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Abstract:

The inverse jacobian matrix of a robot contains highly

useful information about the performances of the robot,

for example about its accuracy and dexterity. Unfortu-

nately these information are available only mostly through

the eigenvalues of this matrix which are pose and design

parameters dependent. We present interval analysis based

algorithms that allow to extract useful information from

any matrix such as minimal and maximal eigenvalues and

minimal condition number.
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1 Introduction

The jacobian matrix J of a robot relates linearly the
joint velocities Θ̇ and the cartesian velocities Ẋ:

Ẋ = J(X)Θ̇ (1)

A first order approximation allows also to relate the
errors ∆X on the positioning of the end-effector to the
error ∆Θ in the joint variable measurements:

∆X = J(X)∆Θ (2)

Let us introduce the joint errors space as a n dimen-
sional space (if the robot has n joints) where each di-
mension corresponds to one of the joint errors. In the
joint errors space a point correspond to a set of values
for the joint errors. If we assume now that the ampli-
tude of all the joint errors is bounded by an arbitrary
value (e.g. 1) we have ||∆Θ||2 ≤ 1 and all the possible
joint errors are included in a hyper-cube. We get:

||∆Θ||2 = ||∆X ||J−1J−T ||∆X || ≤ 1 (3)

Equation (3) indicate that the joint errors space hyper-
cube is mapped into a convex hyper-polyhedra in the
cartesian error space. The largest (smallest) eigenvalue
of M = J−1J−T will provide the largest (lowest) di-
mension of the hyper-polyhedra i.e. a value closely
related to the largest (smallest) error for the position
of the end-effector, while the condition number of M
(i.e. the ratio of the smallest eigenvalue over the largest
one) will reflect the shape of the polyhedra: if 0 the
polyhedra is reduced to a line and the robot is in a
singular position and if 1 the polyhedra is an hyper-
cube. Hence interesting information are provided by
the eigenvalues of M . Many authors have consequently

suggested to use this matrix for establishing a quality
index for a robot: either through the determinant of
this matrix [6] or its condition number [3]. But there
are major drawbacks with M :

• this matrix depends upon the pose and the geom-
etry of the robot.

• the eigenvalues that are used to calculate the in-
dex may be obtained numerically is the matrix is
numerical. Otherwise a closed-form expression of
the eigenvalues may be obtained only by study-
ing the characteristic polynomial of M which has
the same degree than the dimension of the matrix.
Hence for robot having more than 4 d.o.f. it will
not be possible to determine an analytical form for
the eigenvalues. For robot having up to 4 d.o.f. al-
though the roots may be known analytically the
calculation o the index may not be trivial

In general it will be possible to compute numerically
the index for a given robot at a given pose. But the
indexes have for purpose to give information on the be-
havior of the robot not only in a single pose but over
its whole workspace. Computing these indexes in this
view is equivalent to solve a difficult constrained op-
timization problem. A critical point is that the result
must be guaranteed: the algorithm should provide a
global minimum or maximum and not a local one. The
purpose of this paper is to explain how to compute nu-
merically the value of various indexes and even how to
deal with design problem when constraints are given
on the indexes. All these algorithms are based on an
interval analysis approach.

2 Interval analysis

Interval analysis is a powerful method initially pro-
posed by Moore [2] in which real numbers are substi-
tuted by intervals. Let us illustrate this method on
a simple example: let f be the function x2 − 2x and
assume that we are looking for the solutions of f = 0
when x is in the range [3, 4]. Intuitively it is easy to
see that if x is in [3,4], then x2 is in [9,16]: this means
that if x has a particular value in the range [3,4], then
f(x) has a value in the range [9,16] (similarly −2x is
in the range [-8,-6]). Now consider the sum of 2 in-
tervals A = [a, a], B = [b, b]. It may be seen that
A + B = [a + b, a + b] = C, which means that for any



value of x in A and y in B, then x + y lie in C. In our
case we will write f([3, 4]) = [9, 16]+[−8,−6] = [1, 10].
The resulting interval defines lower and upper bounds
for the values of f : we may guarantee that for any x in
[3,4] we have 1 ≤ f(x) ≤ 10. As 0 is not included in the
final interval we may state that there is no zero of f for
x in the range [3,4]. Note that the bounds provided by
interval arithmetics are overestimated, the true range
of f(x) being [3,8] (but the amplitude of the overesti-
mation will decrease with the width of the interval for
x). However, this does not affect the validity of the
conclusion.

This method works for all the classical mathemat-
ical functions such as sin, cos, sinh, . . .. Furthermore
this method may be implemented to take into account
numerical round-off errors and is therefore safe from a
numerical view point. Hence interval analysis is an el-
egant method to determine in a simple way lower and
upper bounds of any arbitrary expression. In this pa-
per an interval will be denoted by upper-case letters
and the lower bound and upper bound of the interval
X will be denoted X, X .

3 Minimal and maximal eigen-

values

Let us assume that M is function of a set of n pa-
rameters p1, . . . , pn , all supposed to lie in a set S0 of
given ranges P 0

1
, . . . , P 0

n (hence M represents a set of
matrices). These parameters may be either the pose
of the robot, a set of design parameters or a mix of
both. Our aim is to compute the minimal eigenval-
ues em of M up to a pre-defined accuracy ǫ. In other
words we will determine a number e′m, which will be
the lowest eigenvalue of one particular matrix in M ,
such that |e′m − em| ≤ ǫ. In term of optimization if P
denotes the characteristic polynomial of M we want to
determine a set (S, x) such that x is minimized subject
to the constraints PS(x) = 0 and S ∈ S0. It may be
seen that this is not a trivial constrained optimization
problem.

It may be thought that for robot with up to 4 d.o.f.
this problem may be solved as analytical forms of the
eigenvalues are known. This is not a very good idea:

• the analytical form of the root is usually very
badly conditioned

• its is difficult to use the analytical form for deter-
mining the minimal eigenvalue

We define now the set of unknowns U =
{y, p1, . . . , pn} where the first unknown represent a po-
tential root for P . A box will be defined as a set of in-
tervals {Y, P1, . . . , Pn}, each element of this box being
associated to the corresponding element in U .

Consider now the characteristic polynomial P of M :
the coefficients of P can be calculated as a function of
the n parameters. Using interval analysis we are able
to compute the bounds of all these coefficients. Then
by using classical results of algebraic geometry (such
as Laguerre or Cauchy theorems) and classical results

for the bounds of eigenvalues (Gerschgorin circles [1],
Kharitonov polynomials [4], . . .) we are able to deter-
mine lower and upper bounds for the eigenvalues of M .
Hence we get an interval Y0 = [a, b] such that all the
roots of any PS where S ∈ S0 are included in [a, b].
More generally for a box Bj we will denote by G(Bj)
the interval that include all the roots of the polynomi-
als P (Bj) whatever are the values of the parameters in
Bj .

We will denote by P(B) the interval evaluation of
the polynomial P for the box B: if this evaluation
does not include 0, then there is no value of x in Y such
that P (x) = 0, whatever are the parameters values in
P1, . . . , Pn. During the calculation we will maintain an
estimate e′m of em: this estimate will be initialized by
taking random values for the parameters within their
range, computing numerically the minimal root of P
and assigning this value to e′m . A list L of box will be
used during the calculation. This list is initialized with
the box {Y0, P

0

1
, . . . , P 0

n}. The total number of box in
L will be denoted k while Bj will represent the j-th

box {Yj , P
j
1
, . . . , P j

n} in the list. During the calculation
we will process each box in L and the number of the
current box being processed will be denoted by i. The
basic algorithm proceeds along the following steps:

1. if i > k, return e′m

2. if G(Bi) ≥ e′m − ǫ, then i = i + 1 and go to step 1

3. if Yi ≥ e′m − ǫ, then i = i + 1 and go to step 1

4. if Yi ≥ e′m − ǫ, then change the upper bound of Yi

to e′m − ǫ

5. if P(Bi) does not include 0, then i = i + 1 and go
to step 1

6. select a few random points in Bi and compute nu-
merically the minimal roots of P at these points.
If one of these roots is lower than e′m, then update
e′m

7. choose one variable l in the box and bisect its
range. This create 2 new ranges V1, V2 for the vari-
able l and we create 2 new boxes from the original
Bi: they have the same range for all the variables,
except for the variable l, the first box having range
V1, while the other has range V2. Bi is replaced
by the first new box, while the second new box is
added at the end of the list. k is updated to k+1
and we go to step 2.

This basic algorithm may be easily explained:

• step 1 is the completion test of the algorithm: all
the boxes have been processed and we may guar-
antee that e′m is a good approximation of em.

• steps 2, 3, 5 are test that allow to reject boxes that
cannot contain polynomials whose lowest root will
be lower than e′m − ǫ

• step 4 is an update test: the first variable is a
box is the potential minimal root of P and we
are interested only in root improving the current
minimum
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• step 6 is an update procedure for the minimum.
The current box defines a set of polynomials: we
just consider a few polynomials in this set and
update the current minimum if necessary

• step 7 is the reduction step. We have not been able
to determine if in the set of polynomials defined
by Bi there may be a polynomial having a root
lower than the current minimum. So we create 2
new boxes from the initial one, each of these boxes
having a smaller width than the original one

Even this basic algorithm has advantages. First we
are not limited in term of complexity of the character-
istic polynomial: the only requirement is that we must
use a numerical procedure that can compute safely the
roots of a numerical polynomial or the eigenvalue of a
matrix (step 6). Note also that, like most algorithms
based on interval analysis, the structure of the algo-
rithm is appropriate for a distributed implementation:
each box may be processed by a slave computers for
a few iterations, the result being returned to a master
program that manages the list L, the result and the
load of the slave computers. Note that small changes
in the algorithm allows to compute as well the maximal
root or both the minimal and maximal roots. Finally
the algorithm may be extended to deal with additional
constraints on the parameters. For example assume
that we are looking for the minimal root of the poly-
nomial when the workspace is a sphere (supposed to
be centered at the origin and to be of radius R). Here
we have two possibilities:

• either we choose as pose parameters the distance
to the center of the sphere and the latitude and
longitude angles

• or we use the cartesian coordinates for the end-
effector with the constraints F = x2+y2+z2 ≤ R2

In the later case we first add a step after step 1 a
further test on the interval evaluation of F : if F is
greater than R2, then the box is rejected. Then we
add a step before step 6: if F is greater than R2 we
skip step 6 and go to step 7.

For researchers familiar with branch-and-bound al-
gorithm this basic algorithm may look trivial. But
drastic differences in efficiency may be observed be-
tween 2 algorithms using the same principle. The im-
portant points are the computation of G(Bi), the ”re-
ject” test of steps 2,3,5 and the choice of the bisected
variable in step 7.

Finally our algorithm allows to deal with the case
where the matrix M is highly complex, thereby pro-
hibiting to compute the analytical form of the char-
acteristic polynomial. Our implementation allows to
deal with that case as soon as we are able to compute
an interval evaluation of the coefficients of M .

4 Maximal region for given

bounds on the roots

In this section we will present an algorithm that allows
to determine an approximation of all the parameters

values such that the corresponding characteristic poly-
nomials have all its real roots within a given range
[α, β]. The result of this algorithm will be a list of
boxes, called the solution list.

The principle of this algorithm is the same than
for the algorithm presented in the previous section
except that the variable in the box are now only the
n parameters. Step 1 is identical while the test in
step 2 will be: if G(Bi) ≥ β or G(Bi) ≤ α which will
allow to eliminate boxes with non valid roots. Steps
3 and 4 will be substituted by a new test based on
Budan-Fourier algorithm. This algorithm allows to
count the number of roots of a polynomial in a given
range [a,b] using only the polynomial evaluation at
a and b and the evaluation of the derivatives of this
polynomial at the same points. The number returned
by this algorithm is the number of real roots in [a,b]
up to a power of 2. Hence if this number is even we
can guarantee that there is at least one root in [a,b].
We design a test BF (Bi) that use the Budan-Fourier
method for the interval [∞, α] and [β,∞]: this test
returns -1 if Budan-Fourier has allowed to determine
that there is at least one root in one of these ranges.
Alternatively this test returns 1 if Budan-Fourier
has allowed to determine that there is no root of the
polynomial in both ranges. Step 3 is now:
if BF (Bi)= -1 then i = i + 1 and go to step 1 if
BF (Bi)= 1 then include Bi in the solution list

Step 5 is also modified: the interval evaluation of
the polynomial is computed for the variable being in
the range [α, β]. Step 6 is changed to a test that will
allow to control the quality of the approximation: if
the width of Bi is lower than a given threshold ǫ, then
the box is discarded.

The solution list is an approximation (as we have
neglected the boxes with width lower than ǫ) of all the
possible parameters values such that all the real roots
of the characteristic polynomial of M lie in the range
[α, β]. It may be used, for example, to determine in
which part of the workspace of the robot the dexterity
index is acceptable (see the example in the last sec-
tion).

It is possible to determine the quality of the approx-
imation by calculating the total volume Vin of the box
in the solution list and the total volume Vout of the
boxes that have been neglected during the calculation.
The ratio Vout/Vin is a good index for measuring the
quality of the approximation. Note that the algorithm
allows to incrementally improve the quality of the ap-
proximation. Indeed assume that during a first run the
neglected boxes are stored in a file: if the approxima-
tion index is not satisfactory we will perform a second
run of the algorithm with a lower value for ǫ. But
instead of using the same initial box than during the
first run we will use the list of rejected boxes, thereby
avoiding to repeat the calculation of the solution boxes
that have already been obtained during the first run.
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5 Minimal condition number

The purpose of this section is to present an algorithm
for determining the minimal value of the condition
number of M , which is here defined as the ratio be-
tween the minimal and maximal eigenvalues. For sim-
plicity we will assume here that all the eigenvalues are
positive. The structure of the algorithm is basically
similar to the one presented in the previous sections:
we outline here only the main differences.

A box in this algorithm is defined as U =
{y, p1, . . . , pn} where y represent the largest eigenvalue,
em is supposed to be the minimal condition number
and e′m the current estimation of em. The reject test
ensure first that the range for y may contain a root of
P by using the interval evaluation of P and eliminates
boxes that do no fulfill this condition. Then the re-
ject test uses the Budan-Fourier method to determine
to determine the number of roots of P in the range
[y,∞[: if this number is larger than 0 the box is elimi-
nated as the range for y does not define a range for the
maximal eigenvalue. In a third step the reject test de-
termine if the polynomials in P may have a root lower
than ye′m by using both the interval evaluation of P
and Budan-Fourier for the range ] − ∞, ye′m]: if this
test is negative the box is eliminated. For each box
which is not eliminated by the reject test we update
the value of e′m by computing the condition number
for specific polynomials in P obtained by taking for
the parameters some values that lie within within the
range defined by the box.

6 Implementation and experi-

mental tests

All the algorithms presented in the previous sections
are available within the ALIAS library developed by the
COPRIN project of INRIA. ALIAS is a C++ library
that implements algorithms based on interval analysis
for the solving of large categories of problems. One
of the feature of ALIAS is its Maple interface. For the
problem mentioned previously the end-user has only to
create a Maple program that compute the matrix M
and then call a specific procedure of the ALIAS maple
interface. This procedure will create automatically the
necessary C++ code, compile and execute the program
and then returns the result to Maple.

As a test example we have used the 3 d.o.f. par-
allel robot Orthoglide, figure 1 [5]. The structure of
the robot allows to control the translation of its end-
effector while its orientation remains constant. As the
velocity ρ̇ of the linear actuator are bounded we have
a constraint on the end-effector velocities Ẋ :

||ρ̇|| ≤ 1 ⇒ ẊT (JJT )Ẋ ≤ 1

In the joint velocities space we have hence a cube that
is linearly mapped to a convex polyhedra in the end-
effector velocities space. The three eigenvalues of the
matrix JT J are the length of the principal axis of the
polyhedra and are a good indication of the velocity

Figure 1: The Orthoglide robot

transmission factor. A low transmission factor indi-
cates that the velocities of the actuators is used mainly
to preserve the geometry of the mechanism and not for
moving the end-effector. On the other hand a large
transmission factor indicates that the motion of the
end-effector will be very sensitive to a change in the
actuator velocity. Hence we want to determine the re-
gion of the 3D workspace, called the useful workspace,
where the transmission factor will lie within a pre-
defined range (in our case the range is [0.25,4]).

The workspace of this robot is defined as the inter-
section of three cylinders defined by:

x2 + y2 ≤ 1 x2 + z2 ≤ 1 y2 + z2 ≤ 1 (4)

Our initial box (i.e. the set of ranges for x, y, z) is
defined as {[−1, 1], [−1, 1], [−1, 1]} and we have estab-
lished an approximation of the useful workspace as a
list of boxes in the 3D space. For any pose in any box
in the list the 3 transmission factors are guaranteed to
lie within the range [0.25,4] and the constraints (4) are
satisfied.

The computation is directly done within Maple: us-
ing the ALIAS Maple interface it is possible to define
the constraint equations that define the workspace, to
compute the characteristic polynomial that is of inter-
est and then to produce automatically the necessary
C++ code. A typical Maple code for a characteristic
polynomial P will be:

eq1:=x^2+y^2-1<=0:

eq2:=x^2+z^2-1<=0:

eq3:=z^2+y^2-1<=0: epsilon:=0.1:

‘ALIAS/opt_sol_min‘:=0.25:

‘ALIAS/opt_sol_max‘:=4:

MinMax_Polynom_Area([eq1,eq2,eq3,P],

[lambda,x,y,z],

[[-10,10],[-1,1],[-1,1],[-1,1]],

epsilon);

Figure 2 shows the part of the useful workspace lo-
cated between −0.3 ≤ x ≤ 0. We may distinguish 3
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components: the neglected boxes that correspond to
the border of the workspace, the approximation of the
useful workspace (at the center of the figure) which is
surrounded by a set of neglected boxes. Figure 3 shows
a cross-section of the useful workspace for a fixed value
of z. The dark grey boxes are the neglected boxes while
the light grey one represent the approximation of the
useful workspace.

Figure 2: Useful workspace for −0.3 ≤ x ≤ 0.

Table 1 indicates the values of the volume Vu of the
useful workspace, the value of the volume Vn of the
neglected boxes and the computation time for vari-
ous values of ǫ. For the computation time the value
between parenthesis indicates the time obtained when
the incremental mode is used. It must be noted in that
case that we should refine the notion of rejected box:
indeed such a box will occur either when a box includes
part of the border of the useful workspace or when it
includes part of the border of the total workspace (i.e.
as defined by the constraint equations (4)). In the table
the value of Vn indicated between parenthesis indicate
the volume of the neglected boxes that do not include
elements of the total workspace border.

ǫ Vu Vn Time (s)
0.2 0.85431 3.7722 (2.2968) 1893
0.1 1.16789 2.39753 (1.5951) 10284 (6501)
0.05 1.36109 1.34454 (0.93105) 33328 (27187)

Table 1: Volume of the useful workspace and of the
neglected boxes for various values of ǫ

7 Conclusion

Many performance index of a robot rely on the de-
termination of the eigenvalues of a matrix which is a
function of the geometry and of the pose of the robot.
Although these index can be computed numerically at
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Figure 3: Cross-section of the useful workspace for z =
0.5.

a specific pose we are mainly interested in their min-
imal and maximal values over the workspace of the
robot. We have shown that interval analysis allows to
calculate these index whatever is the geometry of the
robot and that this method allows to consider complex
workspace.
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