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Abstract

In this paper we consider a classical Gough plat-
form with extensible legs whose platform is submitted
to a given load. This load induces forces in the lin-
ear actuators of the legs, these forces being dependent
upon the posture of the platform, and we want to deter-
mine the extremal values of the articular forces when
the platform is translating in a given 3D workspace
(the orientation of the platform is assumed to be con-
stant). We describe an efficient algorithm which en-
able to compute the extremal forces more efficiently
than a discretisation method.

1 Introduction

In the design phase of a parallel manipulators it
is extremely important to determine what will be the
extremal articular forces of the platform induced by
the presence of a given load on the moving platform.
As an example we consider the classical Gough type
parallel manipulator [4] illustrated in figure 1. In this
robot a base and a platform are connected through 6
legs which have a ball-and-socket joint at each extrem-
ity. Linear actuators enable to change the leg lengths
which in turn enable to control the position and ori-
entation of the platform. If a given load is applied to
the moving platform (for example the weight of some
equipment) then each leg is submitted to a force act-
ing along the leg axis. The values of these articular
forces are position dependent and our purpose is to
determine, for a given load, what will be the extremal
values of the forces in the leg while the robot is mov-
ing in a given workspace. We will assume here that
the workspace is only a translation workspace i.e. the
orientation is kept constant and the workspace is de-
fined by a 3D object which describe all the possible
positions of the center C of the moving platform. The
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Figure 1: The classical Gough type parallel robot

coordinates of C in the reference frame (O, x, y, z) will
be denoted x, y, z

Numerous papers have been devoted to the rela-
tions between articular forces and generalized forces
acting on the platform [1, 2, 3, 5, 7, 8] but none, to
the best of the author knowledge, have addressed our
problem, which is however of practical importance.
The computation time presented in this paper are es-
tablished on a SUN Ultra 1 workstation.

2 Relation between the articular and

generalized forces

Let F denote the generalized forces applied on the
moving platform and τ the leg forces vector. It is well
known that these quantities are related by:

F = J−T τ (1)



where J−T is the transpose of the inverse jacobian
matrix of the robot, which is posture dependent. For
the Gough platform a line Ji of the inverse jacobian
matrix may be written as:

Ji = (
AiBi

||AiBi||
CBi ×

AiBi

||AiBi||
) (2)

where Ai(xai, yai, zai), Bi(xbi, ybi, zbi) are the ex-
treme points of leg i. Note also that the leg length
ρi is equal to ||AiBi||. We define the matrix Hi as
the matrix obtained by substituting the i-th column
of the matrix J−T by the vector F . Equation (1)
defining a linear system we get each component τi of
τ by:

τi =
|Hi|

|J−T |
(3)

Note that neither |Hi| nor |J−T | are algebraic in terms
of the coordinates of C as ||AiBi|| appear in each ma-
trix. A more convenient formulation will be presented
now. Let the semi-inverse jacobian matrix J−1

s be de-
fined by the 6 lines J i

s:

J i
s = (AiBi CBi × AiBi)

and let Hi
s be the matrix obtained by substituting the

i-th column of J−T
s by the vector F . It is clear that:

|J−T | = |J−1| =
|J−1

s |
∏i=6

i=1 ρi

(4)

By developing |Hi
s| with respect to the i-th column we

get:

|Hi| =
|Hi

s|
∏j=6

j=1 ρj j 6= i
(5)

Note that both |J−T
s |, |Hi

s| are now algebraic in terms
of the coordinates of C. Using these results and equa-
tion (3) we get:

τi =
ρi|H

i
s|

|J−T
s |

(6)

Assume now that the coordinates of C are functions
of a parameter r. The derivative D of τi with respect
to r can be computed as:

D =
∂τi

∂r
=

(∂ρ2

∂r
|Hi

s| + 2ρ2 ∂|Hi

s
|

∂r
)|J−T

s | − 2ρ2|Hi
s|

∂|J−T

s
|

∂r

2ρ|J−T
s |2

(7)
Note that the numerator of this expression is algebraic
in terms of r and that the denominator is strictly pos-
itive. We assume here that there is no singularity in
the workspace of the robot, this being verified using a
method which will be described in another paper. In
the sequel we will present a method to compute the
extremum of the articular force for one leg, the process
being identical for each leg.

3 Segment workspace

We assume that C is moving on a given segment
M1M2 and consequently we may write that:

OC = OM1 + λM1M2

where λ is a scalar in the range [0,1]. To determine
the extremal value of the articular force as C moves
on the segment it is sufficient to compute the roots
λi of the polynomial equation defined by the numer-
ator Dn of D and then to compute the value of the
articular force for each location of C defined by the
λi included in the range [0,1] together with the force
obtained for λ = 0, 1. Then the minimal and maximal
values of these quantities are the extremal values of
the articular force while C is moving on the segment.
Let us study in more details the degree of Dn: |J−T

s |
is usually a third order polynomial in λ, ρ2 is a second
order polynomial in λ while |Hi

s| is a third order poly-
nomial in λ. Consequently Dn will be a seventh-order
polynomial in λ.

We consider now a special case where the base is
planar (zai = 0) and the segment is oriented along
the x axis (or equivalently along the y axis as we may
rotate freely the reference frame around the z axis)
which will be useful in the sequel. In this case Dn is
of degree 6 as |J−T

s | is of degree 2 in λ. Furthermore
if the platform is parallel to the base (zbi = Cte) then
|Hi

s| is of degree 1 in λ and it may be shown that the
degree of Dn become 2 or 3 (this case will be denoted
the special case).

The computation time of this procedure is about 55
ms for a general segment. If the base is planar and the
segment is oriented along the x axis the computation
time is 15 ms. Although this computation time may
seem to be relatively high most of it is devoted to the
computation of some constant coefficients which are to
be computed whatever the workspace is: consequently
for more complex workspace for which determination
of the articular force extremum on segments is needed
the computation time will be deeply reduced.

4 Horizontal rectangle workspace

Now we assume that the workspace for C is an hor-
izontal rectangle defined by:

x1 ≤ x ≤ x2 y1 ≤ y ≤ y2

Note that vertical rectangle workspace can be treated
in the same manner with an appropriate change in the
direction of the reference frame.



4.1 General case

A first approach to determine the extremal values
of the articular force will be to define two auxiliary
variables α, β such that x = x1+(1+sinα)(x2−x1)/2,
y = y1 + (1 + sinβ)(y2 − y1)/2. Equation (7) will
then be used to obtain two constraint equations in
the unknowns sinα, sin β. Unfortunately the degree
of these equations is high (7 or 8) and it is difficult to
determine the solution of this system.

We use therefore another approach which is to com-
pute the articular force with an accuracy at least bet-
ter than a given constant ǫ. The idea is first to com-
pute the articular force on the segment x1 ≤ x ≤
x2, y = y1 using the result of the previous section. Let
τmin, τmax be the force computed at this stage. We
then investigate the minimal value of a variable y2

∆

such that on the segment x1 ≤ x ≤ x2, y = y1 + y2
∆

the corresponding articular force is equal to τmin−ǫ or
τmax+ǫ. In other words if τs

min(y), τs
max(y) denote the

minimal and maximal articular force on the segment
x1 ≤ x ≤ x2, y we have to find the minimal value of
y2
∆ such that

τs
min(y1 + y2

∆) = τmin − ǫ or

τs
max(y1 + y2

∆) = τmax + ǫ (8)

If we define x = x1 + λ(x2 − x1) these equations are
functions of y2

∆, λ. Here the value of y2
∆ is assumed

to be small so that equations (8) may be developed at
first order to become:

A2(λ)y2
∆ + A0(λ) = 0

Thus the value of y2
∆ is obtained as a function of λ by:

y2
∆ = −

A0(λ)

A2(λ)

The derivative of y2
∆ with respect to λ is computed and

lead to a 22nd order polynomial in λ. The value of y2
∆

is computed for each root of this polynomial in the
range [0,1] together with the value at λ = 0, 1 and the
minimal value of y2

∆ is retained. If this value is small
the computation is supposed to be exact otherwise a
fixed small value (0.3 in our current implementation)
is assigned to y2

∆. The extremal articular force are
computed on the segment x1 ≤ x ≤ x2, y = y1 + y2

∆

and the values of τmin, τmax are updated. This process
is repeated until the value of y is equal to y2.

In order to speed up this analysis we have com-
puted the derivative of τ as function of y. Remember
that the denominator of this derivative has a constant
sign and that the numerator is algebraic in terms of

x, y. As x, y are bounded a simple interval analysis en-
able to estimate what will be the minimum and max-
imum of this derivative. If they are found to be of
constant sign then τ is monotonous with respect to y
and the extremum of the articular force are obtained
by computed the articular force on the two segments
x1 ≤ x ≤ x2, y = y1, x1 ≤ x ≤ x2, y = y2.

4.2 Special case

As mentioned previously if both the base and the
platform are planar we get a simplification in Dn

which enable to use the optimization approach. In
that case we may find the extremum of the articular
forces by solving two pairs of second order equations.

For articular forces in the range of 200 and an ac-
curacy of 1 the computation time is about 2500 ms for
a general robot and 1600 ms if the base is planar. In
the special case this time is reduced to 40 ms.

5 Box workspace

5.1 Principle

Now we assume that the workspace for C is a box
defined by:

x1 ≤ x ≤ x2 y1 ≤ y ≤ y2 z1 ≤ z ≤ z2

In view of the previous section it is clear that the op-
timization approach cannot be used. Therefore we
use a similar approach as for the rectangle workspace.
We first compute the extremum articular force in the
rectangle x1 ≤ x ≤ x2, z = z1 using the result of the
previous section. Let τmin, τmax be the current ex-
tremal articular forces. We then investigate the mini-
mal value of a variable z2

∆ such that on the rectan-
gle x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z = z1 + z2

∆ the
corresponding articular force is equal to τmin − ǫ or
τmax + ǫ. In other words if τs

min(z), τs
max(z) denote

the minimal and maximal articular force on the rect-
angle x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, z we have to find the
minimal value of z2

∆ such that:

τs
min(z1 + z2

∆) = τmin − ǫ or

τs
max(z1 + z2

∆) = τmax + ǫ (9)

If we define x = x1 + λ(x2 − x1), y = y1 + µ(y2 − y1)
these equations are functions of z2

∆, λ, µ. Here the
value of z2

∆ is assumed to be small so that equations
(9) may be developed at first order to become:

A2(λ, µ)z2
∆ + A0(λ, µ) = 0



the value of z2
∆ is obtained as a function of λ, µ by:

z2
∆ = −

A0(λ, µ)

A2(λ, µ)

The minimal value of z2
∆ if obtained for λ, µ such that

the derivatives of z2
∆ with respect to λ, µ vanish. As

λ, µ belong to [0,1] these derivatives are approximated
to the second order around the value 0, 0.5, 1. Hence
for each case we get two second order equations in
these variables and their resultant is a fourth order
polynomial in λ. By solving this polynomial we get
all the possible values of λ and for each λ we get cor-
responding values of µ. For each pair (λ, µ) we then
compute the value of z2

∆ and we retain the smallest
positive value. The value of z is updated to z + z2

∆ if
the computed value of z2

∆ is sufficiently small other-
wise a small value is assigned to z2

∆. This process is
repeated until the value of z is equal to z2.

5.2 Speeding up the algorithm

In order to speed up this analysis we have com-
puted the value of τ as function of x, y, z. Remember
that τi may be written as ρi|H

i
s|/|J

−T
s | where both

|Hi
s|, |J

−T
s | are algebraic in terms of x, y. As x, y

are bounded a simple interval analysis enable to es-
timate what will be the minimum and maximum of
|Hi

s|/|J
−T
s |. Another trivial algorithm enable to com-

pute the maximal and minimal value of ρi in the rect-
angle. Consequently it is easy to find bounds on the
value of τi in the rectangle at altitude z. If these
bounds lie within the current range [τmin, τmax], then
we skip the computation of the current rectangle and
compute a new value of z2

∆.
Similarly we compute the derivative of τ with re-

spect to z: we get therefore an expression function
of x, y, z. A simple analysis interval enable to com-
pute the extremum values of this derivative and if the
minimum and maximum are of same sign then τ is
monotonous with respect to z and the extremum of
the articular forces are obtained by computing the ex-
tremum for the rectangles at altitude z1, z2.

5.3 Computation time

For articular forces in the range of 200 and an ac-
curacy of 1 the computation time vary from 6400 to
21000 ms for a general robot and from 3000 to 4000
ms if the base is planar (the difference between the
two types of robot are mainly due to a more careful
implementation of the case of the planar base). In the
later case as the computation of the articular forces

for one posture of the robot take about 0.5 ms a dis-
crete method will have split each three main axis in
18 to 20 points (hence we may miss postures where
important articular forces occur).

The sensitivity of the computation time to the ac-
curacy with which the extremum of the articular forces
are computed is presented in figure 2. It may be seen
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Figure 2: Computation time versus the desired accu-
racy for a box workspace and a robot with a planar
base

that the computation time is prohibitive only for an
accuracy which is far away from the usual one neces-
sary for the design process.

5.4 Special case

In the special case the optimization approach can
be used. The constraint equations can be reduced
to solving a set of 4 univariate polynomials of degree
2,3,4,8. This enable to get the exact extremum and
reduce the computation time to 120 to 200 ms.

6 Polyhedric workspace

The low computation time for the determination
of the extremal articular forces when the workspace
is a box suggests that this method can be extended
to more complex workspaces. We will assume here
that a workspace is described by a set of polygonal
cross-sections. We will compute the extremal articular
forces for each volume defined between two successive
cross-sections, then it will be easy to determine the
extremal articular forces for the whole workspace. A
given volume will be decomposed into as many boxes
as necessary until the articular forces are determined



with the desired accuracy (note that it is trivial to
determine if a box lie within the workspace). A list
of box B is maintained during the algorithm: this list
is initialized with the bounding box B0 of the whole
volume. A set of extremum articular forces is initial-
ized by computing the articular forces at some vertex
of the workspace. The range of these forces will be
called the current articular forces range. At step k the
algorithm perform the following operations:

1. if the box Bk is completely outside the volume we
consider the next box in the list

2. if the box Bk lie completely within the workspace
we compute the extremal articular forces for this
box and update the current articular forces range

3. if the box Bk lie partially within the workspace
we compute the extremal articular forces for this
box

(a) if these forces lie within the current articular
forces range we consider the next box in the
list

(b) otherwise the box is split into eight boxes
by dividing each dimension of the box by 2.
The resulting boxes are put at the end of the
list and we consider the next box in the list.

The algorithm stop if there is no more box in the list.
Note that to speed up the process an heuristic is used:
whenever the extremum for a box has to be computed
we first estimate a bound on the value of the extremum
by using an interval analysis similar to the analysis
presented in the section devoted to the box workspace:
if these bounds lie within the current articular forces
range we skip the computation for this box and moves
to the next box in the list.

The computation time is reasonable: for example
we have considered the workspace defined by three
square cross-sections: z = 50, x ∈ [−10, 10], y ∈
[−10, 10], z = 55, x ∈ [−5, 5], y ∈ [−5, 5], z = 60, x ∈
[−10, 10], y ∈ [−10, 10] represented in figure 3. For a

Figure 3: The test volume

general robot the computation time vary from to 65s
to 165s while when the base is planar the computation
time vary from 7s to 9s (1.2s in the special case). The
sensitivity of the computation time with respect to the
accuracy is illustrated on figure 4. It may be seen that
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Figure 4: Computation time versus the desired accu-
racy for the test volume for a robot with a planar base
(the crosses represent the general case while the circles
represent the special case) .

even for an accuracy of 0.1 N the computation time is
reasonably low at 6570 ms.

7 Articular workspace

Let us assume that the leg length have a minimal
and a maximal values ρmin, ρmax. It may be of interest
to compute the extremum of the articular forces in the
workspace defined by a constant orientation and any
position of the platform which fulfill the constraints on
the leg lengths: this workspace will be called the artic-
ular workspace. A simple adaptation of the previous
algorithm enable to perform this task. Note first that
a trivial algorithm enable to determine what will the
extremum of each leg lengths while C moves in a given
box: we will denote this algorithm Maxρ(B) where B
is a box. Then notice that it is easy to determine a box
which contain all the possible locations of the platform
being given the extremal values of the leg lengths. We
start the previous algorithm with this box. Then we
have to change the inclusion test in the previous al-
gorithm: a box will lie within the workspace if all the
ranges given by Maxρ(B) lie within [ρmin, ρmax] while
a box will be completely outside the workspace if one
of the ranges is outside the range [ρmin, ρmax]. In any
other cases we assume that the box is partially within



the workspace. Strictly speaking this may be false: as
Maxρ(B) gives the extremum of the leg lengths in-
dependently it may occur that there is no posture of
the platform where all the leg lengths lie in the cor-
rect range at the same time, but as this type of box
will be divided in smaller box during the process our
assumption lie on the safe side.

In the implementation of this algorithm the follow-
ing precautions have to be taken:

• if the leg lengths for a given box exceed by far
the articular limits while still the box is partially
inside the articular workspace it is better to split
the box without computing the extremum of the
articular forces for this box (to avoid computation
for large boxes)

• as soon as all the dimensions of a box are quite
small we consider that the articular forces in the
box are given for the forces obtained at the center
of the box. This avoid to create a large number
of boxes in the case where the center of the box
is on the boundary of the workspace

With these heuristics the computation time is reason-
able: typically 4.5 mn for the full articular workspace
for an accuracy of 1 (approximatively 2.5 mn in the
special case) and 100 s for an accuracy of 5 (60s in the
special case) but we still have the guarantee on the va-
lidity of the result. Note also that another approach
will be to use the algorithm described in [6] which en-
able to compute exact cross-sections of the workspace
for a constant orientation and then use the algorithm
described for the polyhedric workspace.

8 Conclusion

The algorithm presented in this paper enable to
compute efficiently one of the most important feature
for the design of a parallel robot. Although the com-
putation time may seem to be high it must be noted
that for each type of workspace we have find numer-
ous examples for which the computation time of a dis-
cretisation method necessary to determine the artic-
ular forces with the same level of accuracy exceed by
far the computation time of our algorithm. It has also
been noted that the discrepancy between the results
of our algorithm and of a discretisation method with
a similar computation time may reach up to 10 %.

Still the workspace we have been considering is
only the translation workspace but a discretisation on
the 3D orientation workspace will be by far less com-
puter expensive than the discretisation on the full 6D

workspace. This algorithm will be integrated in the
near future in our design methodology DEMOCRAT for
the design of parallel robot.

Note that this algorithm can also be extended
to other mechanical architecture of fully-parallel 6
DOF robots as most of them have an inverse jaco-
bian matrix similar to the matrix of the Gough plat-
form.
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