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Abstract

We present a fast algorithm for solving the problem
of determining if the straight line between two differ-
ent postures of a parallel manipulator lie fully inside
its workspace. This algorithm is based on the analysis
of the algebraic inequalities describing the constraints
on the workspace (link lengths range, mechanical lim-
its on the joints, interference between the links) and
enables to compute which part of the trajectory is out-
side the workspace. This method is exact if the ori-
entation of the end-effector is kept constant along the
trajectory and approximate in the opposite case.

1 Introduction

Let us consider a 6 d.o.f. parallel manipulator as
represented on figure 1. It is constituted of a fixed
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Figure 1: A 6 d.o.f. parallel manipulator.

base plate and a mobile plate connected by 6 variable-
length links. One of the extremities of each link is
articulated with the base plate through an univer-
sal joint and the other extremity is articulated with
the mobile plate through a ball-and-socket joint. By

changing the 6 link lengths we are able to control the
position and orientation of the mobile plate.

Three types of constraint play a role for determin-
ing the workspace of parallel manipulators:

• limited range for the link lengths: the linear actu-
ators controlling the links lengths have a limited
range. The minimum length of link i will be de-
noted ρi

min and the maximum length ρi
max

• mechanical limits on the passive joints (universal
joints and ball and socket joints).

• links interference

The problem of determining the workspace of a paral-
lel manipulator has been addressed by many authors
most of them using a discretization method in the pa-
rameter’s space, some of them assuming that the ori-
entation of the end-effector is kept constant [1], [2],[5],
[6] or assuming that a point is fixed for computing the
orientation workspace [10],[11],[12],[13].

A completely different approach has been pro-
posed by Gosselin [3] which uses a purely geometrical
method for determining the workspace border due to
the limited range of the links lengths. This approach
has been then first extended to take into account all
the constraints limiting the workspace [7] and for com-
puting the orientation workspace when a point of the
end effector is fixed [8].

To the best of our knowledge nobody has addressed
the problem of verifying a trajectory with respect to
the workspace i.e. being given two points in the pa-
rameter’s space (i.e. two postures for the end effector)
is the straight line joining these two points fully in-
side the workspace of the robot. Clearly this problem
is very important for the motion planning of a parallel
manipulator.

Let us introduce now some notation. We define two
frames, one fixed (O,x,y, z) (reference frame) and the
other one attached to the end effector (C,xr,yr, zr)



(relative frame). C will be used to define the position
of the end-effector in the reference frame. The follow-
ing symbols and variables will be used in this paper:

• Ai: center of the passive joint of link i attached
to the base of the robot.

• Bi: center of the passive joint of link i attached
to the end effector.

• ψ, θ, φ: angles defining the orientation of the end
effector

2 Trajectory with a fixed orientation
In this section we will assume that the orientation

of the end effector is kept constant all along the tra-
jectory. Let us define the start and goal points of the
trajectory as M1,M2. Consequently any position of
the end-effector on the trajectory may be defined as:

OC = OM1 + λM1M2 with λ ∈ [0, 1] (1)

2.1 Limitation on the links lengths

Let us calculate the length ρ of a link for any point
on the trajectory between M1 and M2. We have:

AB = AM1 + CB + λM1M2 (2)

which yield to:

ρ2 = AB.ABT = aλ2 + bλ+ c (3)

Now let us consider the following equation:

aλ2 + bλ+ c− ρ2
max (4)

If this equation has no root and as a > 0 then for all λ
the equation is positive and the link length is greater
than its maximum value on all the trajectory.

Assume now that the equation has two roots x1, x2

sorted by higher value. As a > 0 the equation will be
positive for λ in the interval ]−∞, x1[, ]x2,+∞[. The
intersection of these intervals with the interval [0, 1]
will define the intervals on λ (i.e. the portion of the
trajectory) where the link length will be greater than
the maximum link length value.

By using this algorithm for the 6 links and calculat-
ing the union Imax of all the obtained intervals we will
get the portions of the trajectory where at least one
link length will be greater than its allowed maximum
value.

By changing ρmax by ρmin in equation (4) we then
get the union Imin of the intervals which define the
portions of the trajectory where at least one link
length will be lower than its allowed minimum value.

The union of Imax, Imin will give the portions of the
trajectory where at least one link length will be outside
its allowed range. If the union is empty the trajectory
is fully inside the workspace of the manipulator.

The study of the number of real roots of the previ-
ous equations according to their coefficients yield to 6
simplification rules [9]. Due to the lack of space they
are not given here.

2.2 Mechanical limits on the passive
joints

The mechanical limits on joints like universal joints
or ball-and-socket joints can be modelized by a surface
which is the border of the allowable zone for the link
connected to the joint. Using a similar method as in [7]
we assume that this surface can be approximated by a
pyramid with planar faces. For the joints attached to
the base the center of this pyramid is located at point
A (figure 2).

A1

B1

xr

yr

zr

n1

n3

n4

Figure 2: An example of modelization of a constraint
on a passive joint located at A1. If the mechanical
limits of the joints are satisfied then the link A1B1 is
inside the volume delimited by the pyramid (here a
pyramid with 4 faces).

As for the constraint on the passive joints attached
to the end-effector we may use the same model. We
define a pyramid Pi with center Bi such that if the
constraint on the joint at B are satisfied then point
Ai will lie inside the pyramid from which we deduce
another pyramid which will be called an equivalent

pyramid P
,
i to Pi, which center is Ai such that if Ai

lie inside Pi then Bi lie inside P ,
i . Therefore for both

kind of joints a similar model can be used.

Let ni be the external normal of the ith face of the
pyramid associated to the joint attached to the base.
If point B lie inside the pyramid we have:

AB.ni
T ≤ 0 (5)



By using equation (1) we get a linear equation in λ. Let
us consider the possible intervals where the inequality
is not satisfied. The intersection of these intervals with
[0, 1] yield the portion of the trajectory where the con-
straints on the joint are not satisfied. This algorithm
has to be used for all the faces of all the 12 pyramids
defining the constraint on the joints. Let Ipyri

be the
union of all these intervals for link i.

2.3 Links interference

We define the distance between two links as the
minimal distance between any pair of points on the
links. It has been shown in [7] that this distance is the
minimum of the following distances:
-the distance between the lines associated to the links
if their common perpendicular has a point on each link
-the distance between a point B and its projection
point on the other link if this point belongs to the link
-the distance between a point A and its projection
point on the other link if this point belongs to the link
-the distance between the points of one of the two pairs
of points (Ai, Bj)

We assume that link i can be approximated by a
cylinder with radius ri and will say that links i, j in-
terfere if their distance if lower than d = ri + rj . We
will consider now the above cases for links 1 and 2.

2.3.1 Distance between the lines

The distance d12 between the lines associated to links
1 and 2 can be written as:

d12 =
A1A2.(A1B1 × A2B2)T

||A1B1 × A2B2||
(6)

Using equation (1) and writing that the distance be-
tween the lines is lower or equal to d yield to a second
order inequality:

P1(λ) = u2λ
2 + u1λ+ u0 ≥ 0 (7)

The intervals on λ included in [0,1] such that P1(λ)
is positive define the parts of the trajectory where the
distance between the lines is lower or equal to d.

Let Id be the set of all these intervals. Let Q1, Q2

be the points on line 1,2 belonging to their common
perpendicular. If these points belong to the links for
some values of λ in Id then there is links interference.
We define α1, α2 such that:

A1Q1 = α1A1B1 A2Q2 = α2A2B2 (8)

Point Qi belongs to link i if αi is in [0,1]. α1, α2 can
easily be obtained as:

α1 =
Pα1(λ)

Pdet

=
s2λ

2 + s1λ+ s0

t2λ2 + t1λ+ t0
(9)

α2 =
Pα2

Pdet

=
r2λ

2 + r1λ+ r0

t2λ2 + t1λ+ t0
(10)

Let IPi

+ be the intervals included in [0,1] such that

Pαi
is positive or equal to zero (i.e. αi ≥ 0), IPi

1 the
intervals in [0,1] where Pαi

− Pdet(λ) is negative or
equal to zero (i.e. αi ≤ 1). The set ID of intervals
of λ in [0,1] where the distance between the links is
the distance between the lines and is lower than d is
therefore:

ID = Id ∩ (IP1
+ ∩ IP1

1 ) ∩ (IP2
+ ∩ IP2

1 ) (11)

If Id = ∅ the distance between the lines (which is a
lower bound of the distance between the links) is al-
ways greater than d and therefore links interference
cannot occur. If Id 6= ∅ and ID = ∅ the distance be-
tween the links will always be different and greater
than the distance between the lines.

2.3.2 Distance between the points Bi and

their projections

The distance l from point B1 to line 2 can be written
as:

lB2
1

=
||B1B2 × A2B2||

||A2B2||
(12)

Using equation (1) and writing that lB2
1

is lower than
d yield to:

P
B2

1
1 (λ) = a1

2λ
2 + a1

1λ+ a1
0 ≥ 0 (13)

and collision will occur if the projection Q1 of B1 on
line 2 belongs to link 2. Let:

A2Q1 = β1A2B2 (14)

the above condition will be fulfilled if β1 belongs to
[0,1]. We have:

β1 =
P

B2
1

2 (λ)

Q(λ)
=
β1

2λ
2 + β1

1λ+ β1
0

β2
2λ

2 + β2
1λ+ β2

0

(15)

Let I
B

j

i

the intervals included in [0,1] such that P
B

j

i

1 ≥

0 (i.e. l ≤ d), P
B

j

i

2 ≥ 0 (i.e. β1 ≥ 0), P
B

j

i

2 −Q(λ) ≤ 0
(i.e. β1 ≤ 1). The set of intervals I

B
j

i

, i, j ∈ [1, 6], i 6=

j defines the componants of the trajectory for which
interference occurs between links i and j.

2.3.3 Distance between the points Ai and

their projections

The distance lA2
1

from point A1 to line 2 is:

lA2
1

=
||A1B2 × A2B2||

||A2B2||
(16)



Using equation (1) and writing that lA2
1

is lower than
d yield to:

P
A2

1
1 (λ) = w1

2λ
2 + w1

1λ+ w1
0 ≥ 0 (17)

under the condition that the projection Q1 of A1 on
line 2 belongs to link 2. Let:

A2Q1 = µ1A2B2 (18)

Q1 belongs to link 2 if µ1 is in [0,1]. We have:

µ1 =
P

A2
1

2 (λ)

Q(λ)
=

µ1
1λ+ µ1

0

µ2
2λ

2 + µ2
1λ+ µ2

0

(19)

Let I
A

j

i

the intervals included in [0,1] such

that P
A

j

i

1 > 0 (lA2
1
≤ d), P

A
j

i

2 ≥ 0 (µ1 ≥ 0),

P
A

j

i

2 −Q(λ) ≤ 0 (µ1 ≤ 1).
The set of intervals I

A
j

i

, i, j ∈ [1, 6], i 6= j defines

the componants of the trajectory on which interference
between link i and j occurs.

2.3.4 Distance between points Ai and Bj

Using equation (1) the distance between points A2

and B1. ||A2B1||2 is a second order polynomial in λ

PA2B1(λ).
We denote by IAiBj

the intervals of λ included in
[0,1] such that PAiBj

(λ) − d2 ≤ 0. These intervals de-
fine the parts of the trajectory the distance from Bj

to Ai is lower than d.
The union of the intervals defining forbidden value

for λ for each constraint defines the set Ibad of intervals
forbidden for λ from which we deduce the forbidden
parts of the trajectory. We get:

Ibad = Imax∪Imin∪Ipyri
∪IDij

∪I
B

j

i

∪I
A

j

i

∪IAiBj
(20)

2.4 Computation time

The above algorithms have been implemented in
a workspace computation program written in C on a
Sun Sparc2 workstation.

The computation time for the verification of a tra-
jectory is approximatively 2ms for the links lengths
constraints, 25 ms for checking the interference be-
tween each pair of links and 0.3ms for checking a face
of a pyramid for the mechanical limits on the joints.
The verification of all the constraints the computation
time for a trajectory is approximatively 29 ms.

2.5 Examples

We have performed trajectory verification for a pro-
totype of parallel manipulator developed by Arai [1]
at the MEL in Tsukuba. Figures 3,4 show trajectories
on which forbidden parts are singled out.
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Figure 3: Example of trajectory verification: the for-
bidden parts of the trajectory are drawn in dashed
lines. The constraints are only the links lengths.
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Figure 4: Examples of trajectory verification: the fron-
tier of the workspace where there is no links interfer-
ence is drawn in thick lines. The forbidden parts of
the trajectory are drawn in dashed lines.



3 General Trajectory
In the case of a constant orientation we have seen

that the constraints can be expressed under the form
of algebraic equations in the variable λ which describe
the trajectory. If we introduce now a varying orien-
tation we have now more algebraic constraints as the
sines and cosines of the rotation matrix will appear.

In order to get again algebraic constraints equa-
tions we will split the trajectory in elementary parts
such that the change in the orientation between the
extremal points of one elementary part will be small.
For each elementary part a linear interpolation for the
angles will be used to determine the orientation of
the end-effector. As the orientation will affect only the
value of the vector CB we will use a first or second or-
der approximation for this vector. Let denote M1,M2

the extremal points of one elementary part of the tra-
jectory, ψ1, θ1, φ1 the Euler’s angles describing the ori-
entation of the end-effector at point M1 and ψ2, θ2, φ2

the Euler’s angles of the end-effector at point M2. Be-
tween points M1 and M2 the position of point C is
defined by equation (1) and the rotation angles can
be written as:

ψ = ψ1 + λ(ψ2 − ψ1) θ = θ1 + λ(θ2 − θ1)

φ = φ1 + λ(φ2 − φ1)

If we use a first order approximation we get:

CB(ψ, θ, φ) = CB(ψ1, θ1, φ1) + λU1 (21)

and a second order approximation yield to:

CB(ψ, θ, φ) = CB(ψ1, θ1, φ1) + λU1 + λ2U2 (22)

where the vectors U1,U2 are only dependent upon
the relative position of B and the angles ψ1,θ1,φ1,
ψ2,θ2,φ2.

Under these assumptions we may now analyze the
various constraints on an elementary part T of the
trajectory.

3.1 Links lengths constraints

By using equation (1) and a second order approxi-
mation (22) we obtain the link length as:

Pρ(λ) = a3λ
3 + a2λ

2 + a1λ+ a0 (23)

where the ai are coefficients which are only dependent
upon the trajectory and the design of the robot. As in
the constant orientation case the analysis of the poly-
nomial Pρ(λ)−ρ2

max, Pρ(λ)−ρ2
min enables to compute

the intervals of λ in [0,1] such that the link length is
greater than its maximum value or lower than its min-
imal value.

3.2 Constraints on the passive joints

A second order approximation of CB (22) is used
together with equation (1) to express the constraint
equation (5) which yield to a second order inequality.
The analysis of this inequality enables to determine
the intervals on λ such that some point of the link lie
outside the pyramid. By considering all the set of faces
of every pyramid we get which parts of the trajectory
does not satisfy the joints constraints. A similar anal-
ysis can be done for the passive joints of the mobile
plate.

3.3 Links interference

3.3.1 Distance between the lines

By using equation (1) and a first order approxima-
tion (21) writing that the distance d12 between the
lines is lower than d yield to a fourth order inequality
in λ, P (λ) ≥ 0.

In order to find at which points of T the distance
between the lines is lower or equal to d we must find
the intervals Id on λ, included in [0,1], where P (λ) ≥ 0.

If the common perpendicular points Q1, Q2 of line
1, 2 belong to the links we get a links interference. Let:

A1Q1 = α1A1B1 A2Q2 = α2A2B2 (24)

We get:

α1 =
Pα1 (λ)

det
=

s3λ
3 + s2λ

2 + s1λ+ s0

t4λ4 + t3λ3 + t2λ2 + t1λ+ t0
(25)

α2 =
Pα2 (λ)

det
=

r3λ
3 + r2λ

2 + r1λ+ r0

t4λ4 + t3λ3 + t2λ2 + t1λ+ t0
(26)

Now a procedure similar to the one described in sec-
tion 2.3.1 can be used to compute the componants of
T where links interference will occur.

3.3.2 Distance between the points Bi and

their projections

The distance lB2
1

from point B1 to line 2 will be lower
than d if:

P
B2

1
1 (λ) = g1

4λ
4 + g1

3λ
3 + g1

2λ
2 + g1

1λ+ g1
0 ≥ 0 (27)

Links interference will occur if the above equation is
satisfied and if the projected point Q1 of B1 on line 2
belongs to link 2. Let:

A2Q1 = β1A2B2 =
β3

2λ
2 + β3

1λ+ β3
0

β4
2λ

2 + β4
1λ+ β4

0

A2B2 (28)

Q1 will belong to link 2 if β1 is in [0,1]. Now a proce-
dure similar to the one described in section 2.3.2 can
be used to compute the componants of T where links
interference will occur.



3.3.3 Distance between the points Ai and

their projections

Using a first order approximation (21) the distance lA2
1

from point A1 to line 2 will be lower than d if:

P
A2

1
1 (λ) = h1

2λ
2 + h1

1λ+ h1
0 ≥ 0 (29)

Collision between links 1 and 2 will occur if the pro-
jection point Q1 of A1 on line 2 belongs to link 2. Let:

A2Q1 = µ1A2B2 =
µ3

1λ+ µ3
0

µ4
2λ

2 + µ4
1λ+ µ4

0

A2B2 (30)

The above condition will be fulfilled if µ1 is in [0,1].
Now a procedure similar to the one described in sec-
tion 2.3.3 can be used to compute the componants of
T where links interference will occur.

3.3.4 Distance between the points Ai and Bj

Using a first order approximation (21) ||A2B1||2 ≤ d

yield to a second order inequality in λ. This situation
may occur only if a condition is satisfied (see [9]).

3.4 Computation time

The computation time for the verification of a tra-
jectory is dependent upon its number of elementary
parts. This number is obtained by considering the ori-
entation angle with the greatest variation and by di-
viding this variation by a constant angle (5◦ in our
implementation).

The mean computation time for the verification of
one elementary part is approximatively 16 ms for the
links lengths constraints, 430ms for checking the inter-
ference between each pair of links and 1ms for checking
a face of a pyramid for the mechanical limits on the
joint. If we take into account all the constraints for a
robot with four-faced pyramids on the base joints we
get a total computation time of 450 ms.

3.5 Examples of trajectory verification

We show in figure 5 an example of trajectory veri-
fication.

4 Application: motion planning
Let us assume that a given trajectory is outside the

workspace of a given robot. We will assume here that
the orientation is kept constant all along the trajectory
and that the trajectory is in a given horizontal plane.
As we know the workspace border we tile it with small
square cells (figure 6).

In this tessellation we find the squares which con-
tain the start and goal points. We build then a valued
graph whose nodes are the centers of the cells, which
are connected by arcs to their neighbour cells. The
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G(150,0,500,50,0,0)
S(0,200,450,0,0,0)

Figure 5: Example of trajectory verification: the for-
bidden parts of the trajectory are drawn in thick lines.
Each of the cross-section of the workspace has been
computed for an orientation obtained by a linear in-
terpolation between the orientations at the start and
goal positions. The constraints are the links lengths
and links interference. The start and goal points are
in the workspace but a part of the trajectory is outside
the workspace.

value of the arcs is the distance between the nodes
if the line joining the nodes lie inside the workspace
or an arbitrary large value if the line is outside the
workspace (this can be determined by using our veri-
fication algorithm). A path between the start and goal
points can be found by using a shortest path algorithm
in the graph (for example anA∗ algorithm [4]) and this
path may then be smoothed (figure 6).

Figure 6: Motion planning: the straight line between
the start and goal points is not a valid trajectory.
The workspace border is calculated and it is tiled
with small square cells. An A∗ algorithm enables to
find a path between the start and goal position in the
workspace. A smoothing algorithm can then be used.



5 Conclusion
We have presented an algorithm enabling to verify

if a given trajectory is fully inside the workspace of a
parallel manipulator. This workspace is calculated by
considering every constraints which can limit the reach
of the robot: links lengths range, mechanical limits on
the passive joints, links interference. In this algorithm
these constraints are expressed as algebraic inequali-
ties which are easily solved. These algebraic inequali-
ties describe exactly the constraints if the orientation
of the end-effector is kept constant all along the tra-
jectory and are approximatively exact in the opposite
case. By solving these inequalities we can determine
if the trajectory is fully inside the workspace or find
which part of the trajectory is outside the workspace.
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September, 17-20, 1989.

[4] Latombe J.C. Robot Motion planning. Kluwer
Academic Publishers, Boston, , 1991.

[5] Lee K-M and Shah D.K. Kinematic analysis of a
three-degrees-of-freedom in-parallel actuated ma-
nipulator. IEEE J. of Robotics and Automation,
4(3):354–360, June 1988.

[6] Merlet J-P. Parallel manipulators, Part 1, theory.
Research Report 646, INRIA, March 1987.

[7] Merlet J-P. Manipulateurs parallèles, 5eme partie
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tion constante. Research Report 1645, INRIA,
March 1992.

[8] Merlet J-P. Manipulateurs parallèles, 6eme partie
: Détermination des espaces de travail en orienta-
tion. Research Report 1921, INRIA, May 1993.

[9] Merlet J-P. Manipulateurs parallèles, 7eme partie
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