
Kinematics of the wire-driven parallel robot MARIONET using linear

actuators

J-P. Merlet

Abstract— Wire-driven parallel robots are special types of
Gough-Stewart platform in which the rigid extensible legs are
substituted by extensible wires. Usually wire length change is
obtained by coiling the wire on a drum actuated by a rotary
motor. We present here a robot using linear actuator and a
pulley system allowing a higher modularity of the actuation
system. The kinematics of this redundant system (the system
has 7 wires), taking into account the elasticity of the wires,
is presented. Inverse kinematics may be solved either by first
choosing the wire tensions, the control vector being then a linear
function of the tensions or by solving directly a system of non
linear equations whose unknowns are the components of the
control vector. Forward kinematics is a much more complex
issue, involving the solving of a large system. We present a
solving approach but this problem remains an open issue.

I. INTRODUCTION

A. THE MARIONET ROBOT

Wire-driven parallel robots are special types of Gough-

Stewart platform in which the rigid extensible legs are

substituted by extensible wires. Although known for some

time [1], [11], [12], [14], [20], [21] they are currently

extensively studied [2], [3], [5], [7], [9], [17], [18] as they

offer a larger workspace and high end-effector velocities.

Usually wire length change is obtained by coiling the wire

on a drum actuated by a rotary motor (see for example the

FALCON [11] or SEGESTA [9] robots). If some accuracy

is required this solution has the drawback that a special

guide must be manufactured on the drum to establish an

accurate linear relationship between the measured rotation of

the drum and the length of the coiled wire. As the dimension

of the drum is limited (to reduce the inertia and for allowing

the coiling) the amount of coiled wire is also limited and

consequently the modularity of the system is reduced.

We have started designing a new robot, called Marionet,

with modularity as focus point: as the robot performances

are highly dependent upon the robot geometry (in a broad

sense) we wish to be able to quickly modify it in order to

adapt the robot to the task at hand. Being able to change the

minimal and maximal wire lengths is an important part of

this modularity as these parameters play an important role

for the robot workspace, accuracy and maximal velocities.

This has motivated us to consider a new coiling system

based on a linear actuator and a pulley system (figure 1). The

linear actuator (Copley Motion type M 2506) has a platform

that slides along a rod using a single rail stage. The motion

of the platform is measured by a linear incremental encoder

with an accuracy of 1 µm.
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Fig. 1. The wire system used to actuate the Marionet robot

One extremity of the wire is attached to a fixed point F
on the base and from this point the wire goes alternatively to

pulleys that are fixed either on the mobile platform or on the

base. The wire goes from a final pulley on the base through a

fixed opening, whose location is A, to the robot end-effector

at point B: the distance between A and B will be denoted ρ
and the points A,B are called the anchor points of the robot.

Hence the motion of the linear actuator is amplified by the

pulleys system by a factor K, which is an even number. Note

that a direct drive may be obtained if an extremity of the wire

is connected to the mobile platform and goes directly to the

final pulley,.

Seven such wire systems are fixed on standard profile

elements that constitutes the frame of the robot (figure 2).

The robot is controlled by a PC under Linux including

electronic boards that are connected to power amplifiers.

Potential applications that will be considered for this robot

are:

• rehabilitation: we will use the robot to measure the

motion of human joints and establish various models

according to the patient. Then the precise force feedback

that may be obtained from wire-driven robot may be

used to implement a rehabilitation protocol or for sport

training [15], [16]

• service robotics: in this domain we intend to explore

the use of Marionet as a windows washing machine

or as an assistant device for elderly people [10]

• entertainment robotics: we intend to explore the use of



Fig. 2. The Marionet robot

the robot for movie maker (allowing new angle of view

for cameras and special effects based on out of habit

actors motion) and fast scenic changes in opera and

theaters

• rescue robotics: we intend to use the robot as an

independent, portable crane for assisting rescuer during

major natural catastrophe [19]

• industrial robotics: Marionet will allow extremely

fast motion of the end-effector that may be convenient

for pick-and-place operations

In all these applications modularity is extremely important

and Marionet combines both a modular mechanical sys-

tem and a design software that will allow to determine what

is the best geometry of the robot for the task at hand.

Still the development of a new robot has to go through

the study of basic problems and we address in this paper

the kinematics issues. Apart of the original mechanical

structure of the wire system our contribution will be to take

into account the wire elasticity in the inverse and forward

kinematics, an issue that, to the best of our knowledge, has

not been addressed for wire-driven parallel robots.

II. KINEMATICS

Currently the wires of the robot are standard fishing wires

with high elasticity. This elasticity may be modeled with

Hooke’s law: if L0 is the length of the unloaded wire and L
its length under tension, then the tension τ in the wire may

be calculated as

τ = k
L − L0

L
(1)

where k characterizes the material of the wire. The total

length of the wire may be written as

L = ρ + V + Ku (2)

where u is the actuator position with respect to a given point

on the actuator axis and V is a fixed constant that is the

length of the wire between A and F . We may assume that

L0, V,K are known constants. Clearly the wire deformation

must be taken into account for the kinematics of the robot as

soon as its elasticity is high. If we assume a small velocity

of the end-effector the tension τ in the wires are related to

the wrench F exerted on the platform by

F = Hτ (3)

where H is usually called the inverse jacobian matrix of

the robot, which is pose dependent. The elements of H are

known analytical functions of the pose parameters. We define

a reference frame R = (O,x,y,z) and uses the coordinates

in R of a point C on the platform to parameterize the

position of the end-effector. A mobile frame C,xm,ym, zm

is attached to the platform and the Euler angles are used to

represent the orientation of the platform. If ni is the unit

vector giving the direction of wire i, then the i-th column

Hi of H may be written as

Hi = ((ni CBi × ni)) (4)

A. INVERSE KINEMATICS

1) INVERSE KINEMATICS ALGORITHMS:

For the inverse kinematics the pose of the end-effector

is known and we will consider one wire to determine what

should be its control u. First the length ρ may be determined:

indeed the pose of the end-effector allows one to determine

the coordinates of B in the reference frame, while the

coordinates of A in the same frame are known. Hence the

components of the vector AB can be determined and ρ is

the norm of this vector.

If the end-effector is submitted to known forces/torques

(e.g. the gravity) it is possible to solve in τ the linear system

(3) using methods that are classical for wire-driven robot [4],

[5], [9] ensuring that all elements of τ are positive to avoid

having slack wires. The control u is then calculated using

(1,2) as

u =
kL0

K(k − τ)
−

ρ + V

K
(5)

The drawback of this approach is that both u and τ have

limits (the linear actuator has a limited stroke and the τ
must be positive and also lower than a fixed threshold to

avoid breaking the wire). With this method we may ensure

that the limits on τ are verified but cannot guarantee that the

limits on u are also satisfied.

We may note that the wire tension may be expressed as

τ =
k(ρ + V − L0 + Ku)

ρ + V + Ku
(6)

The constraints τ < τmax may thus be written as Ku(k −
τmax) < τmax(ρ + V ) − k(ρ + V − L0). Usually k will

much larger than τmax and hence k− τmax will be positive.

Consequently we may determine an upper bound for u as

(τmax(ρ + V ) − k(ρ + V − L0))/(k − τmax). The same

approach used for the constraint τ > τmin allows one to

determine a lower bound for u.

Using equations (1,2) equations (3) is now a non-linear

system of 6 equations in the seven unknowns u, from which



we must determine the solutions that are included between

the lower and upper bounds that have been determined in

the previous paragraph.

Inverse kinematics may be used in two cases:

• to move the robot from its current pose to another one,

that may be far from the current one. In that case the

control vector u may be quite different from the current

one

• during a robot motion in which case we are looking for

solutions that are close to the current values of u. Here

computation should be real time

The number of methods for solving a non-linear system are

limited and we are using interval analysis with the library

ALIAS that is developed in our laboratory. This approach

allows one to determine solutions of a system which are

included in a pre-defined domain and its computation time

decreases with the size of the domain. These properties make

the method appropriate for addressing the two above issues.

Different strategies may be used to solve the system (3):

• Algorithm 1: we consider (3) as an under-constrained

system of 6 equations in the 7 ui. The ranges for the ui

will describe the actuator full stroke if no information on

the final ui is available and we will stop the algorithm

as soon as a solution is found. For a real time use the

range for the ui will be a small interval centered around

the last known value

• Algorithm 2: we fix the value of one of the ui and

consider (3) as a square system of equations. The value

of the fixed uj may be determined by using the new

value of ρj and equation (5) with a fixed value for

τj within the range [τmin, τmax]. Up to now we have

been able to determine if this system may have multiple

solutions.

2) NUMERICAL EXAMPLES:

We are considering two possible designs of MARIONET

with the anchor point coordinates presented in table I. The

second design which differs only by the coordinates of the

B points (indicated in parenthesis) and is called T-platform

(also called 3-2-1 [8]). In this design there are only 3

different anchor points: one hosting three wire extremities

and two attached each with 2 wires. More precisely wires

(1,4,5) are connected at the same B1 points, (2,6) at the

point B2 and (3,7) at B3.

We have identified the value of k by applying various

known loads on a single wire and measuring its length. This

has shown that Hooke’s law was real close from the wire

behavior and have obtained k = 383N . The amplification

ratio of the actuator was K = 2 and the mass of the platform

is 0.02 kg. The allowed range for u is [-20,20] and is identical

for all actuators.

Using Algorithm 1 and the range [-20,20] for all seven

u we find a solution in 14 seconds on a Dell D620. If we

restrict the range for the u to be centered at the last measured

value and fix the width of the range to 1 mm, then a solution

is found in 2 seconds. This is unfortunately too large for real

time use.

TABLE I

COORDINATES IN CENTIMETER OF THE ANCHOR POINTS A AND B WITH

RESPECT TO THE REFERENCE AND MOBILE FRAME

x y z

A1 0 60 0

A2 180 120 0

A3 180 0 0

A4 20 0 180

A5 20 120 180

A6 180 120 180

A7 180 0 180

B1 -10(-10) -5(0) 0

B2 10 (10) -5 (10) 0

B3 0 (10) 10 (-10) 0

B4 -5 (-10) -10 (0) 10 (0)

B5 -5 (-10) 10 (0) 10 (0)

B6 5 (10) 10 10 (0)

B7 5 (10) -10 10 (0)

For algorithm 2 we assign to u1 a value so that the wire

tension is the middle of the allowed range for the tension.

The square system may be solved using the Newton-Raphson

scheme with the drawback that this scheme may not converge

(or converge to a solution such that one, or more, wire tension

lie outside its allowed range). If the range for all u is [-20,20]

the algorithm find a solution in 12 milliseconds. If we restrict

the range for the u to be centered at the last measured value

and fix the width of the range to 1 mm, then a solution is

found in 2 milliseconds which is compatible with a real-time

use.

Using a continuation method we may calculate the solution

in uj , j > 1 for a varying u1. For example we have

considered a planar version of MARIONET with only 4 wires

and we have calculated the solutions in u2, u3, u4 when u1

was varying from 0.1 to 10 cm (figure 3): it may be seen

that the solution are roughly linearly dependent upon u1.

This linear dependency was expected. Indeed the solution in
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Fig. 3. Solution of the inverse kinematics for the control vector of a planar
version of MARIONET when u1 is changing

τj , j > 1 of equation (3) will be linear in τ1. Considering



now equation (6) it may be seen that in the denominator we

have W = ρ + V >> Ku and consequently we may write

τ =
k(ρ + V − L0 + Ku)

W (1 + Ku/W )

≈
k(ρ + V − L0 + Ku)(1 − Ku/W

W

≈
k(ρ + V − L0 + Ku)

W

Although ρ + V − L0 is also a function of u it may be

assumed that the change in the wire length will be sufficiently

small so that this term will be approximately constant and

consequently τ will be a linear function of u. Hence τj is

a linear function of uj but also in τ1 which is linear in

u1: consequently uj will be approximately linear in u1 as

observed. Using this linear approximation we may update the

search domain for the uj to find a solution for an arbitrary

u1.

III. FORWARD KINEMATICS

Being given the control vector u the unknowns are the

seven ρ and the six pose parameters. We have six equations

coming from the force/torque equilibrium (3) and seven

equations relating the ρ to the pose parameters (i.e. the

inverse kinematic equations of a classical parallel robots).

Hence the forward kinematics is obtained as a solution of

a square system of 13 non-linear equations. But we may

already assume that solving this system will not be an easy

task as it amounts to solve at the same time the forward

kinematics of a Gough platform (an already difficult task)

and in addition the static equilibrium equations with complex

elastic elements (a problem which is already difficult in the

case where the elastic elements are springs [6]).

Using (1,2) we may calculate ρ as a function of τ :

ρ =
kL0

k − τ
− V − Ku (7)

Being given the limits [0, τmax] on τ we may deduce a range

for ρ from this equation. The orientation angle are naturally

bounded while the coordinates of C should be such that C
lie within the hull of the A anchor points.

A. Planar case

We may consider an almost planar case in which the planar

end-effector is attached to the frame with only four wires and

moves roughly within an horizontal plane. The motion of the

end-effector will not be exactly planar as the compensation

of gravity requires that the wires do not lie in an horizontal

plane. Furthermore with 4 wires we can control only 3 pose

parameters and therefore cannot compensate the motion of

the end-effector along the vertical direction.

Using a minimal parameter set for the pose we have 6

unknowns (the 3 coordinates of C and the rotation angles)

and 4 equations for the inverse kinematics that involve

the four ρ. Mechanical equilibrium provides 6 additional

equations and we end up with a system of 10 equations in

10 unknowns.

B. Spatial case

For the spatial case the system of equations may be

transformed into a system of algebraic equations in order

to apply classical solving algorithms such as Groëbner basis

or the continuation method. However these methods have a

complexity which grows exponentially with the number of

unknowns and we know that these methods were already

at their limits when studying the forward kinematics of

classical Gough platform. As we are considering a much

more complex problem it appears that these methods may

not be appropriate without a difficult in-depth analysis of

the system. Another method, that has been successful for

the Gough platform [13], is based on interval analysis which

requires to restrict the solving problem to determine solution

within a bounded domain, which is the case as already

mentioned.

However it has been shown that the chosen set of pose

parameters was not the most appropriate for using interval

analysis [13]. A better set of pose parameters is to use

as unknowns the coordinates of 4 of the B points i.e.

12 unknowns, leading to a total of 19 unknowns (the 12

coordinates and the 7 ρ). If we assume that the selected

set of B points is B1, B2, B3, B4 (assuming that they are

not coplanar) we know that we can find a set of 4 scalar

constants lj
1
, lj

2
, lj

3
, lj

4
such that lj

1
+ lj

2
+ lj

3
+ lj

4
= 1 and with

OBj = lj
1
OB1 + lj

2
OB2 + lj

3
OB3 + lj

4
OB4 (8)

Hence the 7 equations inverse kinematic equations are

functions only of the 12 coordinates of B1, B2, B3, B4 while

the 6 equations of (3) are functions of the same unknowns

and of the ρ. Six additional equations may be obtained by

writing that the distances between pairs of points in the set

{B1, B2, B3, B4} are known scalars and we end up with a

square system of 19 equations in 19 unknowns.

For the T-platform the pose parameters may be reduced

to the 9 coordinates of B1, B2, B3 and we obtain a reduced

system of 16 equations in 16 unknowns. Note that this system

may be further simplified by considering the two inverse

kinematic equations for two wires sharing the same anchor

points Bi. These equations may written as (xi−xal)
2+(yi−

yal)
2 +(zi − zal)

2 = ρ2

l where xi, yi, zi are the coordinates

of Bi and xal, yal, zal the coordinates of the anchor point on

the base. The difference between the two equations is linear

in xi, yi, zi and as 4 independent pairs of such equations may

be considered we may solve them to determine 4 unknowns,

thereby reducing the number of unknowns to 12. However in

the numerical examples we have not considered this reduced

system.

Note that equation (8) may also be used in the planar case

with a total of 13 unknowns (the 9 coordinates of the Bi and

the four ρ) and a total of 13 equations (4 from the inverse

kinematics, 6 from the mechanical equilibrium and 3 from

the distances between B1, B2, B3).

1) NUMERICAL EXAMPLES:

In a first part of our experiment we have considered the

problem of finding all the solutions of the forward kinematic



problem. It appears quickly that the solving time was heavily

sensitive on the bounds given for the ρ and hence on the

allowed τmax. We have considered as possible value for

τmax either 10N or 20N. Various tests were performed with

different values for the ui.

Spatial case

The ranges for the xi, yi, zi were fixed respectively to

[30,160], [30,110],[0, 170]. For the T-platform with the

bounds for τ fixed to [0,10] N we get a single solution

for the forward kinematics in about 10 minutes while for

τ in [0,20] two solutions are found in about one hour. These

solutions are presented in figure 4, 5. It may be seen that the

Fig. 4. First solution of the forward kinematics for the T-platform

main transformation between the two solutions is a rotation

around the main branch of the ”T” although a translation

of the anchor point B1 with 3 wires is also observed. For

the first solution the coordinates of this are (85.14, 54.78,

100.36) and (93.45, 55.65, 101.6) for the second solution.

Fig. 5. Second solution of the forward kinematics for the T-platform

For the general platform and τmax = 10N we have

been able to show that there was a single solution. For

τmax = 20N we have shown that there was at least 2

solutions (presented in figure 6, 7) but we have been unable

to complete the calculation. For real time calculation we

Fig. 6. The location of the 3 lower points of the end-effector

Fig. 7. The location of the 4 upper points of the end-effector

have used the inverse kinematics to determine the control

vector for a given pose P and then we have added to each

element of this vector a random perturbation in the range

[-1,1] mm. Assuming that the location of the Bi points were

in a range centered at the location of Bi for the pose P
with a width of 1 mm we are able to prove that there is

a single solution of the forward kinematics in the box in a

computation time between 5 and 7 ms. It must be noted that

in our trial the Newton scheme was able to converge to the

correct solution in less than 1 ms.

Planar case

The planar case involves solving a system of 13 equations

in 13 unknowns if the full pose of the end-effector has to



be determined. If we use a large value of τmax we have

found an example with 4 solutions (figure 8) that have been

determined in 22 minutes. If we restrict τmax to 20 and 10

N only 2 solutions are valid and are found in a computation

of 12 minutes and 7 minutes respectively.

Fig. 8. The four different poses that are solution of a forward kinematics
problem for the almost planar robot

The maximal vertical deviation from the manipulator plane

is 1.22 mm while the minimal one is 0.38 mm. These small

deviations indicate that it may be interesting to look at

the full planar case, assuming no motion along the vertical

axis. In that case we get a system in 10 unknowns (the

6 coordinates of the three Bi points and the 4 ρ) in 10

equations (3 for the distances between the Bi, 4 for the

inverse kinematic and 3 mechanical equilibrium equations).

Assuming a large τmax 4 solutions are found in 1mn 20s

while 4 solutions are also found for τmax = 20 in 29s and

2 solutions for τmax = 10 in 3s.

If we compare the solutions obtained for the 6D case to

the solutions of the planar case in term of mean distances

between the four corresponding anchor points of the end-

effector we find that the maximal mean distance is 5.3 cm

while the minimal one is 0.16 cm. Hence the planar case

may be used to define restricted search spaces for the 6D

case allowing a lower computation time. Our test have shown

that by using this strategy the computation time of the 6D

case may be reduced to less than 30 seconds.

IV. CONCLUSION

We have considered the kinematic issue regarding a

new wire-driven parallel robot having an original actuation

scheme, taking into account the elasticity of the wire. Com-

pared to parallel robot with rigid links, kinematics is more

complex for wire-driven robot. Inverse kinematics is however

still manageable, even in real-time. As for all parallel robot

the forward kinematics is much more complex. A real time

treatment is possible even in the most general case but

finding all solutions is computer intensive. It appears that

the solutions exhibit some complicated symmetries and a

further understanding of these symmetries may allow to

reduce the search space, thereby leading to a large reduction

in computation time. The maximal number of solutions is

also an open issue.
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