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Abstract: We consider in this paper a Gough-type parallel robot whose leg lengths val-

ues are constrained to lie within some fixed ranges and for which there may be mechanical

limits for the motion of the passive joints.

The purpose of this paper is to present algorithms to determine:

• the constant orientation workspace: all the possible locations of the center of the

platform which can be reached with a fixed orientation

• the total orientation workspace: all the possible locations of the center of the plat-

form which can be reached with any orientation in a set defined by 3 ranges for

the orientation angles (the dextrous workspace is an example of total orientation

workspace case, the three ranges being [0, 360] degree1)

• the inclusive orientation workspace: all the possible locations of the center of the

platform which can be reached with at least one orientation among a set defined

by 3 ranges for the orientation angles (the maximal or reachable workspace is an

example of inclusive orientation workspace, the three ranges being [0, 360])

1In all of this paper the angles are expressed in degree



Most of these algorithms are based on a basic method: approximation of the result by

a set of 3D or 6D boxes obtained from an initial estimation through a bisection process.

The boxes in the result will either fully or partially lie inside the workspace: the bisection

stops as soon as all the boxes which does not lie fully inside the workspace have a size

that is lower than a fixed threshold.

A companion algorithm enable to verify if any 6D workspace (i.e. a continuous set of

poses) lies within the reachable workspace of the robot. The paper includes a comparison

between the workspaces volumes of four different robot geometries which shows that for

robots of similar dimensions the joints layout has a large influence on the workspace

volume.

1 Introduction

1.1 Robot geometry

In this paper we consider a 6 d.o.f. parallel manipulator (figure 1) constituted of a

fixed base plate and a mobile plate connected by 6 extensible links. A reference frame

(O, x, y, z) is attached to the base and a mobile frame (C, xr, yr, zr) is attached to the

moving platform. The leg i is attached to the base with a ball-and-socket joint whose

center is Ai while it is attached to the moving platform with an universal joint whose center

is Bi. Let ρi be the leg lengths (the distance between Ai and Bi), X a 6-dimensional vector

defining the pose of the end-effector: the three first components of X are the coordinates

of C in the reference frame while the three last components are three parameters describing
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Figure 1: Gough platform

the orientation of the end-effector. In this paper we will use as orientation parameters

the Euler angles ψ, θ, φ (the mobile frame is derived from the reference frame by first a

rotation around the z axis with an angle ψ, then a rotation around the new x axis with

an angle θ and finally a rotation around the new z axis with an angle φ). The workspace

of this type of robot is restricted as the leg lengths have a minimal and maximal values

which will be denoted by ρimin, ρ
i
max for leg i. A set of leg lengths will be called valid if

the lengths of all the legs lie within their given limits.

As the leg lengths are functions of both the location and the orientation of the end-

effector, computing the workspace of this type of manipulator is a complex task.

1.2 Extended box

We define an extended box (or EB for short) as a pair of elements: a cartesian box, which

represents the possible locations of the center of the end-effector, and a set of three ranges,



one for each of the rotation angles. An EB is therefore composed of a location part (the

box) and an orientation part and defines a 6D workspace for the robot.

1.3 Minimal and maximal leg lengths over an extended box

Let us consider the extremal value of the leg lengths over the set of poses defined by an

extended box. The following results hold:

• for an EB whose orientation part is reduced to three fixed values (i.e. the orientation

of the platform is fixed) it is possible to compute exactly the extremal values of the

leg lengths [Merlet 1997-2]

• for a general EB if both the base and the platform are planar it is possible to

compute exactly the extremal values of the leg lengths

• for a general EB and a robot of general geometry it is possible to compute bounds

for the extremal values of the leg lengths by using interval analysis [Moore 79]. We

may therefore compute the extremum with an arbitrary accuracy.

In the sequel we will denote by Ii = [ρim, ρ
i
M ] an interval for the length of leg i such that for

any pose within an EB the length ρi of leg i satisfy ρi ∈ [ρim, ρ
i
M ]. The interval Ii will be

denoted the lengths bound interval. Note that the bounds ρim, ρ
i
M may be overestimated

(there is no pose within the EB such that the length of leg i is equal to ρim or ρiM ). It

must also be mentioned that the method we will use to compute ρim, ρ
i
M strictly guarantee

that for any pose within an EB the leg lengths we will have ρim ≤ ρi ≤ ρiM even taking

into account round-off numerical errors.



2 Constant orientation workspace

The constant orientation workspace (COW for short) is defined as the possible locations of C

which can be reached with a valid set of leg lengths, the orientation of the platform being

fixed (therefore the vectors BiC are fixed). Determination of COW has been addressed by

numerous authors [Jo 89, Masory 1993] and we remind the result only for the completeness

of this paper. It can easily be shown that a COW is the intersection of 6 volumes, each of

them being the difference between a sphere of radius ρimax whose center is the point Ai

translated by the vector BiC and a sphere with same center and radius ρimin. The border

of the COW may therefore be described as a set of regions on various spheres, which can be

computed exactly [Gosselin 1992]. Furthermore the intersection of the workspace with a

plane is obtained as the intersection of six annular regions [Gosselin 1990]. Therefore the

border of such cross-section is constituted of a set of circular arcs which can be computed

exactly. Furthermore, this algorithm can be extended to take into account the mechanical

limits on the passive joints and the interference between the legs [Merlet 1997] 2.

Figure 2 presents an example of workspace computation as a set of horizontal cross-

sections for the four robot geometries defined in section 7.

2An implementation of this algorithm is available via anonymous ftp at zenon.inria.fr in the directory

saga/Workspace/Gough
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Figure 2: Constant orientation workspace of the four robot geometries defined in section 7.

From left to right and top to bottom workspace for the SSM, TSSM, MSSM and MSP.

The orientation angles are ψ = θ = 10◦, φ = 0. The z axis has a scale factor of 3 in

comparison to the x and y axis.



3 Valid location for the end-effector

We define an orientation space as a set of orientations of the moving platform such that

each orientation parameter lies within a fixed range Sψ, Sθ, Sφ.

The problem we want to solve in this section is to determine if for a given location of

C there exist at least one orientation within a given orientation space such that the leg

lengths are valid (in which case we will say that the location is valid). Note that if the

three ranges are defined as [0, 360] then the problem is to determine if C belongs to the

reachable workspace of the robot.

3.1 Algorithm principles

We start our algorithm by considering an EB whose location part is reduced to the location

of C and whose orientation part is defined as Sψ, Sθ, Sφ. We then compute the lengths

bound interval Ii = [ρim, ρ
i
M ] of each leg for this EB. Three cases may occur:

1. for all legs [ρim, ρ
i
M ] ⊂ [ρimin, ρ

i
max]: the location is valid

2. for at least one leg we have either ρim > ρimax or ρiM < ρimin: the location is not valid

3. for at least one leg we have [ρimin, ρ
i
max] ⊂ [ρim, ρ

i
M ] while no leg satisfies condition

2.

In the first two cases the algorithm has solved the problem at hand, so we have to deal

only with the last case. We split each range of the orientation part of the EB into two

ranges (e.g. the range Sψ = [ψ1, ψ2] leads to the ranges [ψ1, (ψ1 +ψ2)/2], [(ψ1 +ψ2)/2, ψ2])



and we build a list of EBs which contains the 8 EBs obtained by taking all the possible

combinations of the new ranges. The algorithm will consider sequentially each EB of the

list and perform the following operations:

1. compute the lengths bound interval of each leg for the current EB

2. if for all legs [ρim, ρ
i
M ] ⊂ [ρimin, ρ

i
max] the algorithm exits as the location is valid

3. if for at least one leg we have either ρim > ρimax or ρiM < ρimin the algorithm skips to

the next EB in the list

4. if for at least one leg we have [ρimin, ρ
i
max] ⊂ [ρim, ρ

i
M ] we bisect the current EB, store

the 8 new EBs at the end of the list, and we consider the next EB in the list

The algorithm will stop either when the condition of step 2 is fulfilled (the location is then

valid) or when we have considered all the EBs in the list, which means that the location

is not valid.

On a SUN Ultra 1 workstation the computation time for determining if a point belongs

to the maximal workspace (for which Sψ, Sθ, Sφ = [0, 360]) ranges from 40ms to 10s (the

later case occurs when the possible orientations set for the location is almost reduced to

a point in the orientation space).

3.2 Variant algorithms

A simple variant of this algorithm enables us to verify if all the orientations within the

orientation space can be reached with valid leg lengths. Basically the algorithm is similar



to the previous one except that as soon as we find an EB in the list which satisfies the

condition of step 3, then the location is not valid while at step 2 we skip to the next box

in the list.

Another variant allows computation of all of the possible orientations which can be

reached for the given location of C. The algorithm will return these orientations as a set

of 3 intervals {Sψ, Sθ, Sφ}. Step 2 of the previous algorithm will be modified: instead of

exiting at this point we store the orientation part of the current EB in the result set and

skip to the next EB in the list. Note that it may be necessary to define a minimal width

for the orientation ranges to terminate the computation in a reasonable amount of time:

the possible orientations will therefore be determined with an accuracy up to this width.

4 Determining a total orientation workspace

A total orientation workspace (TOW for short) is defined as the locations of C for which the

leg lengths are valid for any orientation in an orientation space defined by three orientation

ranges Sψ, Sθ, Sφ. The dextrous workspace, which can be computed exactly [Merlet 1997],

is a special case of the TOW with Sψ = Sθ = Sφ = [0, 360]. Our algorithm will compute an

approximation of the TOW as a set of EBs whose orientation part is Sψ, Sθ, Sφ. Each EB

of this set has a status which may be:

• 1: for any pose within the EB the leg lengths are valid

• 2: the center of the location part of the EB belongs to the TOW but some point of

its location part may not belong to it



• -2: the center of the location part of the EB does not belong to the TOW but some

point of its location part may belong to it

Therefore, the computed workspace will be an approximation of the TOW whose accuracy

will depend on the size and number of the EBs with status 2 and -2. The size of an EB

will be here defined as the distance between the center of its location part and its vertices.

A threshold on the minimal size of the EB will be fixed before starting the computation.

The algorithm will also give guaranteed bounds on the workspace volume. The lower

bound will be the sum of the volumes of the EBs with status 1 while the upper bound

will be the sum of the volumes of all EBs whatever their status is.

4.1 Bounding box of the TOW

First note that we may easily find a bounding box of the TOW. Indeed we have:

OC = OAi + AiBi + BiC

Therefore, the distance between point C and point Ai cannot exceed ρimax + di where di

is the fixed distance between C and Bi. If Bi denotes a cube centered at Ai and whose

edges have length ρimax + di, then any location of C must belong to all of the six Bi.

In other words, the intersection of the Bi define a geometrical object which bound the

TOW (and any workspace of the robot). Note that this intersection can be computed as a

set of cartesian boxes and that we may impose some constraints on this intersection (for

example, consider only its components which are over the base).



4.2 Algorithm principle

Our algorithm will start with a list S of EBs whose location parts enclose the overall

workspace of the robot, as described in the previous section. EBi will denote the i-th EB

of the list while n denotes the total number of EBs in S. The computation will be done

with an accuracy ǫ, meaning that the EBs with status 2 or -2 will have a size less or equal

to ǫ. We start with i = 0:

1. if i > n exit, otherwise compute the lengths bound intervals of the 6 legs for EBi

2. if for all legs we have ρjm > ρjmin and ρjM < ρjmax then EBi has status 1. Store EBi,

increment i and go to step 1

3. if for at least one leg we have ρjm > ρjmax or ρjM < ρjmin then EBi is outside the TOW.

Increment i and go to step 1

4. if for at least one leg we have [ρimin, ρ
i
max] ⊂ [ρim, ρ

i
M ] then:

(a) if the size of EBi is lower or equal to ǫ test if the center of its location part

belongs to the TOW using the variant algorithm described in section 3. If yes

the EB has status 2 otherwise it has status -2. Increment i and go to step 1

(b) otherwise bisect EBi, put the 8 new EBs at the end of S. Increment i, n = n+8,

and go to step 1

This algorithm has been tested on the SSM robot (described in section 7) for deter-

mining the TOW with Sψ = 0, Sθ = [0, 20◦], Sφ = 0. Table 1 indicates the computation

time according to the desired accuracy together with the total volume of the EBs with



status 1,2,-2 (denoted EB1, EB2, EB−2). Figure 3 presents a cross-section of the result

ǫ Time Volume of EB1 Volume of EB2 Volume of EB−2

0.74 7mn 226.7 470.8 900.5

0.37 20mn 407.7 283.7 391.7

0.185 1h18mn 537.7 156.6 183.7

0.0925 5h10mn 612.3 81.7 88.9

Table 1: Computation time of a TOW according to the desired accuracy ǫ. The total

volumes of EBs with status 1, 2, -2 is also indicated

for z = 56 and a 3D view of the final result.
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Figure 3: On the left a 3D view of the TOW of the SSM for Sψ = 0, Sθ = [0, 20◦], Sφ = 0

(a scale factor of 4 has been applied on the vertical axis). On the right a cross section of

this TOW for z = 56: the color of the EBs is gray, white and black if they have 1, 2, -2.



This algorithm can be adapted to compute a total translation workspace defined as all

the orientations of the platform that can be reached for any position of C within a given

volume. Indeed the new algorithm is obtained by exchanging the role of the location part

and orientation part of the EBs. An example of total translation workspace is presented

in figure 4. In this example the volume for C is a box.

ψ

90

φ
45

θ
19.28

Figure 4: A total translation workspace: here is presented all of the orientations that

can be reached by the SSM robot (see section 7) while the center of the platform lies

in the box [-0.1,0.1][-0.1,0.1][57,57.1]. The orientation has been restricted to lie within

[0,180],[0,90],[0,45] and a scale factor of 3 has been applied on θ

4.3 Workspace verification

The purpose of this section is to describe how it is possible to modify the TOW algorithm

in order to test if a given 6D workspace is included in the reachable workspace of the



robot.

Solving this problem is clearly very useful during the design of a parallel robot. In most

applications some ”minimal” 6D workspace is specified, while some others requirements

(like stiffness, positioning accuracy, minimal platform velocities) are also to be considered.

Discarding efficiently the geometries which have not an adequate workspace is therefore

of the highest importance to determine the best robot for the task at hand.

4.3.1 Extended box

Suppose that we want to verify that a given EB, EB0, is included in a TOW. This problem

can be solved with a few modifications of the TOW algorithm:

• first we initialize the list S with the EB EB0

• we then proceed with the TOW algorithm with the following modifications:

– step 3: if an EB in S is such that for at least one leg we have ρjm > ρjmax or

ρjM < ρjmin, then EB0 is not included in the TOW as all of the poses of EB0 are

outside the TOW: the algorithm will therefore exit

– step 4a: the purpose of the algorithm is to give a straight answer on the

inclusion of the EB in the TOW: hence the size of the EB is not taken into

account and this step is suppressed

– if there are no more EBs in the list, EB0 is included in the TOW: indeed EB0 is

the union of all the EBs in the list S and the algorithm has determined that

all these EBs are include in the TOW



4.3.2 General workspace

We may also determine if more complex workspaces are included in a TOW. Let us assume

for example that a workspace for C is defined as a 3D reconstruction obtained from a set

of polygonal cross-sections. For example, figure 5 shows such a workspace obtained from

three horizontal cross-sections. Note that for this example definition of a 3D workspace,

it is trivial to determine if the location part of an EB is fully or partly included in the

workspace or if it is fully outside the workspace. The TOW algorithm is modified as follow:

Figure 5: An example of possible workspace for C: it is obtained as a 3D reconstruction

from three horizontal polygonal cross-sections

• the list S is initialized with an EB whose location part is the bounding box of the

volume or with a list of EBs such that the union of their location parts enclose the

volume

• step 3: the purpose of this step is to determine if the current EB is fully inside, fully

outside or partially inside the TOW. As the union of the EBs in the list enclose the

workspace we must therefore test if the location part of the current EB is included

in the workspace. The current EB may be fully inside, fully outside or partly inside

the workspace. So we add to step 3 the following steps:



– if the location part is fully included in the workspace we continue the algorithm

as we have to determine if the current EB is included in the TOW

– if the location part is partly included in the workspace we test if the current

EB is included in the TOW. If it is so the part of the EB which is inside the

workspace is also in the TOW: we may move to the next EB in the list. If the

current EB is not in the TOW its parts which are inside the workspace may still

belong to the TOW, so we proceed directly to step 4b and bisects the location

part.

– if the location part is outside the workspace we don’t have to test if it belongs

to the TOW, so we skip the current EB and move to the next EB in the list

• if an EB in S is inside the workspace (see the above inclusion test) and is such that

for at least one leg we have ρjm > ρjmax or ρjM < ρjmin, the EB does not belong to

the TOW and consequently a part of the workspace is not included in the TOW: the

algorithm exits

• step 4a: the purpose of the algorithm is to give a straight answer on the inclusion

of the workspace in the TOW: hence the size of the EB is not taken into account and

this step is suppressed

• if there are no more EBs in the list, the workspace is included in the TOW: indeed

the workspace is enclosed in the union of all the EBs in the list S and the algorithm

has determined that all these EBs are include in the TOW



5 Determination of an inclusive orientation workspace

The inclusive orientation workspace (IOW for short) is defined as all of the possible loca-

tions of C which can be reached with at least one orientation among an orientation space

defined by 3 ranges Sψ, Sθ, Sφ. The maximal or reachable workspace is a particular case of

IOW for which the three ranges are [0, 360] (consequently any orientation is allowed and we

seek all the locations that can be reached by C). The problem of determining the reachable

workspace for planar robot (a problem which has been solved exactly in [Merlet 1998]) has

been addressed by Husty [Husty 1996], Kumar [Kumar 1992] and Luh [Luh 1996]. For 6

d.o.f. Gough-type robots Kim [Kim 1997] computes a rough approximate of the maximal

workspace, Haugh [Haugh 1995, Haugh 1998] uses a continuation method to determine

approximatively the border of the reachable workspace while Pooran [Pooran 89] proposes

a numerical search procedure. To the best of the author knowledge there is no reference

whatsoever for the determination of an IOW for which the orientation of the platform is a

subset of all the possible orientations.

5.1 Algorithm principle

Our algorithm will compute the IOW as a set of EBs whose orientation part is included in

Sψ, Sθ, Sφ. Each of the EBs will have a status as presented for the TOW with an additional

status of -1 which indicates that the EB does not belong to the IOW. Note that we will

still obtain guaranteed bounds for the workspace volume by considering the volume of

the EBs with status 1 (lower bound) or 1, 2, -2 (upper bound).



The algorithm is basically similar to the TOW algorithm except that now we bisect

also the orientation part of the EBs. The list S is initialized with a bounding box of the

inclusive orientation workspace as computed in section 4.1. We start with i = 0:

1. if i > n then exit

2. if the status of EBi is equal to -1 increment i and go to step 1

3. if among the set of EBs={EB0, EB1, ..EBi−1} we have an EB with status 1 whose

location part includes the location part of EBi, then EBi is assigned the status -1.

Increment i and go to step 1

4. compute the lengths bound interval for EBi

(a) if for all the legs we have ρjm > ρjmin and ρjM < ρjmax then EBi is assigned the

status 1. If any EBj in S has a location part included in the location part of

EBi, then EBj is assigned the status -1. Increment i and go to step 1

(b) if for at least one leg we have ρjm > ρjmax or ρjM < ρjmin, then EBi is assigned

the status -1. Increment i and go to step 1

(c) if for at least one leg we have [ρimin, ρ
i
max] ⊂ [ρim, ρ

i
M ]:

i. if the size of EBi is lower or equal to ǫ we test if the center of its location

part belongs to the IOW:

A. if the center belongs to the IOW the EB is assigned the status 2. Then

we check if any EBj in{EB0, EB1, ..EBi−1} has a status -2 and has a



location part included in the location part of EBi, in which case EBj

is assigned the status -1.

B. if the center does not belong to the IOW EBi is assigned the status -2

C. increment i and go to step 1

ii. otherwise we bisect EBi and the resulting 64 new EBs are put at the end

of S, n = n+ 64, increment i and go to step 1

This algorithm will stop when the last box of S has been considered: the IOW will be

constituted of all the EBs of S with status 1, 2 or -2.

The computation time of an IOW will be clearly higher than for a TOW as the bisection

process will generate a larger number of EBs (64 instead of 8).

5.2 Managing the bisection process

As the bisection is applied on both the location part and the orientation part of the EB

it is necessary to carefully manage the bisection process. For example, assume that the

location part of the initial EB is small while its orientation part is large. If we bisect

at the same time both parts of the EB, then the size of the location part will quickly

reach the desired accuracy while the amplitude of the orientation part will still be large:

therefore the algorithm will end up with very few EBs with status 1, most having status

2 or -2.

One possible way to deal with this problem is to bisect the location part of an EB

only if the size of the orientation part is lower than a given threshold.



Another possible way to reduce the total number of boxes is not to put the 64 boxes

created by the bisection process at the end of the list but to substitute the current box

by one of them and put the 63 at the end of the list. In our implementation we have

chosen to substitute the current box by the EB among the 64 new EBs whose lengths

bound interval is the closest to the allowed interval: clearly this sub-box has the highest

probability to be inside the IOW. If this is the case the boxes in the list which have the

same translation part but a different orientation part will just be discarded.

5.3 Computation time, implementation and examples

5.3.1 Implementation

Our software enable us to generate the IOW and TOW incrementally. We usually compute

first a rough approximation of the workspace using a large value for ǫ with, as starting

point, the set of EBs obtained as described in section 4.1. The result of this computation

is stored in a file which is used as input for a second step in which we use a lower accuracy

(usually half the accuracy of the previous step): the EBs of the input file with status 1

are just stored as such in the result file.

According to the respective size of the location part and the orientation part we may

get a large number of EBs with status -2 which in fact do not belong to the IOW but

have been kept because the size of their orientation part was too large to eliminate them.

Indeed over a large orientation workspace each individual leg length may be valid for some

orientations but there will be no orientation for which all the 6 leg lengths will be valid at



the same time. In order to reduce the number of EBs with status -2 it may be interesting

to refine the result. This can be done by considering only the EBs with status -2 in a

result file and bisect their orientation part until the amplitude of the ranges is lower than

a fixed, small threshold. During this process many EBs will be deleted (as the lengths

bound interval will have a lower amplitude) and an EBs will be kept in the result file if

and only if it remains one EB with an orientation part having an amplitude lower than

the threshold: this is the refinement process.

A similar process may be used for the EBs having status 2. Here the purpose is to

determine which EBs among them fully lie within the IOW. In that case the process will

lead to a larger computation time as during the bisection all the EBs with a low amplitude

of the orientation part are to be tested until either one of them get status 1 or all the

possible EBs have been tested (in the previous case as soon as one of the EB has a small

orientation part and still its center does not belong to the IOW the refinement is finished).

5.3.2 Computation time

Table 2 indicates the result for the computation of a cross-section of the maximal workspace

at z = 50 of the SSM (this robot geometry is described in section 7). The indicated com-

putation time for each accuracy (except the first one) is obtained when using as input file

the result of the previous step.

Figure 6 presents cross-sections of the maximal workspace of the SSM for z = 50 with

various accuracies.
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Figure 6: Cross-sections at z = 50 of the maximal workspace of the SSM with accuracy

3.36, 1.68, 0.84, 0.42. The black area lie fully in the workspace, EBs with status 2 are

gray while EBs with status -2 are white.



ǫ Time Area of EB1 Area of EB2 Area of EB−2

2.7 2h35mn 1256.07 799.32 1438.8

1.35 4h08mn 1735.66 428.2 999.1

0.338 10h31mn 2059.66 117.75 782.9

0.1693 15h 2102.399396 75.114367 547.2

Table 2: Computation time of a cross-section of the maximal workspace as a function of

the accuracy

5.4 Computing a full description of the workspace

A variant of the previous IOW algorithm allows theoretically to compute a full description

of the workspace of a given robot as a set of EBs which will describe each possible

location of C together with all the possible orientation ranges for the location part (hence

the result may contain different EBs with the same location part but different orientation

part). This variant is obtained by removing all of the statements in the previous algorithm

which attribute a status of -1 to an EB. Note that in practice this algorithm can be used

only for a robot having a very small workspace as a large number of EBs will be generated.

6 Heuristics for speeding the computation

Clearly the algorithms presented in the previous sections may lead to a large computation

time: this is mostly due to the fact that when testing an EB we consider each leg length

individually. Indeed it will frequently occur that although the lengths bound interval of



each leg may have a non empty intersection with the interval [ρmin, ρmax] there will be no

pose within the EB for which the intersection will be not empty at the same time. Such

an EB will therefore be bisected until a final decision can be made on its status, thereby

leading to a large number of EBs.

But we may improve the computation time of our algorithms by using various heuris-

tics.

6.1 Improving the initial guess

The first heuristic will improve the initial estimation of the workspace as described in

section 4.1. The leg length ρ is obtained as:

ρ2 = ||AB||2 = ||OA + OC + CB||2 (1)

which may be written as:

ρ2 = ||OC||2 + U (2)

where U is a quantity obtained as a combination of the scalar product of OA,CB,OC

and the square of the norm of OA,CB. Using this equation and the constraint on the

leg lengths we deduce:

ρ2
min − U ≤ ||OC||2 ≤ ρ2

max + U (3)

Using interval analysis it is possible to compute a lower and an upper bound of U and

therefore bounds on ||OC||2. For each EB in our initial list we are able to compute the

minimum and maximum distance between O and any point in the location part of the



EB. Then we reject the EB having a distance which is not compatible with the distance

as computed with equation 3.

6.2 Test for fixed orientations

A second possible heuristic makes use of the possibility to compute exactly and efficiently

the lengths bound interval for an EB whose orientation part is reduced to a fixed orienta-

tion. When considering an EB in the TOW and IOW algorithms we select a few orientations

within the orientation part and compute the lengths bound intervals for these orientations:

• for the TOW algorithm if at least one of the lengths bound intervals has no intersection

with the limits range, then the EB does not belong to the TOW

• for the IOW algorithm if one of the lengths bound intervals is valid then the EB

belongs to the IOW

6.3 The γ test

Let us define γ as the angle between AC and CB (figure 7). We have:

cos γ =
||AC||2 + ||CB||2 − ρ2

2||AC||||CB||
and cos γ =

AC.CB

||AC||||CB||
(4)

In these equations ||CB||2 is a constant. For a given EB it is possible to compute exactly

the bounds on ||AC|| and using the constraints on the leg lengths and interval analysis

the first equation of (4) gives a first set of bounds for cos γ, while the second equation

enables the establishment of another set of bounds for the same quantity. Then the EBs

for which the two sets of bounds are incompatible are rejected.



γ

B
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ρ

C

Figure 7: Definition of the γ angle

6.4 Constraints on two legs

Let us consider two legs i, j of the parallel robot. Using equation (2) we get:

ρ2
i − ρ2

j = Ui − Uj (5)

Using the constraints on the leg lengths we have:

ρ2
mini

− ρ2
maxj

≤ Ui − Uj ≤ ρ2
maxi

− ρ2
minj

(6)

For a given EB we may compute bounds on Ui−Uj using interval analysis and reject the

EBs which does not satisfy equation (6). Note that we may further refine this test after

having computed the lengths bound interval for this EB using the following equation:

ρ2
mi

− ρ2
Mj

≤ Ui − Uj ≤ ρ2
Mi

− ρ2
mj

(7)

This test will be performed for each pair of legs.



7 Comparison of the workspaces of different robot

geometries

In this section we consider four different geometries of parallel robot and we intend to

compare their respective workspaces. For the three first geometries the attachment points

lie on a circle of radius 13 for the base and on a circle of radius 7 for the platform. The

attachments points on the base and platform are distributed on their circle according

to figure 8. For the SSM (Symmetric Simplified Manipulator) robot we use α = β =

120◦

α/2120◦

120◦

α/2α/2

α/2

α/2 α/2

120◦120◦

120◦

β/2

β/2

β/2β/2

β/2

β/2

platform

base
-

Figure 8: The distribution of the attachment point on the base and platform

20◦, for the TSSM (Triangular Symmetric Simplified Manipulator) robot we have α =

20◦, β = 0 (the platform is a triangle) while for the MSSM (Minimal Symmetric Simplified

Manipulator) robot α = β = 0 (both the base and platform are triangles). The fourth

robot we will study is the MSP robot presented by Stoughton [Stoughton 1993]: the

attachment points are successively on two different circles of radii 11, 13 for the platform

and 5, 7 for the platform. The MSP geometry has been obtained using an optimization



process in which the cost function was a weighted sum of the workspace volume and the

dexterity. Stoughton has shown that if the weight on the volume was larger than the

weight on the dexterity, then the SSM was the optimal design. On the other hand with a

larger weight on the dexterity than on the workspace volume the MSP is obtained as the

optimal design. The four different robots are presented in figure 9. For all four robots

x y

z

x y

z

x y

z

SSM TSSM MSSM

x y

z

MSP

Figure 9: The four different robots whose workspaces will be compared

the minimum leg lengths is 55 and the maximum leg length 60.

7.1 Comparison of the COW workspace

Table 3 indicates the volume of the COW for different orientations of the moving platform,

together with the ratio between the volumes of the different robots. The SSM has the

larger workspace, followed by the TSSM and then the MSSM. It must be noted that the

ratio workspace volume of the SSM divided by the the workspace volume of the TSSM

is approximatively constant at 1.3. Similarly this ratio between the SSM and the MSSM

is approximatively equal to 1.7 and as a consequence the ratio between the TSSM and

MSSM is approximatively equal to 1.25. The MSP has a workspace volume which is in

general somewhat smaller than the MSSM and has anyway a largely smaller workspace



Orientation (ψ, θ, φ) MSP MSSM TSSM SSM TSSM
MSSM

SSM
MSSM

SSM
TSSM

0,0,0 861 950 1214 1576 1.3 1.7 1.3

0,5,0 748 766 968 1271 1.3 1.7 1.3

5,0,0 765 924 1177 1529 1.3 1.7 1.3

5,5,0 685 749 947 1245 1.3 1.7 1.3

5,5,5 613 706 894 1180 1.3 1.7 1.3

0,10,0 502 434 542 745 1.2 1.7 1.4

10,0,0 670 848 1082 1406 1.3 1.7 1.3

10,10,0 405 412 522 720 1.3 1.7 1.4

10,10,10 355 363 468 661 1.3 1.8 1.4

Table 3: Volume of the constant orientation workspace of the different robots for various

orientations and their ratio (angles in degrees)



volume than the SSM, as claimed by Stoughton.

7.2 Comparison of the TOW workspace

Table 4 indicates the volume of the TOW for the orientation ranges [0, 10◦], [0, 10◦],[0, 10◦]

which has been computed with an accuracy of 0.067 for the SSM and TSSM, 0.0318

for the MSSM and MSP. The volume of the EBs with status 1,2, -2 is indicated in this

table. The real workspace volume will be therefore greater or equal to the volume of the

EBs with status 1 while it will be lower or equal to the sum of the volumes of the EBs,

whatever their status: hence the the workspace volume VSSM for the SSM will be such

that 402.2 ≤ VSSM ≤ 449. The accuracies for the computation has been chosen so that

there will be not intersection between the different volume ranges: hence any comparison

between the different volumes is guaranteed to be exact.

We notice that the SSM has still the larger workspace, followed by the TSSM and

the MSSM (the MSP has almost the same workspace volume than the MSSM). Table 5

indicates the minimal and maximal ratio between the workspace volume of the different

robots (the minimal ratio is obtained by taking the volume of the EBs with status 1 over

the total volume while the maximal ratio is the total volume over the volume of the EBs

with status 1). Note that these ratio are consistent with the ratio found for the COW.

7.3 Comparison of the maximal workspace

Table 6 indicates the volume of the maximal workspace for the four different robots. This

computation has been done with an accuracy of 0.12 for the MSP, 0.11 for the MSSM, 0.11



Volume of EB1 Volume of EB2 Volume of EB−2 Total

SSM 402.3 23.1 23.6 449

TSSM 294 17.9 18.5 330.5

MSSM 229.8 7 7.2 244

MSP 233.3 7 7.1 247.4

Table 4: The volumes of the total orientation workspace for the different types of robot.

The real volume if guaranteed to be greater or equal to the volume of EB1 and lower or

equal to the Total volume. The accuracy used for this computation was such that there

is no intersection between the different volume ranges, which allows for a comparison

between the volumes.

TSSM
MSSM

TSSM
MSP

SSM
MSSM

SSM
TSSM

SSM
MSP

1.20-1.44 1.19-1.42 1.65-1.95 1.217-1.527 1.625-1.925

Table 5: Minimal and maximal ratio of the TOW volume of the different robots



for a first part of the TSSM and 0.43 for a second part and 0.22 for the SSM. Here also

the accuracies for the computation has been chosen so that there will be not intersection

between the different volume ranges, thus enabling a comparison between the volumes.

The volume of the EBs with status 1,-2, 2 is indicated in this table, with the cor-

responding number of boxes in parenthesis. Table 7 present the minimal and maximal

ratio of the workspace volume. According to these results we may classify the different

Volume of EB1 Volume of EB2 Volume of EB−2 Total

SSM 7848.2 (114328) 900.6 (93284) 1049.4 (109704) 9798.2

TSSM 5182 (298182) 290.8 (202578) 883.7 (104834) 6356.5

MSSM 4144.3 (203342) 331.3 (145278) 419 (279130) 4894.6

MSP 3524.2 (131366) 253.4 (115538) 361.8 (165298) 4139.4

Table 6: The volume of the maximal workspace, divided according to the status of the

EB (the numbers in parenthesis indicate the respective number of EBs)

TSSM
MSSM

SSM
MSSM

SSM
TSSM

TSSM
MSP

SSM
MSP

1.06-1.53 1.6-2.36 1.23-1.9 1.25-1.8 1.9-2.8

Table 7: Minimal and maximal ratio of the maximal workspace volume of the different

robots

geometries by increasing workspace volume as MSP, MSSM, TSSM, SSM, the workspace

volume of the SSM being approximatively twice the workspace volume of the MSP. Hence



a small change in the geometry of the robot may lead to large variation of workspace

volume.

Figure 10 presents horizontal cross-sections of the maximal workspace of the SSM,

TSSM, MSSM at their nominal altitude (i.e. for the value of z obtained when the leg

lengths are all at their middle value).
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Figure 10: From top to bottom horizontal cross-sections of the maximal workspace of the

SSM, TSSM, MSSM at their nominal altitude. The black area represents the EBs with

status -2, the gray area the EBs with status 2.



7.4 Comments

Some authors have claimed that a parallel manipulator with common attachment points

(like the TSSM and MSSM) have a larger workspace than a more general geometry as

the common points leads to less risks of interference between the legs (see for exam-

ple [Kurtz 1992]). The underlying assumption in such claim is that all the structures

have roughly identical workspace volume when considering only the limitation due to the

leg lengths. The previous sections show clearly that this is not the case, the SSM having

a much more larger intrinsic workspace than the MSSM.

8 Passive joints limits

In the previous sections we have taken into account only the constraints on the leg lengths.

In practice however we have to consider that there are also limitations on the motion of

the passive joints at A,B. In [Merlet 1997] we have introduced a possible way to describe

these limitations. We assume that the designer is able to define a convex pyramid with

planar facets whose apex is located at the joint center such that if the joint limits are

fulfilled then leg AB will be located inside the pyramid. Figure 11 shows an example

of such pyramid. Let ni be an unit vector perpendicular to the planar facet i. For the

joint with center at A the vector ni is constant while for the joint at B the vector ni is a

constant vector in the mobile frame. If leg AB lie inside the pyramid, then for all facets

of the pyramid with apex at A we should have:

AB.ni ≤ 0 (8)



while for the pyramid with apex at B we should have:

AB.Rni ≥ 0 (9)

where R is the rotation matrix describing the orientation of the platform.

If we consider now a box workspace interval analysis enable to determine for each facet

of the pyramid bounds on the extremum of the quantity appearing at the the left side

of equations (8,9). For example for equation 8 we have to evaluate AB.ni which may be

written as:

AB.ni = AO.ni + OC.ni + CB.ni

In this expression AO.ni has a constant value, while OC.ni is only dependent upon the

location of C. In a similar way, CB.ni is only dependent upon the orientation of the

platform.

Using this possibility we may design an algorithm which verifies if a given box workspace

EB0, part of the reachable workspace due to the leg lengths constraints, belongs to the

real reachable workspace of the robot, also taking into account the constraints on the

joint limits. We will describe this algorithm for dealing with the constraints on the joints

centered at A, dealing with constraints on the joint at B being a simple extension. The

algorithm is described by the following sequence:

1. compute the extremum Um
i , U

M
i of Ui = AB.ni for each facet of the pyramid

• if for all i we have UM
i < 0, then EB0 belongs to the reachable workspace

• if for at least one i we have Um
i > 0, then EB0 does not belong to the reachable

workspace



2. if we have UM
i < 0 for some joints and UM

i > 0, Um
i < 0 for some others then

• bisect both the location part and orientation part of EB0 and put the resulting

boxes in a list

• compute Um
i , U

M
i for each box of the list

– if for one box Um
i > 0, then EB0 does not belong to the reachable

workspace

– if for all i UM
i < 0 skip the box

– if UM
i > 0, Um

i < 0, bisect the box and put the resulting box at the end of

the list

3. if we have considered every box of the list, then EB0 belongs to the reachable

workspace

Note that the previous algorithm will also permit checking if a given location of C belongs

to a given TOW. Furthermore it can be added to the algorithm described in section 4 in

order to compute in one step the TOW taking into account both the constraints on the leg

lengths and on the motion of the passive joints.

8.1 Computing a TOW

Now assume that we have computed a TOW with a given accuracy ǫ using the algorithm

described in section 4. We may want to update this TOW by taking into account the joint

limits at A. Before describing the procedure we will present a preliminary remark. Let us



assume that the orientation part of a box workspace is reduced to one unique orientation.

As AB.ni is linear in term of the coordinates of C, if Um
i > 0 for at least one i, then the

box is fully outside of any TOW whose orientation ranges includes the orientation of the

box.

The procedure for updating the initial TOW will consider sequentially each box of a list

which is initialized with the boxes of the initial TOW.

If the current box has status 1 we will first compute Um
i , U

M
i for this box. If UM

i < 0

for all i, then the box belongs to the new TOW. If Um
i > 0 or UM

i > 0, Um
i < 0 for at least

one i and if the size of the box is greater than ǫ we bisect the location part of the box

and put the resulting boxes (which have status 1) at the end of the list. If the size of the

box is lower than ǫ we check if the center of the box belongs to the new TOW and the box

will get status -2 or 2 according to the result.

If the current box has status 2 or -2 (and consequently its size is lower than ǫ) we

check if the center of the box belongs to the new TOW and the box will get status -2 or 2

according to the result.

At this stage the overall volume of the new TOW will be the same as the initial TOW

as no boxes are deleted in the process: for a given box either its status is modified or it

is bisected, the resulting boxes being included in the result. To improve this result we

will use the preliminary remark: for each box we will select a few orientations among the

orientation ranges of the TOW and test if for this orientation of the platform Um
i > 0 for

at least one i, in which case the box is deleted.

In order to determine the influence of the joint limits we have applied the previous



procedure on the TOW computed in section 7.2. For each robot it is assumed that there

are constraints only on the joints at A and that the axis of the corresponding pyramid

is the axis of the leg for the pose corresponding to the mid-length of the leg. We use

pyramids with 10 facets, the angle between each facet and the pyramid axis being 8

degree (figure 11). The results are presented in table 8. It may be seen that the SSM

A1

A2A3

A4

A5
A6

Figure 11: The pyramids with 10 facets describing the possible motion of the passive

joints at A of the SSM.

is more sensitive to joint limits than the TSSM and MSSM: the SSM has now only a

slightly larger workspace volume than the TSSM volume while the difference between the

workspace volume of the SSM and MSSM has been slightly reduced. Figure 12 presents

the differences between an horizontal cross-section of the TOW of the SSM if we take into

account the joint limits or not.



Volume of EB1 Volume of EB2 Volume of EB−2 Total

SSM 192.2 9 9.3 210.5

TSSM 179.1 8.8 9 196.9

MSSM 163.5 8.3 8.6 180.4

Table 8: The volume of the TOW for ψ, θ, φ in [0, 10◦], taking into account both the

constraints on the leg lengths and the possible motion of the passive joints at A.
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Figure 12: On the left a horizontal cross-section of the TOW of the SSM without taking

into account the joint limits. On the right the same cross-section with the effect of the

joint limits



8.2 Computing an IOW

Similarly it is possible to update an IOW result file or to compute an IOW which takes into

account both the leg length constraints and the passive joints limits.

Boxes with status 1 appear in a result file with two types of orientation parts: an unique

orientation which indicates that the box was found inside the IOW for this orientation or

a set of orientations. In the first case, we will check if the joint limits are correct for the

specific orientation. If this is the case the box belongs to the new IOW, otherwise (or if

the orientation part of the box is a set) we will update the orientation part of the box

to the full orientation set of the IOW. Then we will start bisecting the orientation part

of this box until either a box is found which satisfies the leg length constraints and the

joint limits or the amplitude of the orientation part is lower than a given threshold. If no

correct box is found and if the size of the box is greater than the accuracy we will bisect

the translation part of the box and start again. If the size of the box is lower than the

accuracy we will consider a box EBs
0 whose location part is reduced to the center of the

initial box and whose orientation part is the full orientation set of the IOW. We then bisect

this orientation part until we either find a box belonging to the IOW or we determine that

the box center does not belong to the IOW. In the first case the initial box will get status

2 and in the later case it will get status -2.

For the box having initially status 2 we first check if a box having the same location

part, but having as the orientation part the full orientation set of the IOW, does not belong

to the IOW: we compute the Um
i , U

M
i for the box and if Um

i > 0 for all i, then the box is



outside the IOW. In that case the initial box is discarded. If this check does not eliminate

the box we use the same algorithm than described previously except that we start directly

at the creation of the box EBs
0. If during the bisecting process we find out that the box

center belongs to the new IOW, the initial box will keep its 2 status otherwise its new

status will be -2.

For the box having initially status -2 the algorithm is the same except that we don’t

have to check the leg lengths.

Note that few boxes with status 2 or -2 will be eliminated in the process. A possible

way to decrease the number of boxes will be to consider a set of boxes with the same

location part but with different orientation parts, covering the full orientation set of the

IOW. Then we check the Um
i of all these boxes and if for all i and for all boxes the Um

i is

greater than 0, then we discard the box (increasing the number of boxes will reduce the

error we make when computing the Ui using interval analysis).

9 Conclusion

The algorithms presented in this paper, mostly based on interval analysis and a bisec-

tion process, constitute a first approach to solve the remaining problems regarding the

workspace computation of 6 d.o.f parallel robot. The TOW algorithms which enable either

the verification of whether a given 6D workspace is included in the reachable workspace

or the determination of the locations of C which can be reached with every orientation

in a set, are computer efficient and can be used during the design process. On the other



hand the IOW algorithm involves a larger computation time but it will not be used in the

iterative design process: indeed it will be run only once to get a better characterization

of the workspace of a given robot.

As we deal with 6D workspaces we have a representation problem which has been

solved by computing projections of the workspace. In this paper, we have favored a

representation based on the location of the center of the platform (except for the total

translation workspace) but the presented algorithms may be easily easily extended to deal

with any 3D projection.

The algorithms have been presented for the Gough-type parallel robot but may be

extended to other types of parallel robot. Future work will have as objectives:

• to improve the existing algorithms by considering more than one leg when computing

the lengths bound intervals

• to take into account leg interference
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September, 17-20, 1989.



[Kim 1997] Kim D.I., Ching W.K., and Youm Y. Geometrical approach for the workspace

of 6-dof parallel manipulators. In IEEE Int. Conf. on Robotics and Automation, pages

2986–2991, Albuquerque, April, 21-28, 1997.

[Kumar 1992] Kumar V. Characterization of workspaces of parallel manipulators. ASME

J. of Mechanical Design, 114:368–375, September 1992.

[Kurtz 1992] Kurtz R.L. and Hayward V. Multiple-goal kinematic optimization of a

parallel spherical mechanism with actuator redundancy. IEEE Trans. on Robotics

and Automation, 8(5):644–651, October 1992.

[Luh 1996] Luh C.M., Adkins F.A., Haugh E.J., and Qiu C.C. Working capability analysis

of Stewart platforms. J. of Mechanical Design, 118(2):221–227, June 1996.

[Masory 1993] Masory O., Wang J., and Zhuang H. On the accuracy of a Stewart

platform-part II: Kinematic calibration and compensation. In IEEE Int. Conf. on

Robotics and Automation, pages 725–731, Atlanta, May, 2-6, 1993.

[Merlet 1997] Merlet J-P. Les Robots parallèles. Hermès, Paris, 1997.
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