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Abstract

This paper presents an efficient algorithm for com-
puting, with a guaranteed error, the maximal and min-
imal articular velocities of a parallel manipulator so
that whatever is the location of the end-effector in a
given volume it may perform a motion at a given carte-
sian/angular velocity, under the assumption that its
orientation is kept constant over the volume. This al-
gorithm is much more faster and safe than the classical
discretisation method.

1 Introduction

The design of a parallel manipulators involves var-
ious objectives which are either to be optimized or to
be reached: positioning workspace, positioning accu-
racy, maximal articular forces over a given workspace
etc.. One of these objectives may be the ability to
perform a given cartesian/angular velocity of the end-
effector for any of its position in a given workspace.
It is then necessary to determine the maximal articu-
lar velocities of the robot for reaching this objective.
Numerous papers have been devoted to the relations
between articular velocities and cartesian/angular ve-
locity of the end-effector [1],[3],[4], [7],[8] but none, to
the best of the author knowledge, have addressed the
problem of determining the extremum of the articu-
lar velocities when the end-effector is moving inside a
given workspace.

In this paper we will consider the classical Gough
type parallel manipulator [2] illustrated in figure 1. In
this robot a base and a platform are connected through
6 extensible legs with ball-and-socket joints at each
extremity.

We assume that the user is interested in the max-
imal and minimal velocities of the linear actuators
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Figure 1: The classical Gough type parallel robot

needed to insure a given cartesian/angular velocity V

of the end-effector, whatever the posture of the mobile
platform in a given workspace is. The articular veloc-
ity vector ρ̇ is related to the cartesian and angular
velocity vector V of the end-effector by:

ρ̇ = J−1(X)V (1)

where X is the posture of the robot and J−1 is its
inverse jacobian matrix. For a given cartesian/angular
velocity V the articular velocities are therefore posture
dependent. The purpose of this paper is to compute
the maximal and minimal values of the components of
the vector ρ̇ for a given velocity vector V and for any
posture X inside a given domain.

In the sequel C will denote the center of the moving
platform, O the origin of the reference frame, Ai, Bi

respectively the base and mobile joint centers of leg i.
The vector V can be decomposed into a cartesian ve-



locity vector V and an angular velocity vector Ω. We
will assume that the orientation of the moving plat-
form is constant (hence the vector CBi is constant).

2 Extremal velocities for a segment

Let us assume that the point C is moving along a
segment defined by two points M1, M2. Any position
of C on the segment may be written as:

OC = OM1 + λM1M2 (2)

where λ is a scalar in the range [0,1]. For a given
velocity vector V the velocity of leg i is written as:

ρ̇i = J−1
i V

where J−1
i is the ith row of the inverse jacobian ma-

trix. It is well known that this row is:

AiBi

||AiBi||
, CBi ×

AiBi

||AiBi||
We notice immediately that for a given leg the ar-
ticular velocity is not dependent upon the other leg
velocities. Consequently we will drop the subscript in
the sequel. We have:

ρ̇ =
AB.V + (CB × AB).Ω

||AB|| (3)

Note that AB may be written as:

AB = AO+OC+CB = AO+OM1+CB+λM1M2

In this equation the three first vectors are constant.
Consequently we may write it in a simpler form as:

AB = U + λM1M2

The norm of this vector is therefore:

||AB|| =
√

λ2||M1M2||2 + 2λU .M1M2 + ||U ||2

Similarly we have:

CB × AB = CB × U + λCB × M1M2

Using the previous equations (3) can be written in a
simplified form:

ρ̇ =
a1λ + a2√

a3λ2 + a4λ + a5

(4)

with

a1 = M1M2.V + (CB × M1M2).Ω

a2 = U .V + (CB × U).Ω a3 = ||M1M2||2

a4 = 2 U .M1M2 a5 = ||U ||2

The ai are therefore constants which depend only
upon the geometry of the robot, the imposed cartesian
velocity and the segment extremities. Differentiating
this expression with respect to λ leads to an expression
whose numerator N is simplified to a linear function
in λ. Consequently the minimal and maximal values
of the articular velocity is obtained either for λ = 0 or
λ = 1 or for the value which nullify N (if this value lie
inside the range [0,1]).

3 Extremal velocities for a rectangle

Let us assume now that the workspace is defined by
all the points inside a rectangle. Without loss of gen-
erality we may assume that any point in the rectangle
is such that its coordinates verify

x1 ≤ x ≤ x2 y1 ≤ y ≤ y2

Consequently we want to calculate the extremal values
of ρ̇ for any position of C verifying the previous con-
straints. This can be done using classical optimization
techniques. We define two new variables α, β by:

x = x1 +
(1 + sin α)(x2 − x1)

2

y = y1 +
(1 + sinβ)(y2 − y1)

2
(5)

ρ̇ is now a function of α, β whose extremal values sat-
isfy necessarily the following equations:

∂ρ̇

∂α
= 0

∂ρ̇

∂β
= 0 (6)

It appears that equations (6) may be written as:

cos(α) F1(α, β) = 0 cos(β) F2(α, β) = 0 (7)

The solutions defined by α = ±π
2

and β = ±π
2

corre-
spond to an extremum on the edges of the rectangle,
which can be computed using the previous section.
The last remaining solutions are obtained when:

F1(α, β) = 0 F2(α, β) = 0

which correspond to an extremum for a point inside
the rectangle. In these equations the unknowns α, β
appear via their sine only. F1 is linear in sinα and
is solved for this unknown. The result is substituted
into F2 which become a third order polynomial in sinβ
only. By solving this equation the last remaining set
of solutions of equations (6) are determined, which
give the extremum inside the rectangle.. In summary
the extremum on the edges are computed using the
method described in the previous section and are com-
pared to the extremum found for the inside of the rect-
angle to lead to the extremum for the whole rectangle.



4 Extremal velocities for a box

Let us assume now that the workspace is defined
to be all the points inside a rectangular box. Without
loss of generality we may assume that any point in the
box is such that its coordinates verify

x1 ≤ x ≤ x2 y1 ≤ y ≤ y2 z1 ≤ z ≤ z2 (8)

Consequently we want to calculate the extremal values
of ρ̇ for any position of C verifying (8).

4.1 The optimization approach

We define three new variables α, β, γ such that:

x = x1 +
1 + sin α(x2 − x1)

2

y = y1 +
(1 + sin β(y2 − y1)

2

z = z1 +
1 + sin γ(z2 − z1)

2
(9)

ρ̇ is now a function of α, β, γ whose extremal values
satisfy necessarily the following equations:

∂ρ̇

∂α
= 0

∂ρ̇

∂β
= 0

∂ρ̇

∂γ
= 0

These three equations are transformed into algebraic
equations using the classical half-angle tangent substi-
tution. The resultants of two different pairs of equa-
tions lead to the two following equations :

∑

i,j=0,4

aijT
i
1T

j
2 = 0

∑

i,j=0,4

bijT
i
1T

j
2 = 0

with T1 = tan(α/2), T2 = tan(β/2). Unfortunately
we have not been able to solve this system.

At this point various options are possible: we may
use a numerical method like continuation or intervals
computing to solve numerically this set of equations.
In our implementation we have chosen an alternative
approach proposed in the next section.

4.2 An alternative approach

4.2.1 Principle

We intend to determine the maximal articular veloc-
ities in a box with a guaranteed error ǫ > 0. The
idea is to sweep the box by horizontal rectangles at
various heights z, the difference of height between two
successive rectangles being such that the difference of
extremal articular velocities between the two rectangle

does not exceed ǫ. Thus starting with the rectangle
with the lowest z of the box, we will then determine
the next z satisfying the previous constraint. The pro-
cess will be repeated for the new rectangle until the
height of the rectangle is greater or equal to the max-
imal z of the box. At this point the maximal velocity
will have been determined with an error of at most ǫ.

4.3 Finding the increase of height

Let us assume that at the kth step of the algorithm
the maximal velocity is ρ̇k for the plane at height zk.
We want to determine the minimal increase of height
z2
∆ such that

ρ̇(zk + z2
∆) = ρ̇k + ǫ (10)

This may be seen a a classical optimization problem
but the previous formulation is difficult to use in prac-
tice as ρ̇ is a complex expression. But we have:

ρ̇ =
F (z, V)

ρ(z)

F and ρ2 being algebraic functions of z. Thus equation
(10) is transformed into:

F 2(zk + z2
∆) − (ρ̇k + ǫ)2ρ2(zk + z2

∆) = 0 (11)

which has now an algebraic form. Now we have to
solve the optimization problem of finding the minimal
z2
∆ such that equation (11) is satisfied with the con-

straints on x, y defined in equations (9). We define the
optimization function H as:

H = z2
∆ + µ(F 2(zk + z2

∆) − (ρ̇k + ǫ)2ρ2(zk + z2
∆))

in which the value of x, y have been substituted by
equations (9). The minimum of z∆ will be obtained
by solving the system of equations:

∂H

∂z∆

= 0
∂H

∂µ
= 0

∂H

∂α
= 0

∂H

∂β
= 0

For each solution of this system it is necessary to check
that the value of z∆ does not lead to ρ̇ = −ρ̇k−ǫ which
is also solution to equation (10). Due to the lack of
space we will not present the details of the calculation
but this problem is solved by manipulating a few sets
of algebraic equations.

As for the determination of the minimal velocities
a similar method is used with ǫ < 0.



4.3.1 Computation time

Clearly the computation time of the previous algo-
rithm is dependent upon the precision ǫ with which
the extremal velocities are to be determined. Figure 2
presents the computation time as a function of the er-
ror ǫ, obtained with a SUN Ultra 1 workstation. It
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Figure 2: Computation time as a function of the pre-
cision on the value of the extremal velocities

may be seen that even with a high precision on the
velocities the computation time is quite reasonable.
Note that even with an accuracy of 0.01 the com-
putation time of our algorithm is equal to the time
needed to compute the articular velocities at less than
400 points in the box i.e. less than 8 points for each
dimension: such limited number of points will never
insure a correct estimation of the extremal velocities.

5 Maximal velocities in any volume

This method can be extended to more complex
workspaces than a box. We will assume here that a
workspace is described by a set of polygonal cross-
sections. We will compute the extremal velocities
for each volume defined between two successive cross-
sections, then it will be easy to determine the extremal
velocities for the whole workspace. A given volume
will be decomposed into as many boxes as necessary
until the velocities are determined with the desired
accuracy. A list of box B is maintained during the al-
gorithm: this list is initialized with the bounding box
B0 of the whole volume. Another list L will contain
the current extremum of the articular velocities: this
list is initialized by the extremum of the articular ve-
locities computed over the vertices of the workspace
boundary. At step k the algorithm perform the fol-
lowing operation:

1. if the box Bk is completely outside the volume we
consider the next box in the list

2. if the box Bk is completely inside the volume we
compute the extremal articular velocities for this
box and update L.

3. if the box Bk is partially inside the volume we
compute the extremal articular velocities for this
box.

(a) if these extremum are within the range of L
or the differences between the extremum are
lower than ǫ we consider the next box in the
list

(b) otherwise the box is split into eight boxes
by dividing each dimension of the box by 2.
The resulting boxes are put at the end of the
list and we consider the next box in the list.

The algorithm stop if there is no more box in the list.
It enables to compute the extremal velocities for any
type of workspace in a reasonable amount of time. For
example we have considered the workspace defined by
three square cross-sections: z = 50, x ∈ [−10, 10], y ∈
[−10, 10], z = 55, x ∈ [−5, 5], y ∈ [−5, 5], z = 60, x ∈
[−10, 10], y ∈ [−10, 10] represented in figure 3.

Figure 3: The test volume

The orientation is defined by the three Euler angles
with value -60 degree, the desired cartesian/angular
velocity is : -10, 0, -10, -10, 0 10. Table 1 indicates
the computation time for various values of ǫ. We may

ǫ 1 0.5 0.1 0.05 0.01
Time (ms) 360 430 4260 12220 95500

Table 1: Computation time for a complex workspace
as function of the desired accuracy ǫ on the articular
velocities

note that the computation time for determining the
velocities with an accuracy better than 1% is approx-
imatively 4s.



6 Special case

In this special case we will assume that the angu-
lar velocity is equal to 0. Consequently the articular
velocity is given by:

ρ̇ = V .
AB

||AB|| (12)

Let D1 be the line going through A with vector V and
D2 be the line associated to the leg. If µ is the angle
between these two lines we have:

ρ̇ = ||V || cosµ (13)

Hence if the line D1 crosses the volume at a point
M , then the maximal articular velocity will be ||V ||
if AM .V is positive or the minimal articular velocity
will be −||V || if AM .V is negative. In the sequel we
will assume that AM .V is positive (if this quantity
is negative, then maximal has to be changed to min-
imal). If D1 does not cross the volume the maximal
velocity will be obtained for a location of C on one
edge of the volume. Similarly the minimal articular
velocity is also obtained for a location of C on one edge
of the volume. Therefore for computing the maximal
articular velocity we have to check if D1 crosses the
volume. We will consider here without loss of gener-
ality the volume between two cross-sections. D1 may
cross this volume either on a horizontal facet or on a
side facet. An horizontal facet is defined by a poly-
gon and an altitude zi. For the two horizontal cross
sections we compute the intersection of the line with
the plane z = zi and check if the intersection point
belongs to the polygon, in which case the maximal
articular velocity is ||V ||.

A side facet is defined by two horizontal seg-
ments: the coordinates of the extremities of the first
segment will be denoted (x1, y1, z1), (x2, y2, z1) and
(x3, y3, z3), (x4, y4, z3) will denote the coordinates of
the extremities of the second segment.

At a given altitude z the side facet is constituted of
a segment whose start and end point Xk, Xk+1 have
the coordinates:

xk = x1 + (x3 − x1)(z − z1)(z3 − z1) (14)

yk = y1 + (y3 − y1)(z − z1)(z3 − z1) (15)

zk+1 = zk = z (16)

xk+1 = x2 + (x4 − x2)(z − z1)(z3 − z1) (17)

yk+1 = y2 + (y4 − y2)(z − z1)(z3 − z1) (18)

A point M(x, y, z) which belongs to this segment has
the coordinates:

x = xk + λ(xk+1 − xk) (19)

y = yk + λ(yk+1 − yk) (20)

with λ in the range [0,1]. If this point belongs to D1

then:
AM × V = 0 (21)

This relation leads to 2 equations in the unknowns
z, λ. If the vertical component of the velocity is equal
to 0 then the z coordinate is the z coordinates of the
point A and λ is obtained linearly from equation (21):
if λ lie in the range [0,1], then we have intersection
between D1 and the volume.

If the vertical component of the velocity is not equal
to 0 the resultant of two equations of (21) leads to a
second order equation in z. This equation is solved
and if it has a solution in the range [z1, z2] the value
of λ is computed and if λ lie in the range [0,1], then we
have intersection between D1 and the volume. With
this method we are able to check if D1 crosses the
volume. If this is not the case and in order to com-
pute the minimal articular velocities we have now to
compute the extremal velocities for each edge of the
volume. This is done by using the algorithm described
in section 2.

Clearly this algorithm is very fast (less than 13 ms
for the example presented above) and leads to the ex-
act determination of the extremal articular velocities.
Note that the algorithm can be trivially extended to
workspace volumes described by spheres.

7 Articular workspace

Let us assume that the leg length have a minimal
and a maximal values ρmin, ρmax. It may be of inter-
est to compute the extremum of the articular veloc-
ities in the workspace defined by a constant orienta-
tion and any position of the platform which fulfill the
constraints on the leg lengths: this workspace will be
called the articular workspace. A simple adaptation
of the previous algorithm enable to perform this task.
Note first that a trivial algorithm enable to determine
what are the extremum of each leg lengths while C
moves in a given box: we will denote this algorithm
Maxρ(B) where B is a box. Then notice that it is
easy to determine a box which contain all the possible
locations of the platform being given the extremal val-
ues of the leg lengths. We start the previous algorithm
with this box. Then we have to change the inclusion
test in the previous algorithm: a box will lie within
the workspace if all the ranges given by Maxρ(B) lie
within [ρmin, ρmax] while a box will be completely out-
side the workspace if one of the ranges is outside the
range [ρmin, ρmax]. In any other cases the box we as-
sume that the box is partially within the workspace.



Strictly speaking this may be false: as Maxρ(B) gives
the extremum of the leg lengths independently it may
occur that there is no posture of the platform where
all the leg lengths lie in the correct range at the same
time, but as this type of box will be divided in smaller
box during the process our assumption lie on the safe
side.

Note also that another approach will be to use the
algorithm described in [5] which enable to compute
exact cross-sections of the workspace for a constant
orientation and then use the algorithm described for
the polyhedric workspace.

For an accuracy of 0.1 (0.01) the computation time
is 29800 ms (67650 ms) and it is reduced to 1270 ms
(1380 ms) if the angular velocities are equal to 0.

8 Another utility of the algorithm

Let us assume that the angular velocities are set
to 0 and that the cartesian velocity is defined as a
unit vector V . The algorithm will therefore com-
pute the minimum and maximum of the quantity
AB.V /||AB|| which is the cosine of the angle be-
tween the link direction and the vector V . Conse-
quently we will get the minimum and maximum val-
ues of the angle of the passive joints with any fixed
direction.

9 Extension to other types of parallel

robots

The algorithm has been presented for the Gough-
type parallel robot but may be extended for other
types of parallel robots. Indeed it is well known that
most of parallel robots have an inverse jacobian ma-
trix of the same form as the one of the Gough-type
robot. Therefore the principle of the algorithm will
be similar. Consider for example the parallel robots
with fixed leg lengths but whose Ai points moves on a
line with unit vector ui. The velocity γ̇i of point Ai is
related to the cartesian and angular velocities by [5]:

γ̇i =
AiBi.V

ui.AiBi

+
AiBi × Ω

ui.AiBi

(22)

If C moves on a segment the derivative of the articular
velocity with respect to λ is constant. Hence the min-
imal and maximal articular velocities will be obtained
either for λ = 0 or λ = 1. If C moves into a horizon-
tal rectangle we use equations (5) and the derivative
of the articular velocity with respect to α, β have a
similar form to (7).

10 Conclusion

An algorithm for computing the extremal articular
velocities of a parallel robot whose end-effector must
be able to perform a given translation/angular velocity
over a whole workspace has been presented. It com-
pute the extremal values of the articular velocity with
a guaranteed error (without any error if the angular
velocity is equal to zero) and is therefore safer than
classical method relying on discretisation. Further-
more it is in general faster than the classical method.
This algorithm can be used for the optimal design of
parallel robots.
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