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Abstract

We present a fast algorithm for solving the problem of the verification of a trajectory for a 6-DOF

parallel manipulator with respect to its workspace: i.e., given two different postures for the end-effector,

is the straight line joining these two postures in the parameters space fully inside the workspace ? This

algorithm is based on the analysis of the algebraic inequalities describing the constraints on the workspace

and provides a technique for computing those parts of the trajectory that lie outside the workspace. This

method is exact if the orientation of the end-effector is kept constant along the trajectory and approximate

if the orientation is allowed to vary.

1 Introduction

A general 6-DOF parallel manipulator is shown in Fig. 1, which has six linear adjustable actuators
connecting a mobile platform and a base platform. As the length of the actuators change, an end-effector
attached to the mobile platform can be moved in 6-DOF space. Each link is connected to the base
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Figure 1: A 6-DOF parallel manipulator.

platform through a universal joint and to the mobile platform through a ball-and-socket joint.

The workspace of a parallel manipulator is limited owing to three types of constraints:

• Limited range for the link lengths. The minimum length of link i will be denoted ρi
min and the

maximum length ρi
max

• Mechanical limits on the passive joints (universal joints and ball and socket joints).

• Link interference
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The problem of determining the workspace of parallel manipulators has been addressed by many authors.
The positioning workspace (i.e., the region of the three-dimensional Cartesian space that can be attained
by a manipulator with a given orientation) has been described through methods based on a complete
discretization of the Cartesian space [?].

A geometric approach for determining the positioning workspace border owing to the limited range
of the links lengths has been proposed by Gosselin and coworkers [?]. This approach has been extended
to take into account all the constraints limiting the workspace [?, ?], enabling fast, exact calculation of
the border of the positioning workspace.

A variety of methods based on discretization have been proposed for describing the orientation
workspace [?]. Contrasting these techniques is the geometric approach described in Merlet cite1993a,
which provides a strategy for computing and representing the orientation workspace when a point of the
end-effector is fixed.

To the best of our knowledge no one has addressed the problem of verifying a trajectory with respect
to the workspace: given two points in the parameter’s space (i.e., two postures for the end effector), is
the straight line joining these two points fully inside the workspace of the robot ? Clearly this problem
is very important for the motion planning of a parallel manipulator.

Let the reference frame (O, x, y, z) be fixed in the base platform and the relative frame (C, xr , yr, zr) be
embedded in the mobile platform. A subscript r will be used for vectors whose coordinates are expressed
in the relative frame. The following variables will be employed in this article:

• Ai, Bi: center of the passive joint of link i attached to the base of the robot and to the mobile
platform.

• ψ, θ, φ: three angles defining the orientation of the end effector

• R: rotation matrix relating the relative frame to the fixed frame.

• ρi: length of link i

2 Trajectory with a fixed orientation

In this section we will assume that the orientation of the end effector is kept constant all along the
trajectory. Let us define the start and goal points of the trajectory as M1,M2 and let C be a point on

B1

O

A1

C = M1

M2

C
λM1M2

OC

OM1

CB1

A1B1

A1O

x

y

z

xr

zr

yr

zr

xr

yr

xr yr

zr

Figure 2: The various vectors used in the equations.

the trajectory (i.e., a point lying on the segment M1M2). Any such point (Fig. 2) can be defined as:

OC = OM1 + λM1M2 with λ ∈ [0,1] (1)
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2.1 Limitation on the Link Lengths

The length of a link for any point on the trajectory between M1 and M2 (Fig. 2) is the euclidian norm
of vector AB. We have:

AB = AO + OC + CB, (2)

where CB = RCBr is a constant vector. The square of the link length ρ is given by:

ρ2 = AB.ABT

= ||AO||2 + ||OC||2 + ||CB||2 + 2(AO + CB).OCT + 2AO.CBT. (3)

Using equation (1), this equation can be rewritten as a second-order equation:

ρ2 = aλ2 + bλ+ c, (4)

with:
a = ||M1M2||

2 > 0, bb = 2(AM1 + CB).M1M
T
2 , c = ||AM1 + CB||2. (5)

We consider now the equation aλ2 + bλ+ c− ρ2
max. Because a > 0, the equation will be positive for all λ

if this equation has no root. Consequently, in that case the link length will be greater than ρmax on the
whole trajectory.

Assume now that the equation has two roots x1, x2 sorted by value. Because a > 0, the equation will
be positive for λ in ] − ∞, x1[, ]x2,+∞[. The intersection of these intervals with the interval [0, 1] will
define the intervals on λ (i.e., the portion of the trajectory) for which the link length will be greater than
ρmax.

We perform this analysis for the 6 link lengths, and the union Imax of all the obtained intervals will
define the portions of the trajectory for which at least one length will be greater than ρmax.

Now we consider the equation aλ2 + bλ+ c− ρ2
min. Because a > 0, the equation will be negative for

all λ if this equation has no root. Consequently, in that case the link length will be greater than ρmin on
the whole trajectory.

Assume now that the above equation has two real roots x1, x2 sorted by value. Because a > 0, the
equation will be negative for λ in ]x1, x2[, and the intersection of this interval with [0, 1] will define the
interval for which the link length will be less than ρmin.

We perform this analysis for the 6 link lengths, and the union Imin of all the obtained intervals will
define the portions of the trajectory where at least one link length will be less than ρmin.

The union of Imax, Imin will give the portions of the trajectory where at least one link length will
be outside its allowed range. If the union is empty the trajectory is fully inside the workspace of the
manipulator.

To verify a trajectory with respect to the link length limits, we have to analyze the roots of two second-
order equations with respect to the interval [0,1]. An analysis of the coefficients of these equations [?]
establishes the following rules:
Rule 1: If, at points M1,M2 the link length is less than ρmax, then the link length will be less than

ρmax on the whole trajectory.

Rule 2: If, at points M1,M2 the link length is less than ρmin, then the link length will be less than ρmin

on the whole trajectory.

Rule 3: If, at points M1,M2, the link length is greater than ρmin and M1M
T
2 . (AM1 + CB),

M1M
T
2 . (AM2 + CB) have the same sign, then the link length will be greater than ρmin on the whole

trajectory.

Rule 4: If, at points M1,M2, the link length is greater than ρmax and M1M
T
2 . (AM1 + CB),

M1M
T
2 . (AM2 + CB) have the same sign, then the link length will be greater than ρmax on the whole

trajectory.

Rule 5: Let α be the angle between the vectors AM1 + CB and M1M2, and let ρ(M1) be the link

length when the end-effector is at M1. If the link length is greater than ρmax for the end-effector locations

M1,M2 and ρ2
max < ρ2(M1) sin2 α, then the link length is greater than ρmax on the whole trajectory.

3



Rule 6: If, for the end-effector locations M1,M2 the link length is greater than ρmin, then the link

length will be less than ρmin for some points on the trajectory if and only if:

M1M
T
2 .(AM1 + CB) < 0 M1M

T
2 .(AM2 + CB) > 0 ρ2min > ρ2(M1) sin2 α (6)

2.2 Mechanical Limits on the Passive Joints

The mechanical limits on joints such as universal joints or ball-and-socket joints imply that the link
that is connected to the joint cannot fully rotate and span a full sphere. Therefore, the link spans a
volume that is defined by its border surface. As stated in Merlet [?, ?] we assume that this surface can
be approximated by a pyramid with planar faces. For the joints attached to the base, the center of this
pyramid is located at A (Fig. 3-a). Although a cone model will seem to be more suitable for the ball-
and-socket joint limit, very few commercially available joints have the feature of allowing a full cone to
be described. Furthermore, a cone model will greatly increase the complexity of the algorithm, as we
will have to deal with an inequality of degree at least four instead of two or one. Finally, a cone can be
approximated by a pyramid with an appropriate number of faces.
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Figure 3: An example of modelization of the constraints on the passive joints. For the base joints, if the
mechanical limits of the joints are satisfied, then the link A1B1 is inside the volume delimited by the
pyramid (a) (here a pyramid with 4 faces). For the mobile platform joint, if the mechanical limits on the
joints are satisfied, the point A1 lies inside a pyramid (b). From this pyramid we deduce an equivalent
pyramid P ,

1 centered at A1 such that if the mechanical limits on the joint are satisfied, then point B1 lie
inside P ,

1 (c).

As for the constraint on the passive joints attached to the end-effector, we may use the same model.
We define a pyramid Pi centered in Bi such that if the constraint on the joint at B is satisfied, then
point Ai will lie inside the pyramid (Fig. 3-b). We then define another pyramid that will be called an

equivalent pyramid P ,
i to Pi, with center Ai such that if Ai lies inside Pi then Bi lies inside P ,

i (Fig. 3-c).
Let ni be the external normal of the ith face of the pyramid associated with the joint attached to the

base. If the point B lies inside the pyramid, we have:

AB.nT
i ≤ 0. (7)

By using equation (1), this equation can be rewritten as:

λa1 + b1 ≤ 0, (8)

with a1 = M2M1.n
T
i , b1 = (OM1 + AO + CB).nT

i . This inequality will not be satisfied if a1 > 0 and
λ ∈] − b1/a1,+∞[ or if a1 < 0 and λ ∈] −∞,−b1/a1[.
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We compute the intervals on λ where the inequality is not satisfied. The intersection of these intervals
with [0, 1] gives the portion of the trajectory where the constraints on the joint are not satisfied. This
computation is done for all the faces of all the 12 pyramids defining the constraint on the joints, and
Ipyri

denotes the union of all these intervals for link i.

2.3 Link Interference

We define the distance between two links i, j as the minimal distance between any pair of points on the
links. It has been shown in Merlet [?] that this distance is the minimum of the following distances:

• The distance between the lines associated with the links if their common perpendicular has a point
on each link

• The distance between a point Bi and its projection Bj
i on link j if Bj

i belongs to link j

• The distance between a point Ai and its projection Aj
i on link j if Aj

i belongs to link j

• The distance between the points of one of the two pairs of points (Ai, Bj)

We assume that link i can be approximated by a cylinder with radius ri and links i, j will interfere if
their distance is less than d = ri + rj . Without loss of generality we will consider the interference between
links 1 and 2.

2.3.1 Distance Between the Lines

The distance l12 between the lines associated with links 1 and 2 can be written as:

l12 =
A1A2.(A1B1 × A2B2)T

||A1B1 × A2B2||
. (9)

Because
AiBi = AiO + OM1 + λM1M2 + CBi, (10)

the inequality l12 ≤ d leads to a second-order inequality P1(λ) ≥ 0. The intervals Id on λ included in [0,1]
such that P1(λ) is positive define the parts of the trajectory for which the distance between the lines is
less than or equal to d.

Let Q1, Q2 be the points on lines 1,2 belonging to their common perpendicular. If these points belong
to the links for some values of λ in Id, then there is link interference. We define α1, α2 by:

A1Q1 = α1A1B1 A2Q2 = α2A2B2. (11)

Consequently, point Qi belongs to link i if αi is in [0,1]. Using equation (10), α1, α2 can easily be obtained
as:

α1 =
Pα1

(λ)

Pd(λ)
=
s2λ

2 + s1λ+ s0

2λ2 + t1λ+ t0
α2 =

Pα2
(λ)

Pd(λ)
=
r2λ

2 + r1λ+ r0
t2λ2 + t1λ+ t0

, (12)

where the r, s, t are constants. Let IPi

+ be the intervals included in [0,1] such that Pαi
is positive or equal

to 0 (i.e., αi ≥ 0) and IPi

1 be the intervals in [0,1] where Pαi
−Pd(λ) is negative or equal to 0 (i.e., αi ≤ 1).

We may remark that all these intervals can be easily obtained from the above equations. The set ID of
intervals of λ in [0,1] where the distance between the links is the distance between the lines and is less
than d is therefore:

ID = Id ∩ (IP1

+ ∩ IP1

1 ) ∩ (IP2

+ ∩ IP2

1 ). (13)

If Id is an empty set, the distance between the lines (which is a lower bound of the distance between the
links) is always greater than d, and therefore link interference cannot occur. If Id is not empty and ID is
empty, we cannot state whether the distance between the links is less than d, as this distance is always
greater or equal to the distance between the lines. The distance between the links is therefore different
from the distance between the lines.
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2.3.2 Distance Between the Points Bi and Their Projections

The distance l from point B1 to line 2 can be written as:

l =
||B1B2 × A2B2||

||A2B2||
. (14)

The inequality l ≤ d leads to a second-order inequality P
B2

1

1 (λ) ≥ 0, and interference will occur if the
projection Q1 of B1 on line 2 belongs to link 2. We define β1 such that A2Q1 = β1A2B2, and the above
condition will be fulfilled if β1 belongs to [0,1]. Equations (2) and (1) lead to:

β1 =
A2B1.A2B

T
2

||A2B2||2
=
P

B2
1

2 (λ)

Q(λ)
=
b12λ

2 + b11λ+ b10
f2λ2 + f1λ+ f0

. (15)

Let I
B

j

i

be the intervals included in [0,1] such that P
B

j

i

1 ≥ 0 (i.e., l ≤ d), P
B

j

i

2 ≥ 0 (i.e., β1 ≥ 0),

P
B

j

i

2 −Q(λ) ≤ 0 (i.e., β1 ≤ 1). The set of intervals I
B

j

i

, i, j ∈ [1, 6], i 6= j defines the components of the

trajectory for which interference occurs between links i and j.

2.3.3 Distance Between the Points Ai and Their Projections

The distance lA2
1

from point A1 to line 2 is:

lA2
1

=
||A1B2 × A2B2||

||A2B2||
. (16)

The components of the trajectory for which link interference occurs are defined by the intervals such that

lA2
1
− d ≤ 0, which is equivalent to a second-order inequality P

A2
1

1 (λ) ≥ 0 under the condition that the
projection Q1 of A1 on line 2 belongs to link 2. We define µ1 such that A2Q1 = µ1A2B2 and Q1 belongs
to link 2 if µ1 is in [0,1]. Equations (2) and (1) lead to:

µ1 =
A2A1.A2B

T
2

||A2B2||2
=
P

A2
1

2 (λ)

Q(λ)
=

b11λ+ b10
f2λ2 + f1λ+ f0

, (17)

where the a, b, f are constants. Let I
A

j

i

denote the intervals included in [0,1] such that P
A

j

i

1 > 0 (lA12 ≤ d),

P
A

j

i

2 ≥ 0 (µ1 ≥ 0), P
A

j

i

2 −Q(λ) ≤ 0 (µ1 ≤ 1). The set of intervals I
A

j

i

, i, j ∈ [1, 6], i 6= j define the

components of the trajectory on which interference between links i and j occurs.

2.3.4 Distance Between Points Ai and Bj

The distance between points A2 and B1 can be written as:

||A2B1||
2 = PA2B1

(λ)

= λ2||M1M2||
2 + 2λ(A2M1 + CB1).M1M

T
2 + ||(A2M1 + CB1)||2, (18)

which is a second-order polynomial in λ. We denote by IAiBj
the intervals of λ included in [0,1] such that

PAiBj
(λ) − d2 ≤ 0. These intervals define the parts of the trajectory for which the distance from Bj to

Ai is less than d. An analysis of this inequality [?] enables us to establish the following rule:

Rule 7: Let α be the angle between the vectors AiM1 +CBj, M1M2. If the distance between the points

Ai and Bj is greater than d when the end-effector location is M1 and M2, then the distance between these

points will be less than d for some C on the line joining M1 and M2 if and only if:

(AiM1 +CBj).M1M
T
2 < 0 ||M1M2||

2 + (AiM1 +CBj).M1M
T
2 > 0 d2 > ||AiM1 +CBj||

2 sin2 α
(19)
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The union Ibad of all the forbidden intervals for λ for each constraint describes the parts of the trajectory
that are outside the workspace. We get:

Ibad = Imax ∪ Imin ∪ Ipyri
∪ IDij

∪ I
B

j

i

∪ I
A

j

i

∪ IAiBj
. (20)

2.4 Computation Time

The above algorithms have been implemented in a workspace computation program. This program is
written in C on a Sun Sparc2 workstation.

The computation time for verifying the the link lengths constraints is approximatively 1.6 ms if the
trajectory is correct and 2.1 ms if some points are outside the workspace. A computation time of 1.34 to
1.72 ms is necessary for checking link interference between a pair of links. As for the mechanical limits
on the passive joints, the computation time for one face of one pyramid is approximatively 0.3 ms.

If we check all the constraints, the computation time for a trajectory is approximatively 29 ms. Such
a time seems to be adequate with a real-time computation.

2.5 Examples

We have performed trajectory verification for a prototype of a parallel manipulator developed by Arai et
al. [?] at the Mechanical Engineering Laboratory in Tsukuba (Fig. 4 and 5).
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Figure 4: The forbidden parts of the trajectory are drawn in dashed lines. The gray zones are forbidden
zones of the workspace. On the left the constraints are only the link lengths, and on the right there is a
constraint on one of the base joints (computation time: 1.99 ms and 3.166 ms).

3 Trajectory With a Varying Orientation

In the case of a constant orientation we have seen that the constraints can be expressed under the form
of algebraic equations in the variable λ. If we now introduce a varying orientation, we have no more
algebraic constraints, as λ will appear in the sines and cosines of the rotation matrix.

To get algebraic constraints equations, we split the trajectory in elementary parts such that the change
in the orientation will be small. As the orientation will affect only the vector CB, we will use a first or
second-order approximation for this vector. Let M1,M2 denote the extremities of one elementary part
of the trajectory; ψ1, θ1, φ1 the angles describing the orientation of the end-effector at point M1; and
ψ2, θ2, φ2 the angles of the end-effector at point M2. Between points M1 and M2 (Fig. 6) the position of
point C is defined by equation (1), and the orientation angles can be written as:

ψ = ψ1 + λ(ψ2 − ψ1) θ = θ1 + λ(θ2 − θ1) φ = φ1 + λ(φ2 − φ1) (21)
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Figure 5: Examples of trajectory verification. On the left, the frontier of the workspace where there is no
link interference is drawn in thick lines; on the right is drawn a 3D trajectory. The forbidden parts of the
trajectory are drawn in dashed lines (computation time: 13.5 ms and 200 ms).
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Using a first or second-order approximation of CB leads to:

CB(ψ, θ, φ) = CB(ψ1, θ1, φ1) + λU1 , (22)

CB(ψ, θ, φ) = CB(ψ1, θ1, φ1) + λU1 + λ2U2 , (23)

where the vectors U1,U2 are only dependent on the relative position of B and the angles ψ1,θ1,φ1 and
ψ2,θ2,φ2. Under this assumption we may now analyze the various constraints on an elementary part T
of the trajectory.

3.1 Link Lengths Constraints

By using equation (1) and a second-order approximation (23), we obtain the square of the link length ρ2

as a third-order polynomial Pρ(λ). As for the constant orientation case, the analysis of the polynomial
Pρ(λ) − ρ2

max, Pρ(λ) − ρ2
min enables us to compute the intervals of λ in [0,1] such that the link length is

greater than its maximum value or lower than its minimal value.

3.2 Constraints on the Passive Joints

Using a second-order approximation of CB (23) together with equation (1), the constraint equation (7)
leads to a second-order inequality. Analysis of this inequality yields the intervals on λ such that some
point of the link lies outside the pyramid. By considering all the set of faces of every pyramid, we get
those parts of the trajectory that do not satisfy the joints constraints. A similar analysis can be done for
the passive joints of the mobile plate. The following simplification rules can be established [?]:

Rule 8: Let ni be the external normal to the face i of the pyramid describing the constraints on the

base joint. Let U1,U2 be the vectors of the second-order approximation of CB. If, at the extreme points

of T , the vector AB lies inside the pyramid with respect to face i and if U2.n
T
i > 0, then the constraint

on the joint is satisfied on the whole T .

Rule 9: If, at the extreme points of T , the vector AB lies inside the pyramid with respect to face i, this

constraint will not be satisfied at some points of T if and only if:

U2.n
T
i < 0 M1M2.n

T
i + U1.n

T
i > 0 2U2.n

T
i + M1M2.n

T
i + U1.n

T
i < 0 (24)

(M1M2.n
T
i + U1.n

T
i )2 > 4U2.n

T
i (AM1.n

T
i + CB(ψ1, θ1, φ1).nT

i ) (25)

3.3 Link Interference

3.3.1 Distance Between the Lines

Let l12 denote the distance between lines 1 and 2. By using equation (1) and a first-order approxima-
tion (22), the inequality l12 ≤ d can be written as a fourth-order polynomial in λ P (λ) ≥ 0.

If the common perpendicular points Q1, Q2 of lines 1 and 2 belong to the links, we get link interference.
We define α1, α2 such that A1Q1 = α1A1B1,A2Q2 = α2A2B2 and we get:

α1 =
Pα1

(λ)

Pd(λ)
=

s3λ
3 + s2λ

2 + s1λ+ s0
t4λ4 + t3λ3 + t2λ2 + t1λ+ t0

α2 =
Pα2

(λ)

Pd(λ)
=

r3λ
3 + r2λ

2 + r1λ+ r0
t4λ4 + t3λ3 + t2λ2 + t1λ+ t0

, (26)

where r, s, t are constants. We compute the intervals of [0,1] where P (λ) ≥ 0 (i.e., l12 ≤ d), P (αi) ≥ 0
(i.e., αi ≥ 0), P (αi) − Pd ≤ 0 (i.e., αi ≤ 1). All these intervals can be easily derived from the analysis of
the various polynomials. The intersection ID of all these intervals defines the components of T for which
link interference occurs. If Id is empty, the distance between the lines (which is a lower bound of the
distance between the links) is always greater than d. Consequently, the distance between the links is also
always greater than d. If Id is not empty and ID is empty, we cannot conclude as the distance between
the lines is less than d but the distance between the links is greater than the distance between the lines.
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3.3.2 Distance Between the Points Bi and Their Projections

The distance l from point B1 to line 2 is given by equation (14). Using equations (1) and (23), the

inequality l ≤ d leads to a fourth-order inequality P
B2

1

1 (λ) ≥ 0. Link interference will occur if this
inequality is satisfied and if the projected point Q1 of B1 on line 2 belongs to link 2. We get:

A2Q1 = β1A2B2 =
P

B2

1

2 (λ)

Q(λ)
A2B2 =

b1
2λ

2 + b1
1λ+ b1

0

f2λ2 + f1λ+ f0
A2B2. (27)

Q1 will belong to link 2 if β1 is in [0,1]. Let I
B

j

i

be the intervals included in [0,1] such that P
B

j

i

1 ≥ 0

(l ≤ d), P
B

j

i

2 ≥ 0 (β1 ≥ 0), P
B

j

i

2 −Q(λ) ≤ 0 (β1 ≤ 1). The set of intervals I
B

j

i

, i, j ∈ [1, 6], i 6= j defines

the components of T where there is interference between links i, j.

3.3.3 Distance Between the Points Ai and Their Projections

The distance l between the point A1 and line 2 is given by equation (16). Using equations (1) and (22),

the inequality l ≤ d leads to a second-order inequality P
A2

1

1 (λ) ≥ 0.
Collision between links 1 and 2 will occur if the projection point Q1 of A1 on line 2 belongs to link 2.

Let:

A2Q1 = µ1A2B2 =
P

A2

1

2 (λ)

Q(λ)
A2B2 =

b1
1λ+ b1

0

f2λ2 + f1λ+ f0
A2B2. (28)

The above condition will be fulfilled if µ1 is in [0,1]. Let I
A

j

i

be the intervals in [0,1] such that P
A

j

i

1 ≥ 0,

P
A

j

i

2 ≥ 0 (i.e., µ1 ≥ 0), P
A

j

i

2 −Q(λ) ≤ 0 (i.e., µ1 ≤ 1). The set of intervals I
A

j

i

, i, j ∈ [1, 6], i 6= j defines

the components of T where collision between links i, j occurs.

3.3.4 Distance Between the Points Ai and Bj

Using a first-order approximation (22), of CB1 we get that ||A2B1||
2 is a second-order polynomial in

λ, PA2B1
(λ). We can propose a sufficient and necessary condition for the distance between the points Ai

and Bj being less than d.

Rule 10: Let α be the angle between the vectors V1 = M1M2 +U , V2 = AiM1 +CBj(ψ1, θ1, φ1). If,

at the extreme points of T , the distance between the points Ai, Bj is greater than d, then at some point

of T the distance between these points will be less than d if and only if:

(AiM1 + CBj(ψ1, θ1, φ1)).(M1M2 + U)T < 0 d2 > ||AiM1 + CBj(ψ1, θ1, φ1)||2 sin2 α(29)

||M1M2 + U||2 + (CBj(ψ1, θ1, φ1) + AjM1).M1M
T
2 > 0 (30)

3.4 Computation Time

The computation time for the verification of a trajectory is dependent on the number of elementary parts.
This number is obtained by considering the orientation angles with the greatest variation and by dividing
this variation by a constant angle (5 degrees in our implementation).

If we consider only the link length constraints, the mean computation time for the verification of one
elementary part is approximatively 16 ms. The computation time for checking interference between a
pair of links is about 27.6 ms. As for the mechanical limits on the passive joints, the computation time
for checking one face of a pyramid is 1 ms. If we take into account all the constraints for a robot with
four-faced pyramids on the base joints, we get a total computation time of 450 ms.

In conclusion, the full verification of a trajectory cannot be realized in real-time, but our method
remains efficient and safe. Fig. 7 shows some examples of trajectory verification. The computation time
are 423 ms and 4133 ms, respectively.
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Figure 7: Examples of trajectory verification. The forbidden parts of the trajectory are drawn in thick
lines. Each cross-section of the workspace has been computed for an orientation obtained by a linear
interpolation between the orientations at the start and goal positions. On the left the constraints are
the link lengths and the goal point is outside the workspace. On the right the constraints are the link
lengths and link interference. The start and goal points are in the workspace, but a part of the trajectory
is outside the workspace.

4 Application: Motion Planning

Let us assume that a given trajectory is outside the workspace of a given robot. We will assume here that
the orientation is kept constant all along the trajectory and that the trajectory is in a given horizontal
plane. Because we know the workspace border, we tile it with small square cells (Fig. 8).

In this tessellation we find the squares that contain the start and goal points. We then build a valued
graph whose nodes are the centers of the cells, which are connected by arcs to their neighbor cells. The
value of the arcs is the distance between the nodes if the line joining the nodes lies inside the workspace
or an arbitrary large value if the line is outside the workspace. This can be determined by using our
verification algorithm. A path between the start and goal points can be found by using a shortest path
algorithm in the graph (for example an A∗ algorithm [?]), and this path is then smoothed. Because the
tessellation is computer intensive, the computation time is rather high (4.51 s in the presented example)
(Fig. 8).

5 Conclusion

We have presented an algorithm enabling us to verify whether a given trajectory is fully inside the
workspace of a parallel manipulator. This workspace is calculated by considering mechanical constraints
that can limit the reach of the robot: link length range, mechanical limits on the passive joints and link
interference. In this algorithm these constraints are expressed as algebraic inequalities which are easily
solved. These algebraic inequalities exactly describe the constraints if the orientation of the end-effector
is kept constant all along the trajectory and are approximately exact if changes in orientation are also
considered. By solving these inequalities we can determine whether the trajectory is fully inside the
workspace or find which part of the trajectory is outside the workspace. This algorithm is fast enough to
be used in real time for a constant orientation trajectory.
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Figure 8: Motion planning: the straight line between the start and goal points is not a valid trajectory.
The workspace border is calculated and is tiled with small square cells. An A∗ algorithm enables us to
find a path between the start and goal position in the workspace (left). A smoothing algorithm can then
be used (right).
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