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Abstract

We present a method for designing optimal parallel
manipulators of the Gough platform type, according
to design constraints like a specified workspace, best
accuracy over the workspace, minimum articular forces
for a given load, etc.... A reduced set of design param-
eters is defined and the workspace constraints are used
to compute the zone of the parameters space which de-
fine all the robots whose workspace include the desired
workspace. Then a numerical search is performed in
this zone to determine the robot which optimize some
other criterion. We show how the method has been
used to design a robot whose accuracy was specified
to be better than 1 µm for a nominal load of 500 kg.

1 Introduction

Let us consider a 6 d.o.f. parallel manipulator as
represented in figure 1. It is constituted of a fixed base
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Figure 1: A 6 d.o.f. parallel manipulator.

plate and a mobile plate connected by 6 variable-length
links. One of the extremities of each link is articulated

with the base plate through an universal joint and the
other extremity is articulated with the mobile plate
through a ball-and-socket joint. By changing the 6 link
lengths (which are measured with linear sensors) we
are able to control the position and orientation of the
mobile plate. This type of manipulator is well known
and the first prototype was proposed by Gough [7],
hence its name of Gough platform.

The main features of this type of robots are their
high accuracy and high nominal load. Consequently
they are very often used in flight simulation sys-
tem [1],[13] or as high accuracy positioning device [4].

But this highly unusual architecture is such that
finding the ”optimal” design i.e. the geometry of the
robot which is the best with respect to some criterion,
is a difficult task. This is this problem which is ad-
dressed in this paper.

2 Notation and design parameters
First we define a reference frame O(x, y, z) and a

mobile frame attached to the platform C(xr , yr, zr).
A superscript r will denote a vector written in the
mobile frame. The following symbols and variables
will be used in this paper:

• Ai: center of the passive joint of link i attached
to the base of the robot.

• Bi: center of the passive joint of link i attached
to the end effector.

• ψ, θ, φ: angles defining the orientation of the end
effector

• C: a fixed point on the moving platform. The
posture of the platform will be defined by the co-
ordinates of C in a reference frame and by the
three orientation angles.

• ρi: length of the link i. There are two important
parameters related to the link length: the dead
length ρi

min of the link which correspond to the
length of the link when the actuator is fully re-
tracted and li which is the stroke of the linear
actuator.



• R: the rotation matrix between the moving frame
and the reference frame.

The geometry of a robot is defined by the 18 coor-
dinates of the Ai in the reference frame, the 18 co-
ordinates of the Bi in the moving frame, the 6 dead
lengths ρi

min and the 6 actuator strokes li. Hence the
total number of design parameters is 48.

But in practical applications some other parameters
may play an important role like, for example:

• the overall size of the robot

• the accuracy of the sensors measuring the leg
lengths

• the articular forces

• the singular configurations

In the design process we want to determine the design
parameters so that the robot fulfill a set of constraints.
These constraints may be extremely different but we
can mention:

• workspace requirement

• maximum accuracy over the workspace for a given
accuracy of the sensors

• minimum articular forces for a given load

• maximal stiffness of the robot in some direction

• maximum velocities or accelerations for given ac-
tuator velocities and accelerations

To the best of the author knowledge few authors have
addressed this problem. Claudinon [2] assumes that
the joint centers lie on circles with fixed radii. He
uses then a numerical method to determine the angle
between two adjacent joint centers such that the re-
sulting robot has a workspace which include a specified
workspace and has a maximal linear velocity in a given
position. Han [8] has proposed some general ideas to
determine a parallel robot with a maximal accuracy.
Ma and Angeles [9] have determined the side lengths of
the base and moving plates for obtaining a minimum of
the condition number, and therefore the best accuracy.
Masory [10] gives some rules of a thumb for the varia-
tion of the workspace volume according to the change
of the position of the joint centers and the range of the
linear actuators. Smith [12] uses a numerical method
to determine the dimensions of the moving platform
and actuator strokes to get a desired accuracy with
some additional constraints on the articular forces, but
without considering the workspace constraints. Gos-
selin has studied the spherical 3 DOF parallel manip-
ulators for obtaining the maximal workspace [5] while
taking into account the singularities [6].

3 Design methodology
In our design methodology we assume that the de-

sign specifications include a workspace requirement.
In our approach we will proceed in two steps: first de-
termine all the possible robot geometries such that the
robot workspace includes the specified workspace, then
among all these geometries we perform a numerical
search to determine the robot which fulfill at best the
other design specifications (consequently the method-
ology is workspace oriented).

3.1 Determination of the robots via the
workspace requirement

Our purpose is to determine all the robot geome-
tries such that the robot workspace includes a speci-
fied workspace. Our design program is based on the
algorithm described in [11]. In this method we have
reduced the set of design parameters by using the fol-
lowing assumptions:

• for each Ai point we know an unit vector ui such
that OAi = Ri

1ui, where Ri
1 is the distance from

O to Ai (i.e. the angle αi is known, see figure 2).

• for each Bi point we know an unit vector vi in
the moving frame such that CBr

i
= ri

1vi, where
ri
1 is the distance from C to Bi, i.e. the angle βi

is known.

• the dead lengths ρi
min and the strokes of the ac-

tuators are known (although this assumption can
be relaxed as we will see in one of the application
examples)

• the specified workspace is described by a set of ge-
ometrical objects which define the possible loca-
tions of C, the orientation of the moving platform
being constant for each element of the set (but in
the set the same object may be specified with dif-
ferent orientations). The geometrical objects may
be segments, polygons or polyhedra.

Under these assumptions the number of design param-
eters is reduced to 12 (6 Ri

1 and 6 ri
1). But an advan-

tage is that each pair of parameters (Ri
1, r

i
1) is totally

independent in the sense that for reaching the desired
workspace the possible values for a pair are indepen-
dent from the values of the other pairs because the leg
lengths necessary to reach a given posture are inde-
pendent. Consequently we have reduced the problem
to the determination of the possible values of the 6
pairs of parameters (Ri

1, r
i
1) i.e. we have to determine

what are the valid regions in the 6 different planes
Ri

1, r
i
1. The flavor of the algorithm may be introduced

on a simple example where we will assume that the
desired workspace is specified via a segment describ-
ing a needed translation of the platform, with a given
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Figure 2: Design parameters

orientation over the segment. Assume that you want
to determine the possible Ri

1, r
i
1 of a link such that the

leg length over the segment is always lower than the
maximum leg length ρi

min + li = ρi
max.

Let us define the start and goal points of the seg-
ment as M1,M2. Any position of the end-effector on
the trajectory may be defined as:

OC = OM1 + λM1M2 with λ ∈ [0, 1] (1)

The leg length ρ is the norm of the vector AiBi:

AB = OA + OC +RCBr

= R1u + OM1 + λM1M2 + r1Rv (2)

where R is the constant rotation matrix between the
moving frame and the reference frame and u,v are unit
vectors defining the direction of the lines on which lie
Ai, Bi. Consequently as ρ is the norm of the vector
AB we get:

ρ2 = R2
1+r21 +2R1r1u.v

T+R1F (λ)+r1G(λ)+H (3)

where F,G,H are only dependent upon λ. Let ρmax

denote the maximum leg length and consider the equa-
tion ρ2

−ρ2
max = 0. For a given λ this equation defines

an ellipse in the R1, r1 plane. For any point R1, r1
inside the ellipse we have ρ2

− ρ2
max < 0 and conse-

quently any point inside the ellipse defines valid pa-
rameters with respect to the maximum leg length for
this particular λ. As we want the valid points for the
whole trajectory (i.e. for any λ in the range [0,1]) the
valid points are obtained as the intersection of the set
of ellipses. Furthermore it appears that this intersec-
tion can be computed as the intersection of the two
ellipses calculated for λ = 0 and λ = 1.

If we consider now the minimum leg length con-
straint a similar reasoning enables to state that the

forbidden R1, r1 points are obtained as the union of
the set of ellipsis defined by ρ2

−ρ2
min = 0, which is pa-

rameterized by λ. This union can be computed with-
out difficulty, although this operation is more complex
than the previous one. In summary we are able to
determine the closed region of the Ri

1, r
i
1 plane which

define the possible values of the Ri
1, r

i
1 parameters for

a segment trajectory as the intersection of 2 ellipses
minus the union of a set of ellipses. This closed region
will be called the allowed zone.

Similar result are obtained if the specified
workspace is a polygon or a polyhedra. For a set of
such objects we compute the allowed region for each
element of the set and then compute the intersections
of all the allowed regions. Mechanical limits on the
passive joints at Ai, Bi can also be introduced without
any difficulty in this algorithm. Links interference can
also be considered but with a higher complexity.

3.2 Dealing with the other criterion

Using the workspace requirement we have deeply
reduced the size of the search area for the parameters.
We will assume now that we are trying to find the best
robot with respect to some criterion. As an example
we will consider that the sensors errors are known.
The errors ∆ρ in the sensors measurements induce a
positioning error ∆X of the moving platform. These
two quantities are related by:

∆X = J(X)∆ρ (4)

where J(X) is the jacobian matrix of the robot, which
is configuration dependent. So we may be interested
in the geometry which leads to the smallest value of
∆X over the specified workspace i.e. in some sense the
most accurate robot (on the opposite such an approach
enables to determine the maximum value of the sensor
accuracy for a given positioning accuracy of the plat-
form over the workspace i.e. to look for the cheapest
sensor). Unfortunately as there is no known analytical
formulation of the jacobian matrix we have to rely on a
two level discretization method: first to choose a set of
possible robots i.e. a set of Ri

1, r
i
1 in the allowed zones

and then to sample the workspace for determining the
worst Cartesian positioning accuracy.

But at the same time note that we can also compute
the maximal articular forces τ for a given load on the
moving platform. Indeed if m denote the mass of the
load and xg, yg, zg the coordinate of the center of mass
in the moving frame, we have:

(τ1, τ2, τ3, τ4, τ5, τ6) = JT (0, 0,−mg,−mgyg,mgxg, 0)
(5)

and therefore in the second step we can also compute
the articular forces. Remark also that we may check if



there is a sign change in the articular forces in the
workspace, meaning that the leg will be submitted
both to traction and compression stress. Usually in
view of accuracy it will be better that the legs are
submitted only to one type of stress (in general com-
pression) enabling to almost cancel the backlash in the
actuators and reduction gears.

Similarly it is possible to compute during the same
process the variations of the joint angles, and therefore
to determine the best suitable joints.

It is also possible to examine the stiffness of the
robot during this part of the process. Indeed if we
assume that the longitudinal stiffness of the legs are
ki the stiffness matrix K of the robot is defined by:

K = J−TkJ−1 (6)

where k is a diagonal matrix whose elements are the
ki. Consequently we may compute and record the low-
est and highest stiffness of the robot in the desired
workspace.

4 Application examples
4.1 Positioning device for a X-ray mirror

The methodology proposed in the previous sections
was used to design a fine positioning device for the
European Synchrotron Radiation Facility (ESRF) lo-
cated in Grenoble. The purpose of this device is to sup-
port a specific X-ray optical mirror enabling to divert
and orient the X-rays produced by the synchrotron to-
ward a sample. For thermal stability the mirror lie on
a granite bench whose dimensions is 1m x 1m x 15cm.
The overall mass of the mirror and the bench is about
500 kg. The desired robot workspace is defined in ta-
ble 1 and the accuracy requirements in table 2. In

x y z θx θy θz

±2cm ±2cm ±2cm ±2◦ ±2◦ ±2◦

Table 1: Workspace requirement

x y z θx θy θz

10 10 1 5 5 10

Table 2: Accuracy requirements (in µm and µrd)

this application the radius of the base plate is fixed and
equal to 500 mm and the nominal height of the moving
platform is fixed to 1m. The linear actuator are elec-
tric and the leg lengths must be in the range (983.78,

1077.78). It was assumed that all the joint centers
were lying on circles. Basically the joint centers are
disposed symmetrically along three lines with an angle
of 120 degree between them but to avoid interference
between the actuators an angle of 30 degree was used
for adjacent joint centers, both on the base and on
the moving platform. A set of 20 segment trajectories
were specified leading to the allowed zone for R1, r1
(the base and moving platform radii) described in fig-
ure 3. Next we have to determine the geometry leading

500

r1

R1

Figure 3: The allowed zone for the R1, r1. The gray
zone is forbidden and the vertical line correspond to
R1 = 500mm

to the desired accuracy with the a maximal possible
error for the length sensor. In this case the search is
simplified as we have to look for the possible geome-
tries only along the vertical line R1 = 500mm. As for
the workspace a 6-dimensional discretization was used
to estimate the worst positioning error for an unit er-
ror on the sensor measurements. It was determined
that for a given value of r1 a sensor error of 0.969 µm
was leading to the maximal positioning errors given in
table 3. It may be seen that these errors lie well within

∆x ∆y ∆z ∆θx
∆θy

∆θz

±5.265 ±5.293 ±1 ±3.036 ±3.12 ±9.52

Table 3: Maximal positioning error for a sensor error
of 0.969 µm (in µm and µrd)

the accuracy requirement. It has also been noted that
the maximal sensor error leading to the desired accu-
racy is extremely variable according to the geometry:



a ratio of 12:1 between the best and worst case was
observed. A cross-section of the workspace of the de-
termined robot for z = 1000mm,ψ = θ = φ = 0 is
presented in figure 4 and a 3D view of the workspace
is presented in figure 5. The maximum articular force
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Figure 4: Cross-section of the robot workspace for z =
1000mm,ψ = θ = φ = 0. The small square represents
the desired workspace.
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Figure 5: 3D view of the workspace for ψ = θ = φ = 0

was estimated to be 1153 N and it was determined that
the ball-and-socked joint should enable a rotation of 5
degree.

According to this result a first prototype was
build [3] and is presented in figure 6. The repeata-

Figure 6: The ESRF-INRIA fine positioning device

bility of the robot under a load of 230 kg was deter-
mined using X-ray interferometry: it was estimated
to be better than 0.1 µm and therefore in compliance
with the accuracy requirements. Ten other prototypes
have now been built.

4.2 Double mirror positioning system

In this example the robot has to support a dou-
ble X-ray mirror whose weight is about 1000 kg. The
requirements on the workspace and accuracy are pre-
sented in table 4. The difference with the previous

x y z
Workspace - ±5mm ±20mm
Accuracy - ±0.05mm ±0.1mm

θx θy θz

Workspace ±5mrad ±5mrad −0.5,+2◦

Accuracy ±0.5mrad ±0.5mrad ±0.05mrad

Table 4: Workspace and accuracy requirements.

example is that the range of the linear actuator was
not known at the beginning of the design process. As
the maximal translation of the moving platform is 40
mm we have decided that a difference of 60 mm be-
tween the maximum and minimum leg lengths should



be sufficient to perform this translation. Consequently
the remaining design parameters is the minimum leg
length. A numerical search was performed for deter-
mining the minimal length such that the allowed re-
gion for R1, r1 has a maximum area (therefore leading
to the maximum number of choices for the geometry).
The variation of the area as a function of the minimal
leg length is displayed in figure 7. The allowed zone
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Figure 7: Variation of the area of the allowed zone as
a function of ρmin

with the maximal area is displayed in figure 8. Then

r1

R1

Figure 8: The allowed zone for the R1, r1. The gray
zone is forbidden.

a numerical search was performed in this domain to
find the robot which fulfill the accuracy requirements
together with additional constraints on the stiffness of
the robot (it is assumed that there is some elasticity
in the legs). It happens that the most accurate robot
(with a maximal sensor error of ±3.7µm) fulfills also

the stiffness requirement. A prototype of this robot is
currently under construction.

5 Conclusion
We have proposed a methodology to design a paral-

lel manipulator of the Gough platform type according
to desired requirements. This approach is workspace
oriented in the sense that an important reduction of
the search domain is obtained by first looking for the
possible robot geometries whose workspace includes at
least the desired workspace. Then the other require-
ments are used to determine the ”optimal” robot. A
successful application of this methodology for the de-
sign of an highly accurate robot was presented. In
this application the slowest part of the design process
was to determine the maximum sensor error leading
to the desired accuracy, as a numerical search over the
workspace has to be used (due to the difficulty of ob-
taining the jacobian matrix of the robot). We intend
to pursue our research on this particular topic in order
to speed up the design process.
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