
Jaobian, manipulability, ondition number and auray of parallel robotsJ-P. MerletINRIA, BP 93, 06902 Sophia-Antipolis, FraneAbstrat: Although the onepts of jaobian matrix, manipulability and ondition number exist sinethe very early beginning of robotis their real signi�ane is not always well understood. In this paper were-visit these onepts for parallel robots as auray indies in view of optimal design. We �rst show that theusual jaobian matrix derived from the input-output veloities equations may not be suÆient to analyze thepositioning errors of the platform. We then examine the onept of manipulability and show that its lassialinterpretation is erroneous. We then onsider various ommon loal dexterity indies most of whih are basedon the ondition number of the jaobian matrix. It is emphasized that even for a given robot in a partiularpose there are a variety of ondition numbers and that their values are not oherent between themselves butalso with what we may expet from an auray index. Global onditioning indies are then examined. Apartof the problem of being based on the loal auray indies that are questionable, there is a omputationalproblem in their alulation, that is negleted most of the time. Finally we examine what other indies may beused for optimal design and show that their alulation is most hallenging.1 IntrodutionWe will use a relatively general de�nition of parallel robots, fousing on non-redundant mehanisms. A parallelrobot is de�ned as a mehanism having at least two kinematis hains onneting the base to the end-e�etor,the purpose being to ontrol n � 6 d.o.f. of the end-e�etor while the other 6� n d.o.f. have a onstant valueby using n one d.o.f. atuated joints. Furthermore it will be assumed that when the atuator are loked themobility of the end-e�etor is 0 and that the non atuated joints have one d.o.f. Suh de�nition overs thelassial 6 d.o.f. robots suh as the Gough [17℄ and Hexa [39℄ platforms but also robot with less than 6 d.o.f.suh as the Delta [9℄ or 3-UPU [47℄ robots.Parallel robots are nowadays leaving aademi laboratories and are �nding their way in an inreasinglylarger number of appliation �elds suh as telesopes, �ne positioning devies, fast pakaging, mahine-tool,medial appliation. A key issue for suh use is optimal design as performanes of parallel robots are verysensitive to their dimensioning. Optimal design methodologies have to rely on kinetostati performane indiesand auray is learly a key-issue for many appliations [19℄. It has also been a key-issue for serial robots andonsequently this problem has been extensively studied and various auray indies have been de�ned. Theresults have been in general diretly transposed to parallel robots. The purpose of this paper is to review howwell these indies are appropriate for parallel robots. For that purpose it is neessary to examine the oneptof jaobian and inverse jaobian matries that are essential when examining the positioning auray of theend-e�etor.2 Jaobian and inverse Jaobian matrixLet Xa denotes the generalized oordinates of the end-e�etor omposed of parameters desribing the desiredn d.o.f. of the end-e�etor while X denotes all the generalized oordinates of the end-e�etor i.e. a set1



of parameters that allow to desribe ompletely its pose (translation and orientation). We will impose noonstraints on the hoie of the parameters in X (e.g. for a Gough robot with a planar platform the pose maybe represented by the 9 oordinates of 3 partiular non-aligned points on the end-e�etor).The twistW of the end e�etor is omposed of its translational and angular veloitiesV;
 and the restritedtwist Wa is de�ned as the restrition of W to the n desired d.o.f. of the robot. It is well known that for robothaving at least 2 rotational d.o.f. W is not the time-derivative of X as there is no representation of theorientation whose derivatives orresponds to the angular veloities. However there exists usually matries H;Ksuh that W = H _X _X = KW (1)The internal geometry of the robot may be desribed by a set of parameters that desribe the motion ofsome or all of the joints, inluding the passive, non atuated, one. These parameters are regrouped in the jointvariables vetor �.The usual de�nition of the jaobian matrix Jk involves a joint variable vetor �a that is restrited to theatuated joints and is based on the linear relation between the atuated joint veloities _�a and the restritedtwist Wa: Wa = Jk _�a (2)As in this paper we onsider only non-redundant robots the matrix Jk is square and we will all it the kinematijaobian. A feature of parallel robots is that it is usually easy to establish an analytial form for J�1k while itis often impossible (or at least very diÆult) to obtain Jk. To alulate the inverse kinemati jaobian we mayuse a veloity analysis but as mentioned by Gosselin [15℄ it is also possible to use the kinemati losure-loopequations whose general form is: E(Xa;�a) = 0 (3)As we have assumed that the robot is non redundant and its mobility is 0 when the atuators are loked theremust be exatly n suh equations. By di�erentiating the system we get�E��a _�a + �E�Xa _Xa = Uk _�a +Va _Xa = 0 (4)Using the restrition of equation (1) to Wa and provided that Uk is not singular, we getJ�1k = �U�1k VaKaWa (5)The singularity problem of parallel robots has been initially disussed by Gosselin and Angeles [16℄ and theydistinguish serial singularity (or type 1) obtained when Uk is singular and parallel singularity (or type 2) whenVa is singular. Aording to this de�nition in a parallel singularity the end-e�etor may move while the atuatorsare loked, a typial ase of positioning errors as the measurements of the atuated joints variables do not hangealthough there is a displaement of the end-e�etor. Hene auray analysis is also onneted to singularityanalysis.But we may also de�ne other jaobian matries. We may inlude parameters in � that desribe the motionof passive joints, whih are usually numerous in parallel robots. Hene � may be de�ned as a N -dimensionalvetor (�a;�p) where �p orrespond to the parameters of the passive joints and N being the total number ofjoints, atuated or not, of the robot.Although some robot are designed on purpose to have n < 6 ontrollable d.o.f. while the other d.o.f. aresupposed to have a onstant value, still the end-e�etor is a 6 d.o.f. rigid body and positioning errors on all2



d.o.f. should be examined when looking for an optimal design. It is thus interesting to determine an inversejaobian that involves the full twist W of the end-e�etor.To determine this inverse jaobian matrix we write the kinematis losure-loop equations asG(�;X) = 0 (6)The total number of unknowns in these equations is N + n. As we have assumed that the robot mobility is0 when the n atuators are loked the system of equation G must have a �nite number of solutions in thaton�guration i.e. the number of equations in G must be equal to the number of unknowns, whih is N .By di�erentiating equation (6) we get:�G�� _�+ �G�X _X = A _�a +B _�p + C _X = 0 (7)where A is a N � n matrix, B is N � (N � n) while matrix C is N � 6. Zlatanov [58℄ has derived a similarexpression with the di�erene that he is using the restrited twist Wa with the assumption that Wa may beobtained as Wa = T�. He proposes to write equation (7) as:� A B CK �0� _�a_�pW 1A = L0� _�a_�pW 1A = 0 (8)where L is N � (N + 6). This may also be written as� � A B � _� = D _� = CKW (9)where D is N �N . Provided that D is not singular we may now derive an inverse jaobian suh that_� = �D�1CKW = J�1W (10)where J�1 is N � 6.In most ases however a veloity analysis allows to eliminate the passive joint veloities _�p in (10) to obtaina simpler inverse jaobian matrix through a relation that relates only _�a to W:� _�aO � = J�1fk W (11)where J�1fk is N � 6 and will be alled the full inverse kinematis jaobian. The usual inverse jaobian matrix isthe restrition of J�1fk to Wa. An important property of the inverse jaobian J�1 of (10) is that it has the samerank than the full inverse kinemati jaobian J�1fk whatever is the pose of the end e�etor.Zlatanov determine 6 various ases, that he alls singularity, in whih equation (8) has not a generi behavior.As we are fousing on the motion of the end-e�etor we will just mention the ases that may involve suh motion:� redundant output (RO): there are W 6= 0;�p suh that (8) is satis�ed with �a = 0. In other words theend-e�etor is moving while the atuators are loked (whih the usual de�nition of a singularity) and thefull inverse kinemati jaobian will not have full rank3



� inreased instantaneous mobility (IIM): when the rank of L is lower than NIt must be noted that equation(10) desribes an intrinsi property of the robot. We may hange the poseparameters vetor X (e.g. for a Gough robot with a planar platform by hoosing as elements of X the 9oordinates of 3 partiular non-aligned points on the end-e�etor) but will get the same equation.We may further extend equation (7) to take into aount the geometrial parameters P of the robot (e.g. theloation of the anhor points of the legs in a Gough platform). For that purpose the kinematis equations willbe written as G(P ;�;X) = 0 and the matrix of the partial derivatives of G with respet to P will allow oneto quantify the inuene of the errors on P (due, for example, to manufaturing toleranes) on the positioningerrors of the end-e�etor. We will not address this issue although this inuene may be important for parallelrobots [10, 35, 30, 33, 45, 50, 51℄ but may partly be dereased by using alibration.As may be seen there is not a single inverse jaobian matrix but a multipliity of them. It is also important tonote that elements of the inverse jaobian matrix involving the full twist W of the end-e�etor will usually notbe homogeneous in terms of units. Hene many properties of this matrix suh as its determinant, trae, : : : willnot be invariant under a hange of units (see [42℄ for a disussion on the invariane of dexterity indies). Thiswill also be the ase of the inverse kinemati jaobian for robot involving both translation and rotational d.o.f.for the end-e�etor. Finally it must be noted that by duality the inverse kinemati jaobian is also involved,through its transpose, in the stati analysis of parallel robots i.e. the relation between the fores/torques inthe joints and wrenh on the platform. Hene auray indies will be deeply onneted to fore transmissionindies [8, 26℄.In this paper we are interested in the possible motion of the end-e�etor that annot be deteted undermeasurement of the parameters in �a. This may our in two di�erent ases:� unmeasured motion of the ative joints: this orresponds to a limitation ��a in the auray of themeasurement� singularity lassi�ed by Zlatanov as redundant output (RO) or inreased instantaneous mobility (IIM)To study both ases it is neessary to use the full inverse kinemati jaobian and not only the inverse kinematijaobian as emphasized in the example presented in the next setion.2.1 Example: the 3� UP U robotTsai [47℄ has proposed the 3� UP U robot as a 3 d.o.f. translation robot (�gure 1). Eah leg of this robot isonstituted, starting from the base, by a U joint followed by an extensible leg, whose length may be modi�ed bya prismati atuator, and whih is terminated by another U joint whose axis are the same than the U joint onthe base. This onstraint allows theoretially to obtain only translation for the end-e�etor. This example willallow us to establish a methodology for determining the full inverse kinemati jaobian and it will also enable toshow the importane of this matrix on a pratial example. Indeed suh a robot was designed at Seoul NationalUniversity (SNU) and was exhibiting a strange behavior in the poses where the legs have an idential length:although the prismati atuators were loked, the end-e�etor was exhibiting signi�ant orientation motion.Two possible reasons were onsidered for explaining this phenomena:� the loation of the end-e�etor was very sensitive to manufaturing toleranes. Indeed this robot has onlyin theory 3 translational d.o.f., provided a perfet alignment of the U axis on the base and platform. Inpratie suh alignment annot be realized, whih may lead to rotational d.o.f. The e�et of manufaturing4



Figure 1: The 3� UPU robottoleranes on the positioning errors has been studied by Han and Parenti-Castelli [18, 34℄ and althoughit was shown that the robot was indeed very sensitive, the large rotational motion observed on the SNUprototype annot be explained only by this sensitivity� the robot was in a singular pose: this was a-priori disarded as the determinant of the inverse kinematijaobian was not 0 in any of the inriminated posesThis phenomena was �rst explained by Bonev and Zlatanov [4℄ as a onstraint singularity and later by DiGrego-rio, Joshi and Wolf [11, 24, 53℄ and it has now beome a lassial example of singularity that annot be explainedonly by looking at the input-output veloities equations i.e. by using only the inverse kinemati jaobian.To start with, we will determine the analytial form of the full inverse kinemati jaobian. We will denoteby B1; B2; B3 the enter of the U joints on the platform and by V;
 the translational and angular veloities ofthe end-e�etor. The veloity VBi of point Bi isVBi = V +BiC�
 (12)Let us de�ne ni as the unit vetor of the leg i, �i the length of this leg and _�i the prismati atuator veloity.We may ompute the dot produt of the right and left terms of the previous equation:VBi :ni = _�ini = V:ni + (BiC�
):ni = V:ni + (CBi � ni):
 (13)Now let us de�ne ui;vi the unit vetors of the two joint axis of the U joint at Bi, these vetors being the samefor the base and platform. The angular veloity of the leg !l with respet to the base and the angular veloityof the platform !p with respet to the leg are!l = _�iAui + _�iAvi !p = _�iBui + _�iBviThe angular veloity of the platform is obtained as
 = !l + !p = ( _�iA + _�iB)ui + ( _�iA + _�iB)vi5



Now de�ne si = ui � vi and ompute the dot produt of the right and left terms of the previous equation bysi. We get the onstraint equation: si:
 = 0 (14)that states that the end-e�etor annot rotate around a line going throughBi, whose unit vetor is si. Combiningequations (13, 14) we get the full veloities equations involving the twist W as� _�i0 � = J�1fk W = � ni (CBi � ni)0 si �W (15)whih establish the full inverse kinemati jaobian. The inverse kinemati jaobian may be extrated from J�1fkas the 3� 3 matrix whose rows are the ni vetors.Important information may be gained from this matrix. First of all the rows of the matrix are Pl�ukervetors that desribe lines in spae. The 3 �rst rows are the Pl�uker vetors of the line assoiated to the legsof the robot while the 3 last rows orrespond to lines at in�nity. Hene the singularity analysis approah basedon line geometry may be applied although the robot has less than 6 d.o.f. As a matter of fat it appears thatfor all known parallel robots, the rows of the full inverse kinematis jaobian will always be Pl�uker vetor,although to the best of my knowledge no formal proof has been given that this will always be the ase. As faras auray analysis is onerned it is important to onsider the lower part of J�1fk . They represent the linesat in�nity that are lying in any plane perpendiular to si. Aording to line geometry the three lines will bedependent if the vetors si are lying in the same plane or are parallel i.e. if s1:(s2 � s3) = 0. In that ase theplatform with loked atuators will exhibit orientation motion that may be in�nitesimal or �nite aording tothe geometry of the robot [4℄. It happens that the design of the SNU robot was suh that, with atuators ofthe same length, the axis of the U joints were all horizontal, leading to parallel vertial si and therefore to arotational singularity.There are many di�erent types of 3-UPU robots (for example it is possible to exhibit a 3-UPU that has onlyrotational motion) and Zlatanov [57℄ has presented an extensive analysis of the singularity of these robots.This example has shown that auray analysis annot be deoupled from singularity analysis and that is italways neessary to onsider the full inverse kinemati jaobian.3 ManipulabilityNow that we are on a safe ground as far as the inverse jaobian is onerned. let us onsider another lassialonept: the kinemati manipulability whose purpose is to help quantify the manipulator's veloity transmissionapabilities or, equivalently, the dexterity of the robot.For a given robot it is realisti to assume that the joint measurement errors are bounded and onsequentlyso will be the positioning errors. The norm of the bound may be hosen arbitrary as (11) is linear, so that asimple saling will allow to determine the positioning errors from the errors obtained for a given bound on thejoint measurement errors. A value of 1 for this bound is usually hosen so that:jj��jj � 1 (16)whih leads to �XT J�TJ�1�X � 1 (17)6



If the Eulidean norm is used (16) represents a irle in the joint errors spae. This irle is mapped throughmatrix J�TJ�1 into an ellipse in the generalized oordinates error spae. More generally, the mapping transformthe hyper-sphere in the joint errors spae into an ellipsoid, usually alled the manipulability ellipsoid, in thegeneralized oordinates error spae. A lassial geometrial interpretation of this relation, that may be foundin many text books, is presented for the 2D ase in �gure 2. It is usually laimed that the size and shape of��1 ��2 �x �yJ�TJ�1 �min �max
1 1-1-1

��1��2 �x�y �max�min1
-1 1-1 J

Figure 2: The mapping between the joint errors spae and the generalized oordinates error spae indued byJ�TJ aording to the norm: on top the Eulidean norm and on bottom the in�nity norm.the ellipsoid are indies of the "ampli�ation" between the joint spae errors and the generalized oordinateserrors. More preisely the lengths of the prinipal axis of the ellipsoid, whih orrespond to the minimal andmaximal eigenvalues �min; �max of J�TJ�1, are onsidered as an image of the minimum and maximum veloityampli�ation fator. The loser these lengths are the loser is the manipulability ellipsoid to a irle. In orderto evaluate this loseness Yoshikawa [54℄ introdues a manipulability index for serial robot asm(J) =qjJJT j (18)whih orrespond to the produt of the half axis lengths of the ellipsoid.In fat the use of the Eulidean norm in (16) is not realisti: it implies for example that if one of the jointmeasurement error is 1, then by some mysterious inuene all the other joint errors beome exatly 0. Theappropriate norm is the in�nity norm that states that the absolute value of the joint errors are independentlybounded by 1. With this norm equation (16) represents a n-dimensional square in the joint errors spae thatis mapped into what we will all the manipulability polyhedron, that inludes the manipulability ellipsoid,in the generalized oordinates errors spae and �gure 2 illustrates this mapping in the 2D ase. Using themanipulability ellipsoid it is possible to believe that there are perfet mappings having a onstant ampli�ationfator over the whole workspae. This is no more the ase with the manipulability polyhedron.7



It must be noted that, apart of being more realisti, the mapping with the in�nity norm leads to geometrialobjet that an be more easily manipulated than the ellipsoid. For example assume that one want to determinewhat are all the possible end-e�etor veloities that an be obtained in 2 di�erent poses of the end-e�etor.For that purpose we will have to alulate the intersetion of the 2 polyhedra obtained for the 2 poses, awell known problem of omputational geometry, that an be muh more easily solved than omputing theintersetion of 2 ellipsoids. Finally note that the manipulability index of Yoshikawa haraterizes the volume ofthe manipulability polyhedron.But major drawbaks of the manipulability onept are that it mixes arbitrary translational and rotationalapabilities and that it is usually not invariant with respet to the hoie of the units. As a onsequene it hasbeen proposed to split the jaobian into its translational and rotational parts and to alulate the manipulabilityindex for eah of them. But this not satisfatory for estimating the ampli�ation fator for motion involvingboth translation and rotation.4 Condition numberA large dimension along a given axis of the manipulability polyhedron indiates a large ampli�ation error. Itis therefore neessary to quantify this ampli�ation fator. Let us onsider the linear system:J�1�X = �� ;where J�1 is a n � n inverse kinemati jaobian matrix. A possible error ampli�ation fator for this systemexpresses how a relative error in � gets multiplied and leads to a relative error in X. It haraterizes in somesense the dexterity of the robot and has been proposed as a performane index. We use a norm suh thatjjJ�1�Xjj � jjJ�1jjjj�Xjj ;and obtain jj�XjjjjXjj � jjJ�1jjjjJjj jj��jjjj�jj ;The error ampli�ation fator, alled the ondition number �, is therefore de�ned as�(J) = �(J�1) = jjJ�1jjjjJjj :The ondition number is thus dependent on the hoie of the matrix norm. The most used norms are:� the 2-norm de�ned as the square root of the largest eigenvalue of matrix J�TJ�1: the ondition numberof J�1 is thus the square root of the ratio between the largest and the smallest eigenvalues of J�TJ�1,� the Eulidean (or Frobenius) norm de�ned for the m � n matrix A by: jjAjj = qPi=mi=1 Pj=nj=1 jaij j2 orequivalently asptr(ATA): if �i denotes the eigenvalues of J�TJ�1, then the ondition number is the ratiobetween P�2i and Q �i. Note that sometime is also used a weighted Frobenius norm in whih ATA issubstituted by ATWA, where W is a weight matrix whose purpose is to "normalize" the omponents ofthe matrix 8



For these two norms, the smallest possible value of the ondition number is 1. The inverse of the onditionnumber, whih has a value in [0,1℄, is also often used. Whatever is the hoie for the norm, a value of 0 indiatesthat the inverse jaobian matrix is singular. The neessity of speifying the norm and the hange that the hoieof the norm indues will be illustrated later on in this setion. But we may illustrate it on the simple exampleof a serial Cartesian X-Y table. A possible matrix norm is the in�nity norm de�ned as the maximum row sum,where the row sum is the sum of the magnitudes of the elements in a given row. If we de�ne the referene frameas the one having the same axis diretion than the the two prismati atuators, then the jaobian matrix of therobot is the identity, whose ondition number using the in�nity norm is 1. Now let's rotate the referene frameby 45 degrees around the vertial axis: the row of the jaobian matrix will be (p2=2;�p2=2), (p2=2;p2=2)and its ondition number using the in�nity norm is 2. Hene the laim that every matrix norm is equivalent isnot exatly true from a kinemati view point.The ondition number has the main advantage of being a single number for desribing the overall kinematibehavior of a robot. It is used as an index to desribe� the auray/dexterity of a robot [40, 41, 44℄� the loseness of a pose to a singularity [12, 14, 49℄. It is in general not possible to de�ne a mathematialdistane to a singularity for robots whose d.o.f. is a mix between translation and orientation: hene theuse of the ondition number is as valid an index than any other one.� as a performane riteria for optimal design and robots omparison [3, 6, 20, 22, 21, 31, 43, 48, 56℄� as a riteria to determine the useful workspae of a robot [7℄The de�nition of the ondition number makes lear that we annot alulate its analytial form as a funtionof the pose parameters exept for very simple robot. But robust linear algebra software allows to alulate itnumerially for a given pose.But for robot having both translation and orientation d.o.f. there is a major drawbak of the onditionnumber: the matrix involved in its alulation are not homogeneous in terms of units. Hene the value ofthe ondition number for a given robot and pose will hange aording to the unit hoie, while learly thekinemati auray is onstant. To deal with this problem Ma and Angeles [29℄ and Kim [27℄ suggested tode�ne a normalized inverse jaobian matrix by dividing the rotational elements of the matrix by a length suhas the length of the links in a nominal position, or the natural length de�ned as that whih minimizes theondition number for a given pose. Still the hoie of the length remains arbitrary as it just allows to de�nea orrespondene between a rotation and a translation and as mentioned by Park [36℄ "this arbitrariness is anunavoidable onsequene of the geometry of SE(3)".The ondition number is not an intuitive way to measure the auray of a robot. Indeed end-users are moreinterested by the maximal positioning errors than by a relative value. However a ondition number may be anaeptable performane index if:1. its value is onsistent with the maximal positioning errors2. its alulation over a given workspae is easier than a similar alulation for the maximal positioningerrorsWe will examine the later point in the next setions and will fous here on the �rst point. The simplest way toexamine the onsisteny of a ondition number is to onsider a given robot and a set of poses, a on�guration9



in whih it is easy to alulate both the ondition number and the maximal positioning errors. We may thenrank the poses aording to the maximal positioning errors and ompare it with the ranking aording to theondition number.For that purpose we have used one of our Gough platform prototype and we have hosen three representativereferene poses. They are de�ned by the oordinates of the enter of the platform and the 3 Euler angles asP1=x = y = 0; z=53 m,  = 0, � = 0, � = 0 (roughly the pose obtained for the mid-stroke of the atuators),P2=x = y = 0; z=53 m,  = 30Æ, � = 0, � = 0 (whose orientation is roughly 1/3 of the total possible rotationaround the z axis) and P3=x = y = 10; z=53 m,  = 0, � = 0, � = 0 (lose to the border of the translationworkspae for this orientation). We have then omputed the absolute value of the maximal positioning errorat these poses, given in table 1, obtained as the sum of the absolute value of the elements of the rows of thekinemati jaobian, that has been obtained by a numerial inversion of the inverse jaobian. It an be seen inPose �Xx �Xy �Xz �X�x �X�y �X�zP1 0.1184 0.1268 0.010087 0.1185 0.1184 0.697P2 0.1189 0.1274 0.01266 0.1333 0.1429 0.808P3 0.123 0.1309 0.0372 0.15 0.1663 0.7208Table 1: Maximal positioning errors for the 3 referene posesthis table that the positioning errors are signi�antly larger for P2 and P3 ompared to P1. As for P3 the errorsare usually larger ompared to P2 exept for the rotation around z. Hene as far as auray is onerned theordering of the poses from the most to the least aurate is P1; P2; P3 and we expet to obtain a similar orderingfor the ondition numbers.For the alulation of the ondition numbers we have used both the inverse kinemati jaobian matrix anda normalized inverse jaobian matrix J�1n obtained by dividing the orientation omponents of the J�1k by 53,whih is roughly the value of the legs lengths at pose P1. The onsidered auray indies will be� Cd: the determinant of J�1k� C2; Cn2 : the 2-norm ondition number of J�1k , J�1n� CF ; CnF : the Frobenius-norm ondition number of J�1k , J�1n� C32 ; C3F : the 2-norm and Frobenius norm ondition number of the inverse jaobian matrix obtained whenthe inverse kinematis equations are based on the oordinates of 3 points of the end-e�etor. The hosenpoints will be all possible triplets in the set Bi. We will provide a drawing that desribes the result forall 20 possible ombinations in whih we will present the ratio �(P2)=�(P1) and �(P3)=�(P1).� Mt;Mo: the manipulability index of the restrition of Jk to its translation, orientation partsFor all ondition numbers we expet to have a value that dereases in the order P1; P2; P3. For the determinantwe expet an absolute value that derease in the same order. The omputed ondition numbers for this verysimple test are presented in table 2 (for C32 ; C3F we provide the minimal and maximal value obtained for allreferene points hoie) and the relative values of C32 ; C3F are presented in �gure 3.From this very simple analysis we may dedue interesting results:10



Cd C2 Cn2 CF CnF C32 C3F Mt MoP1 -29.22 75.14 63.9 152.8 70.2 [9.55,55.47℄ [258.8,3204.9℄ 12.65 0.04266P2 -24.64 75.16 73.8 154 80.9 [9.62,43.84℄ [218.8,2383.6℄ 20.451 0.0754P3 -23.93 80.65 68.4 158.3 74.7 [10.06,58.95℄ [286.5,3618℄ 13.995 0.0471Table 2: Auray indies at the 3 referene poses
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Figure 3: The value of C32 (P23)=C32 (P1); C3F (P23)=C3F (P1) aording to the hoie of the 3 referene points onthe platform� Cd: the value of this index is oherent with the maximal positioning errors� C2: it may be seen that the di�erene is surprisingly very small between P1; P2 and signi�ant betweenP3; P2. This is not what we may expet from an auray index� Cn2 : the auray ordering between P2; P3 is not respeted� CF : the auray ordering is respeted but the hange between P1 and P2 is relatively small� CnF : the auray ordering between P2; P3 is not respeted� C32 ; C3F : for P3 the ondition number is either very lose to the one of P1 (C32 ) or always larger. On theontrary for P2 the ondition number is in general signi�antly smaller than the ondition number forP1 and sometime very lose but in all ases smaller than the ondition number for P3. This ompletelydisqualify these ondition numbers as auray indies11



� Mt;Mo: the manipulability indies of P1; P3 are lose while the one of P2 is signi�antly larger. Aordingto the maximal positioning errors this disqualifyMt as an auray index whileMo does not reet exatlythe orientation errorsHene none of these ondition numbers exhibits a ompletely onsistent behavior with respet to the positioningerrors of this robot. This simple example shows learly that the onept of ondition number has to be arefullyonsidered when addressing optimal design for robot.5 IsotropyAn isotropi pose of a robot is de�ned as a pose where � is equal to 1 and a robot whih has only isotropiposes in its workspae is oined an isotropi robot. Designing a parallel robot that is isotropi in one pose oris isotropi over its full workspae is often onsidered as a design objetive [1, 2, 5, 13, 46, 52, 55℄. A trivialexample of isotropi robot is a serial Cartesian X-Y robot whose kinemati jaobian matrix is the identity. Butthis is a surprising denomination as, strito sensu, isotropy indiates that the performanes of a robot shouldbe the same whatever is the motion diretion. Now if we assume that all the atuator veloities of a X-Y robotare bounded by 1, then the maximal veloity of the end-e�etor lie in the range [1;p2℄: as far as veloity orauray are onsidered suh robot is far from isotropy. Still the onept may have some interest: for exampleany Cartesian robot whose atuator axis are not mutually orthogonal will exhibit a ratio between its maximalveloities over its workspae that will be larger than p2. Hene, instead of using the name "isotropi robot"we may onsider using the name "maximally regular robot". Looking for a maximally regular robot is thusjusti�ed but, exept for robot having a small workspae [23℄, designing a robot to be isotropi only in one poseis less justi�ed.Note also that for redundant robots the isotropy onept is even less justi�ed. For example Krut [28℄ exhibitsa redundant robot whose kinemati behavior is the same than a serial Cartesian X-Y table, but whose onditionnumber is not 1.6 Global onditioning indiesThe ondition number is a loal indiation for the dexterity of a robot. To evaluate the dexterity of a robotover a given workspae W Gosselin [15℄ has introdued the global onditioning index (GCI) as:GCI = RW � 1� � dWRW dW :whih orrespond to the average value of 1=�. Clearly this onept makes sense for the optimal design of robotfor whih the extremal and average value of any performane are important design fators. The main problemwith the GCI, apart of the validity of the ondition number, that has been disussed in a previous setion, isits robust alulation, i.e. its omputation as a number that is reasonably lose to its true value. Clearly weannot expet to obtain a losed-form for the GCI and we must rely on a numerial evaluation. The usualmethod is to disretize the workspae using a regular grid, ompute 1=�i at eah node Ni and approximate theGCI as GCIa, the sum of the 1=�i divided by the number of nodes and by the workspae size. This alulationmay be omputer intensive as its omplexity is exponential with respet to the number of d.o.f. of the robot.12



Furthermore this method does not allow to get a bound on jGCI�GCIaj. To deal with this error problem itis sometimes assumed that if the result GCIa(m1) with m1 sampling points is lose to the result GCIa(m2)obtained with m2 points, m2 being signi�antly larger than m1, then GCIa(m2) is a good approximation of theGCI. This assumption will be true only if the ondition number is smooth enough, a laim that is diÆult tosupport.To illustrate this problem onsider for example a simple planar serial 2R robot with idential link lengthsset to 10. The GCI an be omputed very preisely with a numerial integration sheme as it depends only ona single parameter. We then use the disretization method by sampling the parameter using 10, 20, : : :, m1,m2 = m1 + 10 points and stop the alulation when the relative error between GCIa(m1);GCIa(m2) is lowerthan 0.5% and approximate the GCI by GCIa(m2). For this example when m1 = 50 the relative error is 0.377%while the relative error on the GCI is still 1.751%, i.e. about 5 times larger. It may be assumed that suh errorwill even be larger for more omplex robot.A better evaluation will probably be obtained by using Monte-Carlo integration (with an error that dereasesas 1=pn where n is the number of sampling nodes) or quasi-Monte Carlo. In the previous example (whih isnot favorable for Monte-Carlo method as there is only one parameter) we found out that by using the same stopriteria the relative error on the GCI was redued to 0.63%. A erti�ed evaluation of the global onditioningindex is therefore an open problem but nevertheless the alulation of suh index will probably be omputerintensive.Another global onditioning index is the uniformity of manipulability de�ned as the ratio of the minimumand maximum values of the manipulability index over a given workspae [38℄. It su�ers from the same problemsthan the GCI.7 Challenges for auray indiesAs seen in the previous setions lassial dexterity indies are not very adequate for parallel robots. The purposeof this setion is to examine what other possible indies may be of interest, espeially in view of optimal design.A �rst possibility, that is almost always required by end-users, it to determine the maximal value of thepositioning errors over the workspae [25, 37℄. This is a diÆult optimization problem as we are looking for aglobal optimum and as we do not have an analyti formulation for the objetive funtion. But we must notethat for omparison purpose it is not neessary to ompute exatly the maximal errors as soon as we are ableto bound the alulation errors and if the algorithm allows to de�ne upper bounds on this error.We have presented in a reent paper a a omputer intensive method for �nding the largest maximal posi-tioning errors, up to an arbitrary auray, of a 6 d.o.f. robot [32℄. It is a derivation of a more general algorithmthat allows to determine an approximation of all the design parameters so that the orresponding robots willhave positioning auraies lower than given thresholds.We will now outline the priniple of this algorithm. If we assume that the pose parameters Xi all lie in arange Ri, then interval analysis allows to ompute a range for eah element of J�1k , that will inlude any possiblevalue of the element for any pose whose parameters lie in the ranges Ri. Hene J�1k is an interval matrix J (R)that depends upon the ranges Ri. The maximal positioning errors will always be obtained for extremal valuesof the joint measurement errors, that may be �xed arbitrary to -1, 1 and we will denote by ��e any jointerrors vetor whose element has a value -1 or 1.A lassial problem in interval analysis is to bound the possible solutions �X of an interval linear systemJ (R)�X = ��e i.e. to determine a range Si for eah �Xi so that for any instane of J�1k in J (R) the13



solution in �Xi of the linear system J�1k �X = ��e is inluded in Si. Usually Si is an over approximationof the solution set for �Xi, whih will ome loser to this solution set as soon as the width of the ranges Ridereases. With these elements a branh and bound algorithm allows to ompute the maximal value of �Xiup to an arbitrary auray. The idea is to ompute the maximal value of �Xi for a given set of ranges R byseleting an arbitrary pose in R (e.g. the pose de�ned by the mid-point of the ranges in R). This maximalvalue is used to update a urrent estimation �XMi of the maximum of �Xi. If Si is suh that the absolutevalue of its lower and upper bounds are smaller than �XMi + �, where � is the auray with whih we wantto alulate the maximal positioning error, then there is no pose in R suh that j�Xij > �XMi . Otherwise wehoose a range in R, biset it and reate two new elements R1; R2. All these elements will be submitted to thesame proess, that will stop when all elements have been proessed.Beware that suh algorithm is usually omputer intensive and needs to be arefully implemented to beeÆient, as drasti di�erenes in the omputation time will be obtained aording to the implementation.But if the values of the maximal positioning errors over a workspae are neessary, they are not suÆientto determine an optimal design. Clearly the average values of the maximal positioning errors and even theirvariane will be needed. Unfortunately there is no known algorithms to ompute these auray indies and�nding suh algorithms is one of the greatest hallenge of auray analysis.8 ConlusionClassial loal dexterity indies de�ned for serial robot, suh as the ondition number or the manipulabilityindex, are not very appropriate for parallel robots. Furthermore we have shown that they do no reet exatlythe positioning auray of the robot. Global dexterity indies based on these loal indies are thereforequestionable and we have also shown that their guaranteed numerial evaluation (i.e. with a bound on thealulation error) is an open problem. In our opinion the most appropriate global auray indies are thedetermination of the maximal positioning errors, their average values and their variane. A real hallenge is todesign algorithms for alulating these indies. One may take advantage that it is not neessary to alulatethese indies exatly as soon as it is possible to impose a bound on the alulation error. Indeed for omparisonpurposes an approximate value with a guaranteed error will be suÆient.Referenes[1℄ Angeles J. The robust design of parallel manipulators. In 1st Int. Colloquium, Collaborative ResearhCentre 562, pages 9{30, Braunshweig, May, 29-30, 2002.[2℄ Baron L., Wang X., and Cloutier G. The isotropi onditions of parallel manipulators of Delta topology.In ARK, pages 357{366, Caldes de Malavalla, June 29- July 2, 2002.[3℄ Bhattaharya S., Hatwal H., and Ghosh A. On the optimum design of a Stewart platform type parallelmanipulators. Robotia, 13(2):133{140, Marh - April , 1995.[4℄ Bonev I.A. and Zlatanov D. The mystery of the singular SNU translational parallel robot.www.parallemi.org/Reviews/Review004.html, June, 12, 2001.14
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