lusionClassi
al lo
al dexterity indi
es de�ned for serial robot, su
h as the 
ondition number or the manipulabilityindex, are not very appropriate for parallel robots. Furthermore we have shown that they do no re
e
t exa
tlythe positioning a

ura
y of the robot. Global dexterity indi
es based on these lo
al indi
es are thereforequestionable and we have also shown that their guaranteed numeri
al evaluation (i.e. with a bound on the
al
ulation error) is an open problem. In our opinion the most appropriate global a

ura
y indi
es are thedetermination of the maximal positioning errors, their average values and their varian
e. A real 
hallenge is todesign algorithms for 
al
ulating these indi
es. One may take advantage that it is not ne
essary to 
al
ulatethese indi
es exa
tly as soon as it is possible to impose a bound on the 
al
ulation error. Indeed for 
omparisonpurposes an approximate value with a guaranteed error will be suÆ
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