
Articular Velocities of Parallel Manipulators,

Part II: Finding all the Robots with fixed Extremal

Articular Velocity for performing a Fixed Cartesian Velocity

over a whole Workspace.

Jean-Pierre MERLET

INRIA Sophia-Antipolis

BP 93, 06902 Sophia-Antipolis, France

E-mail: Jean-Pierre.Merlet@sophia.inria.fr

Abstract

This paper presents an algorithm for finding all the
possible parallel robot geometries such that the end-
effector may perform a given translation velocity for
any location of the end-effector in a given workspace,
the constraint being that the actuator velocities should
be always lower than a given bound. All these possi-
ble geometries are defined by a region in a particular
design parameters space. This algorithm should be
useful for the optimal design of parallel robots.

1 Introduction

The design of parallel manipulators involves various
objectives which are either to be optimized or to be
reached: positioning workspace, positioning accuracy,
maximal articular forces over a given workspace etc..
One of these objectives may be that the end-effector
should be able to perform a given cartesian velocity
for any of its position in a given workspace, the con-
straint being that the articular velocities should not
exceed a given value. Numerous papers have been de-
voted to the relations between articular velocities and
cartesian/angular velocity of the end-effector [1],[3],[4],
[7],[8] but none, to the best of the author knowledge,
have addressed the problem of determining all the
robot geometries fulfilling a constraint on the articu-
lar velocities. In this paper we will consider the Gough
type parallel manipulator [2] illustrated in figure 1.

In the sequel C will denote the center of the moving
platform, O the origin of the reference frame, Ai, Bi

respectively the centers of the base joints and platform
joints of leg i. We will assume that the orientation
of the moving platform is constant (and therefore the
vector CBi is constant). A vector whose coordinates
is expressed in the moving frame will be denoted by
an index r.

We will assume that the velocity ρ̇i of the linear

A1
A2

A3

A4

A5

A6

B1

B2

B3 B4

B5

B6

C

O

x

y

z

yr

zr

xr

U joint

S joint

Figure 1: The classical Gough type parallel robot

actuator of leg i should satisfy the constraint:

−ρ̇il
≤ ρ̇i ≤ ρ̇il

(1)

The articular velocities ρ̇ are related to the cartesian
and angular velocities V of the end-effector by:

ρ̇ = J−1(X)V (2)

where X is the pose of the robot and J−1 is its in-
verse jacobian matrix. For a given cartesian/angular
velocity V the articular velocities are therefore pose
dependent. The velocity of leg i may be written as:

ρ̇i = J−1
i V

where J−1
i is the ith row of the inverse jacobian matrix.

It is well known that this row can be written as:

AiBi

||AiBi||
, CBi ×

AiBi

||AiBi||

Note that for a given leg the articular velocity does
not depend upon the velocity of the other legs: con-
sequently we will drop the leg subscript in the sequel.
As the angular velocity is equal to 0 we get:

ρ̇ =
AB.Vc

||AB|| (3)

where Vc is the cartesian velocity vector of the end-
effector. Note that as ||AB|| is the length ρ of the
leg, the articular velocity is equal to the norm of the
cartesian velocity multiplied by the cosine of the angle
between the cartesian velocity vector and the unit vec-
tor of the leg: hence the articular velocity will never
exceed the norm of the cartesian velocity vector.

2 The design planes

Equation (3) shows that the articular velocity is de-
pendent upon 6 design parameters: the 3 coordinates
of A and the 3 coordinates of B. We will reduce the
number of design parameters to 2 with the following
assumptions:

• point A lie on a known line going through O the
origin of the reference frame

• point B lie on a known line going through C.

Therefore the only remaining design parameters are
the distances R1 from O to A and r1 the distance
from B to C (figure 2). For each leg we define the

r1

O

z

C

zr

yr

xr

y

A1

β1

B1

R1

α1

x

Figure 2: The design parameters

design plane as a plane with a frame such that the
x, y coordinates of a point represent the values of the
design parameters R1, r1. Consequently any point in
this plane defines an unique location for A, B and we

have 6 design planes, one for each leg. We have:

AO = R1

cos(α)
sin(α)
0

 = R1u

CBr = r1

cos(β)
sin(β)
0

 = r1v (4)

Our purpose is to determine all the robot geometries
(i.e. the locations of the A, B points) such that for
any position of C in a given workspace the articular
velocities are within the range [−ρ̇l, ρ̇l]. This problem
is equivalent to finding the region (denoted the correct

region) of the design plane which define all the possible
locations of the A, B points.

Note that the design plane we are considering is
similar to the one we used in our design methodology
DEMOCRAT 1. The idea behind DEMOCRAT 1 is to de-
termine first the correct region in the design plane for
constraints on various features of parallel robots. For
example we have presented in [6] an algorithm for find-
ing the closed region of the design planes defining all
the robot geometries such that their workspace include
a specified workspace.

In the second step of DEMOCRAT1 the intersection
of all the correct regions (denoted the design region)
will define all the robot geometries which satisfy all
the constraints. In a third step a grid is created in
the design region and for each node of this grid (which
correspond to an unique robot geometry) we may com-
pute the values of others features of the robot in order
to determine the ”optimal” robot geometry.

3 Maximal velocity for a segment

As stated previously we want to compute the cor-
rect region for a limit given on the maximal articu-
lar velocities when the end-effector lie inside a given
workspace. We will assume here that this workspace is
defined by a set of segments (called the segment trajec-

tory) which describe the possible location of C and we
will assume that for each segment trajectory given by
the designer the orientation is kept constant all over
the segment (but the designer may define the same
segment with various orientations of the end-effector).

This way of describing a desired workspace is in fact
not so restrictive. Let us assume that in fact the de-
sired workspace is defined by a faceted object in 3D,
each face being planar. As the orientation is constant,
point B will lie inside a similar volume R obtained by
translating the previous region by the vector CB. Con-
sider the line D going through A with vector Vc and
a line D1 going through A and a point M in R. If α is
the angle between these two lines the articular velocity

for this location of the end-effector is ||Vc|| cosα. Fix-
ing a maximal articular velocity ρ̇l lower than ||Vc|| is
therefore equivalent to determine the location of A, B
such that the angle between the two lines is always
greater than a given angle. The limit cases will always
be obtained for an edge of R and consequently only
the edges are important.

We will now expose the principle of the algorithm
for determining the correct region in the design plane.

3.1 Principle of the algorithm

Let assume that point C is moving along a segment
defined by two points M1, M2. Any position of C on
the segment may be written as:

OC = OM1 + λM1M2 (5)

where λ is a scalar in the range [0,1]. The vector AB

can be decomposed as AB = AO + OC + CB. Using
equations (4,5) we get:

AB = R1u + OM1 + λM1M2 + r1 Rv (6)

where R is the rotation matrix defining the orientation
of the end-effector. We may now write the constraint
equation:

AB.Vc

||AB|| = ±ρ̇l

As ||AB|| is the leg length ρ this equation may be
transformed as:

ρ2(ρ̇l)
2 − (AB.Vc)

2 = 0 (7)

Using equation (6) we get:

R2
1(ρ̇

2
l − (u.Vc)

2) + r2
1(ρ̇

2
l − (v.Vc)

2) +

2R1r1(ρ̇
2
l u.v − (u.Vc)(v.Vc)) + D = 0 (8)

where D is only a function of λ. In the design plane
this equation define a set of conics parameterized by
λ. Let us denote a = u.Vc, b = v.Vc, c = u.v. The
nature of the conics is given by the following relations:

• if ∆ = (2cab − a2 − b2)/(c2 − 1) is positive: the
conics will be an ellipsis for ρ̇l from 0 to

√
∆ ex-

cluded. For ρ̇l =
√

∆ the conics is a parabola and
for ρ̇l >

√
∆ the conics is an hyperbole

• otherwise the conics is always an hyperbole or
does not exist if ρ̇l > ||Vc||.

For a given λ this conics will separate the design
plane in regions and one of this region will be such that
for any point inside the region the articular velocity is
in the range [−ρ̇l, ρ̇l]. In fact it is not necessary to
worry about the λ parameter: indeed the derivation
of the articular velocity with respect to λ leads to an

expression whose numerator is aλ + b. Therefore the
articular velocity will be extremal either for λ = 0, 1
or for λ = −b/a = λn if this value is in the range [0,1].
Consequently it is sufficient to check the inequalities
on the articular velocity for these 3 values of λ.

Let C0, C1 be the conics obtained from (8) for λ =
0, 1. Each of these conics separate the plane in regions,
one of which contain all the possible values of R1, r1

such that for the considered λ the absolute value of
the articular velocity is lower than ρ̇l. These regions
will be denoted Z0 for λ = 0 and Z1 for λ = 1.

Now by substituting λ = λn in equation (8) we get a
fourth order equation in R1, r1 which can be factorized
in two second order equations. These equations define
also two conics Cn1

, Cn2
which divide the plane into

regions, and for each conic one of the region contains
all the values of R1, r1 such that the absolute value of
the articular velocity is greater than ρ̇l for λ = λn.
These two regions will be denoted Zn1

, Zn2
. Note that

these regions define forbidden position in the design
plane only if λn is in the range [0,1]. We have:

λn =
aR2

1 + br2
1 + cR1r1 + dR1 + er1 + f

uR1 + vr1 + w
=

n

d

If u = v = w = 0, then λn does not exist and so does
Zn1

, Zn2. Otherwise n = 0 define a conic Cn0 which
split the plane in two regions Zn>0, Zn<0 in which n >
0 and n < 0. Similarly d = 0 split the plane in two
half-planes Zd>0, Zd<0 for which d > 0 and d < 0.
Figures 3,4 shows examples of the conics involved in

C0

C0

C0

C0

C1

C1

C1

C1
Cn0

Cn0

Cn0

Cn0

Cn−d

Cn−d

Cn−d

Cn−d

Cn2

Cn2

Cn2

Cn2

R1

r1

d = 0

Figure 3: Examples of conics involved in the algo-
rithm. Here C0, C1, Cn0, Cn−d are hyperbola, Cn1

does
not exist and Cn2

is a special case of hyperbola (two
intersecting lines).

the algorithm, for one segment and one trajectory.

C0

C0

C1

C1

d = 0

Cn−d

Cn0

Figure 4: C0, C1 are hyperbola, Cn0, Cn−d are ellipsis,
Cn1

and Cn2
does not exist.

The region Zλn>0 for which λn ≥ 0 is therefore
obtained as:

Zλn>0 = (Zd>0 ∩ Zn>0) ∪ (Zd<0 ∩ Zn<0)

Similarly the conic Cn1 obtained for n − d = 0 split
the plane into region and we define the region Zλn<1

for which λn ≤ 1. This region is therefore obtained as:

Zλn<1 = (Zd>0 ∩ Zn−d<0) ∪ (Zd<0 ∩ Zn−d>0)

Finally the region Zn in which λn is in the range [0,1]
is obtained as the intersection of Zλn>0 and Zλn<1.

A valid point in the design plane should belong to
Z0 and Z1 (this ensure that the absolute value of the
articular velocity is lower than the bound for λ = 0, 1)
but should not belong to both Zn1

and Zn and both to
Zn2

and Zn (otherwise the articular velocity is greater
than the bound for λ = λn). Consequently the valid
region Z in the design plane is obtained as:

Z = (Z0 ∩ Z1) − ((Zn1
∩ Zn) ∪ (Zn2

∩ Zn))

3.2 Practical implementation

In our practical implementation we assume that the
design plane is bounded by a rectangle which is either
defined by the user or is the bounding box of the cor-
rect region determined for the workspace constraint.

Every part of the conics which is involved in the
calculation is approximated by a polygonal line. Con-
sequently the operations on the regions are reduced
to boolean operations on polygons (intersection and

subtraction). The accuracy of this approximation can
be modified by changing the number of points of the
polygonal lines which are used to approximate the con-
ics.

The data of the example presented at the top of
figure 3 have been used to compute the correct region,
represented in figure 5. The computation time for the

Figure 5: The correct region is the gray region

example presented in figure 5 was 2.6 seconds on a
SUN-4 workstation (a more clever implementation of
the algorithm may reduce drastically this time).

Clearly this algorithm enable to check a set of seg-
ment trajectory: the correct region is computed for
each segment in the set, then the intersection of all
the correct regions leads to the final correct region.
Figure 6 present an example of such case. The com-
putation time for the example presented in figure 6
was 9.21 seconds on a SUN-4 workstation. Note that
the correct region are defined in each of the 6 design
planes. But if the joint centers on both the base and
the platform lie on a circle then we have an unique de-
sign plane. In that case the correct region is computed
for each leg and for each segment trajectory, then the
intersection of all the correct regions leads to the de-
sired result. Figure 7 shows the conics involved in the
algorithm for all the links in the example of figure 3
and figure 8 shows the final correct region.

The computation time for this example is 59.89s on
a SUN 4 workstation.

We may also combine this procedure with the re-
sult obtained with our algorithm which deal with the
workspace constraint in the same design plane [6]. The
correct region for the velocity constraints is computed,
then the correct region is intersected with the cor-
rect region due to the workspace constraint. Figure 9

Figure 6: The correct region is the gray area while the
conics used in the algorithm are drawn in thin lines

Figure 7: The conics involved in the algorithm when
the A, B points lie on circles.

R1

r1

Figure 8: The correct region

shows an example of such computation. The resulting

Figure 9: The zone in dashed line represent the cor-
rect region due to workspace constraints. The conics
involved in the algorithm are shown in thin line and
the final correct region is drawn in gray.

region defines all the robot geometries which have a
workspace including a desired workspace together with
fulfilling the constraint on the articular velocities.

Note that it is possible to verify the correctness of
the result for any point inside the correct region by
using an algorithm we have developed to compute the
extremal values of the articular velocity for a given
cartesian/angular velocity whatever is the position of

C inside a given volume. It is indeed possible to show
that we can compute the extremum of the articular
velocities with an arbitrary accuracy if the workspace
is a box. Any other workspace type is split in as many
boxes as necessary until the desired accuracy on the
extremum of the articular velocities is reached.

4 Another utility of the algorithm
Let assume that the cartesian velocity is defined as

a unit vector V. The algorithm will therefore com-
pute the region of the parameter space such that the
absolute value of the quantity AB.V/||AB|| does not
exceed a given value. But this quantity is the cosine of
the angle between the link direction and the vector V.
Consequently we are able to determine all the robots
such that the angle of the passive joints with any fixed
direction does not exceed a given value, which is useful
for the design of the passive joints.

5 Extension to other types of parallel

robots
The algorithm has been presented for the Gough-

type parallel robot but may be extended for other
types of parallel robots. Indeed it is well known that
most of parallel robots have an inverse jacobian ma-
trix of the same form as the one of the Gough-type
robot. Therefore the principle of the algorithm will be
similar.

Consider for example the parallel robots with fixed
leg lengths but whose Ai points moves on a line with
unit vector ui. The velocity γ̇i of point Ai is related
to the cartesian and velocities and can be established
as [5]:

γ̇i =
AiBi.V

ui.AiBi

(9)

If C moves on a segment the derivative of the articular
velocity with respect to λ is constant. Hence the min-
imal and maximal articular velocities will be obtained
either for λ = 0 or λ = 1.

6 Conclusion
We have presented an algorithm for computing all

the possible parallel robot geometries such that the ab-
solute value of the articular velocities does not exceed
a given value when the end-effector of the manipulator
performs various cartesian velocities, whatever is the
position of the end-effector in a given volume.

This algorithm will be integrated in our design
methodology DEMOCRAT for the conception of parallel
manipulator in the near future.

References

[1] Gosselin C. Kinematic analysis optimization

and programming of parallel robotic manipulators.

Ph.D. Thesis, McGill University, Montréal, June,
15, 1988.

[2] Gough V.E. and Whitehall S.G. Universal tire
test machine. In Proceedings 9th Int. Technical

Congress F.I.S.I.T.A., volume 117, pages 117–135,
May 1962.

[3] Ling S-H. and Huang M.Z. Kinestatic analysis of
general parallel manipulators. In ASME Mecha-

nisms Design Conf., Minneapolis, September, 14-
16, 1994.

[4] Martinez J.M.R. and Duffy J. A simple method for
the velocity and acceleration analysis of in-parallel
platforms. In 9th World Congress on the Theory of

Machines and Mechanisms, pages 842–846, Milan,
August 30- September 2, 1995.

[5] Merlet J-P. Les Robots parallèles. Hermès, Paris,
1990.

[6] Merlet J-P. Workspace-oriented methodology for
designing a parallel manipulator. In IEEE Int.

Conf. on Robotics and Automation, pages 3726–
3731, Minneapolis, April, 24-26, 1996.

[7] Sorli M. and others . Mechanics of Turin parallel
robot. In 9th World Congress on the Theory of Ma-

chines and Mechanisms, pages 1880–1885, Milan,
August 30- September 2, 1995.

[8] Zanganeh K.E. and Angeles J. Instantaneous kine-
matics and design of a novel redundant parallel
manipulator. In IEEE Int. Conf. on Robotics and

Automation, pages 3043–3048, San Diego, May,
8-13, 1994.

