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Abstract

In the most general case the measurement of the
links lengths of a 6 d.o.f parallel manipulator is not
sufficient to determine the actual unique posture of
its platform. We investigate how this posture can be
determined by adding sensors to the manipulator. We
show that by adding four sensors on the passive joints
a unique closed-form solution of the posture of the end-
effector can be obtained for the most general case. We
show that three sensors are sufficient for a particular
mechanical architecture.

1 Introduction

Let us consider the general 6 d.o.f parallel manip-
ulators shown in figure 1. Two plates are connected
through 6 articulated links. A linear actuator enables
to change the link length and a linear sensor is used to
measure this length. By controlling these lengths we
are able to control the position and orientation of the
upper-plate (the platform) with respect to the base
plate. Usually the links are connected to the base by
universal joints and to the platform by ball-and-socket
joints.

For a given posture of the mobile plate it is easy to
find the corresponding links lengths. At the opposite
finding the posture for a given set of links lengths i.e.
solving the direct kinematics problem is difficult and
there is usually not a unique solution. For example
Lazard [6] has shown that for the most general case
they cannot be more than 640 different postures. For
some simplified designs it is well known that they can
be up to 16 different postures [3, 4, 9]. In the case
where both the platform and the base are planar a
numerical resolution has been proposed in [8]. Using
this numerical procedure we have found some sets of
links lengths which yield to 12 real solutions i.e. 12
different postures of the platform. Recently some nu-
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Figure 1: A parallel manipulator with 6 D.O.F.



merical procedures have been proposed for the most
general case although no configuration with more than
12 solutions have been found [1, 11, 12]. But these pro-
cedures cannot be used to solve the direct kinematics
problem in real time as they involve heavy computa-
tion.

For real time purpose numerical iterative proce-
dures have been proposed [7, 13]. Although these pro-
cedures are efficient some convergence problems may
be encountered and faster procedures may be neces-
sary, especially for using a dynamic model in real time.

A practical solution may be to add extra sensors
and to use this redundant information for decreasing
the computation time. This approach has been used
by Inoue [5] and Arai [2]. Arai added a passive link
with 6 sensors to its design but found out that such a
design increases the problem of link interference and
that the measured position accuracy is poor.

Our purpose is to determine how to add sensors
to the manipulator to get a unique closed-form so-
lution of the direct kinematics problem i.e. find their
number and their location together with the procedure
describing how to get the posture of the platform. A
minimum number of sensors should be added in order
to avoid any unnecessary extra hardware.

To solve the direct kinematics problem it is suffi-
cient to determine the coordinates in the base frame
of 3 points of the platform.

In this view it appears clearly that with 6 extra sen-
sors data the posture of the mobile plate can be de-
termined uniquely. Indeed let us assume that we add
rotary encoders on the two revolute joints axis of the
universal joint of 3 links of the robot (say links 1, 2,
3). For each of these links the measurements of the
link length and the two angles of the joint enable to
calculate the position of points B1, B2, B3 in the base
frame and therefore solve our problem. But adding
unnecessary sensor is a burden for the construction of
a prototype. Therefore we propose various methods
to solve this problem with less than 6 extra sensors.
It will be then the choice of the designer to find the
number of sensors enabling to get the best compro-
mise between the supplementary cost and complexity
of the manipulator (increasing with the number of sen-
sors) and the computation time for solving the direct
kinematics problem (decreasing with the number of
sensors).

2 Various types of extra sensor data

Sensors can be added to a parallel manipulator in
two different ways:

• rotary sensor on the existing passive joints

• by adding passive links whose lengths are mea-
sured with linear sensor.

Basically the first solution is better in view of the risk
of links interference but may reduce the possible mo-
tion of the manipulator.

3 Adding sensors to the passive joints

of the links

On each of these joints two sensors can be used to
measure the direction of the link. With the link length
it is then possible to calculate the position of the other
extremity of the link. It is clearly equivalent from a
geometrical view point to put these sensors either on
the base or on the platform joints. We will assume
that the sensors are added to the base joints.

To determine a posture of the platform it is nec-
essary and sufficient to know the positions of three
points Bi, Bj , Bk of the mobile plate in the base frame.
We will suppose that we have sensors measuring the
links lengths and that we add sensors on the universal
joints.

3.1 Measuring with four rotary sensors

We suppose that only the two universal joints of
link 1 and 2 are equipped with their two sensors.
Therefore we know the location of point B1, B2 in
the reference frame. We will show that by using the
other sensory informations i.e. the four remaining
links lengths, we will be able to determine the actual
posture of the platform in most cases and find only
two possible solutions in the worst case.

As the location of points B1, B2 is known the last
remaining d.o.f. of the platform is a rotation around
the line going through B1, B2. We consider now two
others links say 3 and 4. As the mobile plate rotates
around B1, B2 points B3, B4 will lie on circles. But
these points must also lie on the spheres of center
A3, A4 whose radii are ρ3, ρ4, the lengths of links 3
and 4. Therefore these points lie at the intersection of
the circles and the spheres i.e. there are two possible
solutions for B3(B31

, B32
) and B4(B41

, B42
). But as

all the B points belong to the same solid there are
constraints on their relative position. To show that
in general only one of the two positions of B3 satisfy
all the constraints we project the problem in a plane
perpendicular to the line going through B1, B2 and
denote by A3p

the projection of A3 in this plane. We
define a frame in the plane with origin the projection
of B1, B1p

, the x-axis being defined by the line going
through A3p

. We denote by B3p
, B4p

the projections
of points B3, B4 in this plane (figure 2). As the mo-
bile plate rotates around line B1B2 point B3p

lie on a



A3pB1p

d4

B3

B4

A4p

α

θ1

λ

δ1

δ2

d3

C3

C4

CA3

CA4

Figure 2: In general the location of the mobile plate
can be uniquely determined with only four extra sen-
sors

circle C3 which center is B1p
and radius d3 (the dis-

tance between point B3 and the line B1B2) and B4p

lie on a circle C4 which center is B1p
and radius d4

(the distance between point B4 and the line B1B2).
As the position of points B3, B4 must also satisfy

the articular constraints B3p
will also lie on a circle

CA3
which center is A3p

and B4p
will also lie on a circle

CA4
which center is A4p

. Consequently the projected
points of B31

, B32
, (Bp

31
, B

p
32

), are the intersections of
CA3

and C3. Accordingly to the choice of the plane
frame these points will be symmetrical with respect to
the x-axis. Therefore if θ1 denotes the angle between
the line B1p

B
p
31

and the x-axis the angle between the
line B1p

B
p
32

will be −θ1.
For a fixed position of B3p

the location of B4p
is

obtained from the the location of B3p
by a rotation

around B1p
with a fixed angle λ.

In a similar manner the projected points of
B41

, B42
, (Bp

41
, B

p
42

), are the intersections of CA4
and

C4. We will denote by α the fixed angle between the
line B1p

A4p
and the x-axis and by δ1, δ2 the angle be-

tween the the points B
p
41

, B
p
42

with the line B1p
A4p

.
We have clearly δ2 = −δ1. Let us suppose that a so-
lution is given when the posture of the mobile plate is
defined by the points B31

, B41
. Therefore in this pos-

ture B
p
31

, B
p
41

satisfy the geometric constraint of the
mobile plate. We have therefore:

δ1 = θ1 + λ − α (1)

and thus
δ2 = −δ1 = −θ1 − λ + α (2)

We investigate now if the posture defined by the points
B32

, B42
satisfy also the geometric constraint. We

have
δ2 = θ2 + λ − α = −θ1 + λ − α (3)

Therefore equations (2), (3) will be simultaneously
true only if:

λ = α (4)

Fortunately this equation will seldom be verified for all
the last 4 remaining links. For example if we suppose
that the Bi (i > 2) are coplanar (i.e. λ = 0) this
equation will imply that the Ai will also be coplanar
and that the line B1B2 will lie in their plane. For
example in figure 3) points B1 to B6 lie in the same
plane PB, points A3 to A6 lie in the same plane PA

and points B′

1 to B′

6 represent the alternative position
of the mobile plate.
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Figure 3: An exception for the determination with
four sensors : two solutions can be found.

Proposition 1

With the lengths of the 6 legs and 4 sensors which
measure the two angles of two different universal joints
of the base we are able to determine uniquely the pos-
ture of the platform except in some particular config-
urations where two solutions can be found

3.2 Measuring with three rotary sensors

Let us suppose now that the joint of link 1 is fully
equipped with two sensors and that the joint of link 2
has only one sensor. Therefore we know the location of
point B1 and point B2 must lie on a circle centered in
A2, the normal to this circle being given by the sensor
data α1. As B2 is at a given distance from B1 it must
also be on a sphere centered in B1. Therefore point
B2 is at the intersection of the sphere and the circle
i.e. in general two solutions B21

, B22
can be found

(figure 4).



According to the previous section one unique pos-
ture of the platform can be determined for a given set
of points B1, B2. As point B1 is fixed and we known
two possible locations of point B2 they will be at most
two possible postures of the platform. We have not
been able to determine if these two postures can both
satisfy the others length constraints.
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Figure 4: Measuring with three sensors. The sensor
data on link 1 give the location of B1 and the sensor
on link 2 enables to determine two possible locations
for B2

Proposition 2

With two rotary sensors on the universal joint of
one link and one rotary sensor on the universal joint
of another link a maximum of two solutions can be
found

4 Adding passive legs

A recent work presented by Nair [10] deal with a
systematic study of the direct kinematics problem for
a manipulator with n links. With the notation of fig-
ure 1 let us write the equation of the inverse kinemat-
ics. We have:

AB = AO + OC + CB CB = RCBr (5)

where R = ((rij)) is the rotation matrix defining the
orientation of the platform with respect to the base
and CBr the coordinates of the articulation point in
the platform frame. The length ρ of a link can be
calculated by:

ρ2 = ||AB||2 (6)

Let R̃ = (r11, r12, r13, r21....)
T and W = (CBi.OAi)

T

which can be written as W = W̃ R̃ where W̃ is a n x

9 matrix. Nair shows that equation 6 can be written
as:

Aq = L (7)

where A is a n x 16 matrix and q has dimension 16 x
1 and L n x 1, defined by:

A = ((OAi
T ) − (CBri

T ) W̃ −1)

q = (OC ROC R̃
||OC||2

2
)T

L = (||OAi||
2 + ||CBri||

2 − ρ2
i )

T

Clearly equation (7) is a constrained linear system in
the componants of q. Indeed not all componants of q

are independent. The relations between these compo-
nants are called the closure equations and are listed by
Nair. In order to solve the direct kinematics problem
the linear part of equation (7) is solved and the re-
sult is reported in the appropriate closure equations.
In some cases the resulting equations can be solved
explicitly.

A particular interesting case is the 9-legs planar-
planar case where the articulations centers on the base
and the platform are coplanar and 9 legs are connect-
ing the base and the platform. In that case Nair shows
that A is a 9 x 9 matrix as only two componants of
the vectors OC, ROC and four componants of R̃ play
a role in the initial equations. The direct kinemat-
ics problem can then be solved explicitly if A has full
rank. But Nair does not determine what are the ge-
ometries of the manipulator which insures that this
condition is fulfilled.

We will consider a special case of the 9-legs planar-
planar case in which the platform is a triangle and
the base is symmetrically shaped. Legs 1-6 are the
actuated legs and legs 7-9 are the passive legs which
meet at a unique point P on the platform (figure 5).
In that case the rank of A will be 9 if:

• the three points A7, A8, A9 are not collinear

• P is not on the line joining B3, B5

• point A4 has not the same y-coordinate as A3

• point A4 is not on the line joining the middle
point of A1, A2 to A3

• point P is not on the line joining B1, B3 or the
line joining B1, B5

These exceptions are presented in figures 6,7.

Proposition 3
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Figure 5: A parallel manipulator with 6 D.O.F., 6
active legs and 3 passive legs.

Figure 6: Three geometries of the manipulator for
which a unique solution to the direct kinematic prob-
lem cannot be found.

Figure 7: Two geometries of the manipulator for which
a unique solution to the direct kinematic problem can-
not be found.

For the 9-legs planar-planar case with three passive
legs a unique solution for the direct kinematics can be
found except for some special geometries of the ma-
nipulator.

It must be noted that for the planar case with 8 legs
Nair shows that even if the matrix A has full rank
its methods yield to up to 8 different solutions and
therefore cannot be used.

5 Conclusion
We present the first result of theoretical investiga-

tion on solving the direct kinematic problem of paral-
lel manipulators by adding a minimal number of extra
sensors. We have investigated the case where sensors
are added to the passive joints and have shown that in
the most general case fours sensors will be sufficient
to determine the actual posture of the manipulator.
Then we have investigated the case where passive legs
with measured length are added and shown that a
minimum of three legs is necessary for a special case
of parallel manipulator. We intend to study in the
future what is the influence of sensor accuracy on the
computation of the posture and the amount of com-
putation needed for each method.
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