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Abstract

The purpose of this paper is to present algorithms for computing either exactly or with a
pre-specified accuracy the extremal values of the articular coordinates of a Gough type parallel
robot when the platform is constrained to lie within a given 6D workspace. Such algorithms are
useful either for the design of the robot or for computing its workspace.

Keywords: performance analysis, design, parallel robots

1 Introduction

The Gough platform [Gough 1956],[Gough 1962] (figure 1) is a 6-dof parallel robot which has
received a lot of attention in the last ten years, due to its positioning and load performances
which outperform more classical robots. Basically a Gough platform consists in a base and a
moving platform connected by 6 identical kinematic chains called the legs. Each of these legs
is connected to the base with an universal joint and to the moving platform by a ball-and-socket
joint. Furthermore a linear actuator enable to change the leg lengths and by an appropriate
control of the 6 leg lengths it is possible to control the 6 dof of the moving platform. When
designing a Gough platform it is important to determine what will be the extrema of the leg
lengths for any posture lying within a given 6D workspace as in most applications the desired
workspace is known and the minimal and maximal leg lengths belong to the design parameters.
To the best of our knowledge this problem has not been addressed in the literature, the authors
focusing on the inverse problem of determining the workspace of a parallel robot being given
the extremal values of the leg lengths [Gosselin 1990],[Haugh 1995], [Haugh 1998],[Ji 1996].
A 6D workspace consists in two parts:

• a 3D geometrical object (for example a cube) denoted the location part of the workspace,
which define the possible locations of a specific point C of the moving platform

• three ranges denoted the orientation part which define the possible values of the three
orientation angles of the moving platform

The purpose of this paper is to present algorithms for computing the extremal value of the
leg lengths for a given 6D workspace either exactly or with an accuracy ε which can be fixed
arbitrarily.
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Figure 1: The Gough platform

2 Extended box and general workspace

We define an extended box or EB for short as a pair of element: a cartesian box, which represent
the possible location of the end-effector, and a set of three ranges, one for each of the rotation
angles. An EB is therefore composed of a location part (the box) and an orientation part and
defines a particular type 6D workspace for the robot.

More generally we will assume that any location part can be defined by a set of horizontal
polygonal cross-sections,the workspace between two sections being the polyhedra obtained by
linking the corresponding vertices of the two polygons (figure 2).

Figure 2: Example of location part

Assume now that we have an algorithmA1 which enable to compute the extremal leg lengths
for an EB (or at least an upper bound and a lower bound of these quantities). We will show now
that using this algorithm it is possible to compute the extremal leg lengths for any type of
location part with a pre-specified accuracy ε.

For the sake of simplicity we will illustrate our algorithm for the case where we want to
determine the maximal length ρmax of one leg (the determination of the minimal leg length
can be derived directly from the algorithm). This value is initialized by taking some particular
postures within the 6D workspace W (for example the vertices of the polygonal cross-sections
with a few orientation among the orientation ranges) and retaining the maximal lengths among
all the postures. In our algorithm we will use a list S of EB with n elements in it. Any EB Bi in



this list will have the same orientation part than the 6D workspace. This list is initialized with
an EB whose location part is the cartesian bounding box of the volume and therefore n = 1. A
trivial geometrical algorithm enable to determine if an EB fully lie inside W , is totally outside
W or is partially inside W . The algorithm uses an index i initialized to 1 and uses the following
step:

1. if i > n return ρmax

2. compute the maximal leg length ρ for the EB Bi using the algorithm A1

3. if |ρ− ρmax| < ε, then i = i+ 1 and go to step 1

4. if |ρ− ρmax| > ε:

(a) if Bi fully lie inside W , then ρmax = ρ, i = i + 1, go to step 1

(b) if Bi is totally outside W , then i = i+ 1, go to step 1

(c) if Bi is partially inside W we bisect Bi. The bisection process create 8 new EB which
are put at the end of S. Therefore n = n+ 8 and we go to step 1

Hence this algorithm enable to compute ρmax with an accuracy ε for any type of location part.
A direct consequence is that as soon as an algorithm A1 for the EB has been determined we
may deal with any type of 6D workspace. The purpose of the following sections is to present
such an algorithm.

3 Extremal leg lengths for an extended box

In the sequel we will assume that the location part of the 6D workspace is a cartesian box.

3.1 Translation workspace

We assume here that all the orientation ranges are reduced to a point or, in other words, that
the orientation of the platform is fixed. Let Bi denote the attachment points of the legs on the
platform and Ai the attachment points of the legs on the platform. As the orientation is fixed
when C moves within its cartesian box C all the Bi moves within a cartesian box CBi

of same
size than C, whose center is obtained by translating the center of C by the vector CBi. For
physical reason we may assume that the cartesian box of the Bi does not include the attachment
point Ai of the leg on the base. It is then trivial that the following result hold:

• the maximal leg length is obtained when Bi lie at one of the vertices of CBi

• the minimal leg length is obtained when Bi lie at one of the vertices of CBi
except if the

projection Ap
i of Ai on the planes including the faces of CBi

lie within a face. In that case
the minimal distance may be ||AiA

p
i ||.

For computing the extremal leg lengths the procedure is therefore

1. compute the coordinates of the 8 vertices Vj of CBi
by translating the vertices of C by the

vector CBi

2. the maximal leg length is Max(||VjAi||) for j in [1,8]

3. compute the projection Ap
ik

of Ai on the 6 planes containing the 6 faces Fm of CBi



4. the minimal leg length is Min(||VjAi||, ||A
p
ik
Ai||) for j in [1,8], k in [1,6] and for Ap

ik

belonging to a face Fm with m in [1,6].

On a SUN Ultra 1 workstation the computation time of this algorithm is 0.26 ms. If we use this
algorithm to compute the extremal leg lengths of the volume of figure 2 with an accuracy of at
least 0.02% the computation time is 767 ms.

4 General workspace

4.1 Special case of Gough platform

In this section we assume that all the Bi are coplanar and similarly that all the Ai are coplanar.
We define a reference frame whose z axis if perpendicular to the plane of the Ai and such that
the z coordinates of the Ai is equal to 0. Similarly we define a mobile frame, whose origin is
C and whose z axis is perpendicular to the plane of the Bi and such that the z coordinate of
the Bi is equal to 0. Let xc, yc, zc be the coordinates of C and ψ, θ, φ be the orientation angles.
To determine the extremal leg lengths we have to solve the constrained optimization problem
which is to find the extremal values of ρ with:

ρ2 = F (xc, yc, zc, ψ, θ, φ)

under the constraints:

xc ∈ [x1, x2] xc ∈ [y1, y2] zc ∈ [z1, z2]

ψ ∈ [ψ1, ψ2] θ ∈ [θ1, θ2] φ ∈ [φ1, φ2]

The F functions are polynomials of degree 2 in xc, yc, zc (the degree 2 term being x2

c + y2

c + z2

c ,
the other terms being linear) while the ψ, θ, φ parameters appear through their sine and cosine.
A preliminary remark is that the extremal leg lengths will be obtained when at least one of the
parameter xc, yc, zc is extremal. Indeed assume that the extremal leg length will be obtained for
a posture which does not satisfy this property. The leg has a fixed direction u in that posture and
it will be possible to move C without changing the platform orientation so that the attachment
point B of the leg remains on the line defined by A,u and either come closer to A (therefore
reducing the leg length) or moving away from A (and therefore increasing the leg length).
Consequently this posture cannot define an extremal of the leg length. For all variable pi in the
set {xc, yc, zc} which vary in the range [p1, p2] we define a new variable αi such that:

pi = p1 +
1 + sin(αi)

2
(p2 − p1) (1)

Thus we insure that pi lie within its range. For the orientations parameters we define a new
parameter λi such that:

pi = p1 + λi(p2 − p1) (2)

If we impose that λi lie in the range [0,1], then we insure that pi lie within its range. According
to the preliminary remark The optimization problem is solved by equating to 0 n of the partial
derivatives:

∂F

∂αj

∂F

∂λj

where n is at most 5 (this case being obtained when only one of the parameters in {xc, yc, zc}
has a fixed value). We have therefore to solve:



• 3 systems of 5 equations in 5 unknowns obtained when only one of the parameters in
{xc, yc, zc} has a fixed value

• 3 systems of 4 equations in 4 unknowns obtained when two of the parameters in {xc, yc, zc}
has a fixed value

• 1 system of 3 equations in 3 unknowns obtained when all the parameters in {xc, yc, zc} has
a fixed value

After solving each of the systems we obtain a potential extremal leg length value and we retain
the minimal and maximal values among all the potential values to get the extremal leg lengths.

For lack of space we cannot describe further the procedure, which require a lot of algebraic
geometry manipulation but is still tractable as all the equations are factorizable (the algebraic
manipulation are performed using the library ALP developed in our laboratory).

4.2 General case of Gough platform

In the general case the previous optimization problem cannot be solved easily as the previous
systems have a largely higher complexity. For efficiency reason we have decided to use another
approach based on interval analysis [Hansen 1992], [Moore 1979].

An interval number is a real, closed interval (x, x). Arithmetic rules exist for interval num-
bers. For example let two interval numbers X = (x, x), Y = (y, y), then:

X + Y = [x + y, x+ y]

X − Y = [x− y, x− y]

An interval function is an interval-valued function of one or more interval arguments. An
interval function F is said to be inclusion monotonic if Xi ⊂ Yi for i in [1, n] implies:

F (X1, . . . , Xn) ⊂ F (Y1, . . . , Yn)

A fundamental theorem is that any rational interval function evaluated with a fixed sequence of
operations involving only addition, subtraction, multiplication and division is inclusion mono-
tonic. The leg length of a Gough platform is obtained from the coordinates of C and the orien-
tation angles as an inclusion monotonic function as the operators used in this function are only
addition, subtraction, multiplication and the trigonometric operator sin, cos. Consequently us-
ing the arithmetic rules we may obtain for an EB a lower and an upper bound of the leg lengths
and any EB resulting from the bisection of the initial EB will have a lower and an upper bound
of the leg lengths included in the range found for the initial EB. Interval analysis involves only
basic operations and is therefore quite fast. Note that some tricks (especially using the mono-
tonicity of the leg lengths and Taylor expansion at the first and second order) enable to get rather
sharp bounds without adding to much computation time.

As mentioned in the previous sections the algorithm A1 does not need to give exact values
for the extremal leg lengths: consequently interval analysis is perfectly suitable. We use the
special interval analysis package BIAS/Profil which provide the basic operations of interval
analysis. This package has been included in the algebraic geometry library ALP developed in
our laboratory which contain some optimization routine enabling to determine efficiently sharp
bounds on the extremal leg lengths.

5 Conclusion

The first purpose of the presented algorithm is for design: it is clearly quite important to be able
to determine the necessary lengths and stroke of the linear actuator of a Gough platform during



the design process. As this step has to be repeated for various geometries during the design
process an efficient and fast algorithm is needed.

But this algorithm may also be used for other purposes. For example it has been used to
determine all the locations of C that can be reached with a fixed set of orientations or all
the locations of C that can be reached with at least one orientation (the so-called reachable
workspace) [Merlet 1998].
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