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Abstract— The workspace of a parallel robot has a

complex shape and is difficult to model. Hence veri-

fying if an arbitrary trajectory lie entirely within this

workspace is a complex issue. We present an algorithm

that allow such verification for any trajectory such that

the pose parameters are arbitrary analytical time func-

tion. Furthermore this algorithm allows one to deal

with uncertainties in the followed trajectory and in the

geometrical description of the robot
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I. Introduction

Workspace of parallel robots are usually relatively
small in size and are characterized by a complex
shape [1], [2], [3], [15]. Although possible [10] it is
difficult to compute a full model of the workspace
and hence it is difficult to verify if a given trajectory
lie completely within the workspace of the robot al-
though this is an essential step for trajectory planning.
This important problem has been addressed in few pa-
pers [4], [13], [14] and mostly in view of singularity
avoidance.

Let X = {X1, X2, . . . , Xl} be the set of parameters
that are used to describe a pose of the platform. We
will assume in this paper that a trajectory T is defined
by a set of arbitrary analytical time functions fi such
that

Xi = fi(T ) (1)

with the time T restricted to lie in the range [0,1]. For
example for a 2-dof translational robot in the plane we
will have X = {x, y} and a circular trajectory centered
at (0,0) with radius 10 may be defined as:

x = 10 sin(2πT )

y = 10 cos(2πT )

We will also assume that the workspace of the robot
is defined as the set of poses X such that a set of m
inequalities constraints:

Fi(X ) ≤ 0 i ∈ [1,m] (2)

are satisfied. To give an example let us assume that we
are dealing with a Gough platform having the lengths
ρ of its extensible legs restricted to lie in the range
[ρmin, ρmax]. Let K be the inverse kinematics equation
of the robot that provides the square of leg length as
function of the pose:

ρ2 = K(X )

The F inequality constraints defined by (2) will be the
12 inequalities defined by:

K(X ) − ρ2

max ≤ ρ2

min −K(X ) ≤ 0

for the 6 legs of the robot. Additional constraints lim-
iting the workspace may also be considered. For exam-
ple assume that the anchor point of the legs on the base
(platform) are denoted Ai (Bi). The ball-and-socket
joint at Ai may have a limited rotation capability i.e.
the angle between the leg and the vertical direction
may not exceed a given value δ. This can be written
as:

cos(δ) ≤
AiBiz

||AiBi||

where AiBiz is the z-component of the vector AiBi.
As the vector AiBi may be expressed as function of X
the above relation will provide an additional constraint
Fi.

Singularity analysis can be added as well in this
framework. Assume that at the starting point of the
trajectory we have determined that the sign of the de-
terminant of the inverse Jacobian matrix of the robot
is negative. Then no singularity will occur on the tra-
jectory if the sign of the determinant is negative for
any T in [0,1]. Hence the determinant can be given as
one of the Fi’s.

Plugging in equation (1) into the inequalities (2)
allows one to express the inequalities into function de-
pendent only on the time T . The purpose of this pa-
per is to propose an algorithm will verify if the tra-
jectory T is fully enclosed in the workspace of the
robot i.e. that for all T in [0,1] and i in [1,m] we
have Fi(X (T )

T
) ≤ 0. This algorithm will use interval

arithmetics that is briefly explained in the next section
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II. Interval arithmetics

Interval arithmetics is a well known method for com-
puting bounds of a function, being given bounds on the
unknowns appearing in this function [7], [12]. In other
words if f is a function of some unknowns a1, a2, . . . , ak

and if these unknowns are restricted to lie in the in-
tervals A1, A2, . . . , Ak, then the interval arithmetics
evaluation of f(A1, . . . , Ak) will be the interval [f, f ]
such that if all ai have a value in their range Ai, then
f ≤ f(a1, . . . , ak) ≤ f . An appropriate implemen-
tation of interval arithmetics allows one even to deal
with numerical round-off errors.

Such interval evaluation may be obtained simply by
using the natural evaluation: in this process all the op-
erators appearing in a function are substituted by their
interval equivalent. For example consider the function
f(x) = x− sin(x) for x in the range [-0.1,1]. We have

f([−0.1, 1]) = [−0.1, 1]− sin([−0.1, 1]

= [−0.1, 1]− [−0.099834, 0.841471]

= [−0.941471, 1.099834]

The value of f, f may be overestimated (as in the pre-
vious example, but the amplitude of this overestima-
tion will decrease with the width of the ranges. Note
that an interval evaluation is sensitive to the analytical
form of the equation. For example the expressions

x+ x sin(y)

x(1 + sin(y))

although mathematically equivalent, will have in gen-
eral a different interval evaluation (the later one having
only one occurrence of the unknowns will lead to an
exact evaluation of the lower and upper bound of the
expression).

Assume that T is constrained to lie in a given inter-
val [a, b] included in [0,1] and let [fi, fi] be the interval
evaluation of Fi([a, b]). The following results hold:

1. if fi ≤ 0, then Fi ≤ 0 for any value of T in [a, b]
2. if fi > 0, then Fi > 0 for any value of T in [a, b]

III. Algorithm principle

The interval evaluation of a quantity Q will be de-
noted B(Q), the lower bound of this interval evaluation

B(Q) and its upper bound B(Q). We will also use a

bisection process for the range T̂ = [T1, T2]: the result
of the bisection process applied on this range is the 2
new ranges [T1, (T1 + T2)/2], [(T1 + T2)/2, T2].

We will use a list S of ranges for T with n ranges.
This list will be initialized with the range S1 = [0, 1]
and hence n = 1. During the algorithm we will con-
sider the i-th element Si of the list S. We start with

i = 1 and the algorithm proceeds along the following
steps:

1. if i > n return VALID TRAJECTORY

2. compute B(Fj(Si)) for all j in [1,m]:
(a) if there exists an j such that B(Fj(Si)) > 0 then

return INVALID TRAJECTORY

(b) if for all j in [1,m] we have B(Fj(Si)) ≤ 0, then
i = i+ 1 and go to step 1
(c) otherwise bisect Si and add the resulting ranges

at the end of S. Then i = i+ 1, n = n+ 2 and go to
step 1

Consider what will happen with the range S1. At
step 2 we will compute the interval evaluation of the
6 leg lengths. At step 2(a) we have found that one of
the inequality will never be satisfied for the range Si

i.e. the trajectory is not valid. At step 2(b) we find
that the trajectory for the time range Si satisfies all
the constraints and hence this part of this trajectory
is valid. At step 2(c) we find that at least one of the
constraints has a positive upper bound while the other
one are satisfied. But a positive upper bound does
not mean that the constraints is not satisfied as the
interval evaluation may be overestimated. Thus we
will bisect the range S1 = [0, 1] and start again with
the range S2 = [0, 0.5] and S3 = [0.5, 1].

The purpose of the above algorithm is just to return
a yes/no answer about the validity of the trajectory.
If the trajectory is not valid we will also get one range
for T on which the trajectory. A variant will allow one
to get all the time ranges on which the trajectory is
outside the workspace. For that purpose we modify
step 2(a): a flag will be used to memorize that the
trajectory is not valid and a list will be used to store
all the time ranges for which the trajectory is outside
the workspace.

Note also that the presented algorithm is only the
most basic one: numerous tricks issued from interval
analysis and constraint programming can be used to
improve the efficiency. For example the derivative of
the constraints may be used to improve the interval
evaluation of the Fi, thereby reducing the number of
bisection that will be used in the algorithm. Indeed let
Gi be the time derivative of Fi and let [G,G] be the
interval evaluation of G for a given time range [a, b]. If
G > 0 or G < 0, then Gi is monotonic with respect to
T . Thereby the exact interval evaluation of Fi([a, b]) is
[Fi(a), Fi(b)] if G > 0 or [Fi(b), Fi(a)] if G < 0. If the
upper bound of this evaluation is positive, then part
of the trajectory is outside the workspace.

The presented algorithm is numerically safe: if a
trajectory is found to be valid then we can guaran-
tee that it is indeed fully enclosed in the workspace.
On the other hand it may happen that due to numer-
ical roundoff errors we do not get B(Fj(Si)) > 0 or
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B(Fj(Si)) ≤ 0 even for a time range whose width is
very small: in that case will state that the trajectory
is not valid but we will also return a specific signal to
indicate that this result is not guaranteed.

The algorithm may also be extended to deal with
surface and volume defined by parametric analytical
equations [11]. In that case instead of having to deal
with only one parameter in the bisection process we
will have 2 or 3 parameters.

IV. Implementation

The algorithm is implemented basically in C++ us-
ing the interval arithmetics package Bias/Profil 1.
and high level interval analysis modules of our ALIAS

library2. We may have implemented the constraints
also in C++ but this will have implied to compile the
trajectory verifier for each new trajectory. To allow for
more flexibility we have used a parser that is provided
with the ALIAS library.

A. The parser

Our parser is a C++ program that takes as input:

• the name of a file, called the formula file, that con-
tains the analytical form of the function(s) that have
to be evaluated in Maple format
• the ranges and name for each unknowns appearing
in the function(s)

and it will return the interval evaluation of the func-
tion(s). An example of a formula file is:

eq=(T^2-1.23)*T+(2.34*sin(2*Pi*T)-2)*T

eq=2+(-10*T+log(T+10))*sin(2*Pi*T)

each line representing a constraint Fi. The parser
is also able to recognize ranges which are written
using Maple syntax (e.g. INTERVAL(0.1..0.2) for
the range [0.1,0.2]), constant parameters whose val-
ues will be read in a parameter file, and intermediate
variables that will allow to decrease the computation
time of the evaluation (in the example we may assign
sin(2*Pi*T) to an intermediate variable so that to
avoid evaluating twice the same term).

Creating a formula file may be done by using a text
editor. Alternatively it is possible to use a specific
Maple package that produces automatically the for-
mula file, but also performs some heuristic simplifi-
cations on the function in order to improve both the
evaluation and its computation time. This package al-
lows one to deal with any type of robot (including non
parallel one) and any type of constraints that influence
the workspace.

1http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
2see www.inria.fr/coprin/logiciel/ALIAS

B. The kernel

In the algorithm only the interval evaluation of the
constraints is trajectory dependent. With the parser
this part is defined by the external formula file and
hence the core of the algorithm is not trajectory or
robot dependent. We have designed a C++ kernel that
implements the algorithm that may be used indepen-
dently of the robot and of the trajectory specifications.

C. Examples

Consider the parallel robot, called a Gough plat-
form [6], described in figure 1. In this robot a base

A1 A2

A3

A5

A6

A4

B3

B4

B1

B6

B5

B2
C

O

Fig. 1. The classical Gough-type parallel robot

and a platform are connected through 6 legs which
have a ball-and-socket joint at each extremity Ai, Bi.
Linear actuators enable one to change the leg lengths,
which in turn enables one to control the position and
orientation of the platform.

We define a reference frame O, (x,y, z) which is at-
tached to the base and a mobile frame C, (xr,yr, zr)
which is attached to the platform. The parameters of
of a pose are the coordinates of point C in the ref-
erence frame, together with the Euler’s angles ψ, θ, φ
that allow to define the orientation of the platform.
For physical reasons the leg lengths ρ of the robot are
constrained to lie in a given range:

ρmin ≤ ρi ≤ ρmax ∀i ∈ [1, 6] (3)

For a Gough platform the length of a leg is simply the
norm of the vector AB which may be written as

AB = AO + OC + CB (4)
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and the square of the leg length ρ is given by:

ρ2 = ||AB||2 (5)

For a given trajectory we may obtain with Maple an
analytical expression of ρi(T ). Consider for example
the planar trajectory shown in figure 2. Using the

Fig. 2. An example of complex trajectory: the gear trajectory

convention xC =x, yC =y, zC =z, ψ =p, θ =t, φ =h

the trajectory may be defined as:

p:=0:t:=0:h:=0:

x:=(3+0.5*sin(40*Pi*T))*sin(2*Pi*T):

y:=(3+0.5*sin(40*Pi*T))*cos(2*Pi*T):

z:=56:

Then the Maple procedure will produce the formula
file corresponding to the 12 Fi For a given robot the
square of length of the first leg is:

ρ2

1
=

12741

4
+ 3 sin(40 π T ) + 36 sin(2 π T ) −

1/4 (cos(40 π T ))2 + 6 sin(2 π T ) sin(40 π T )

−12 cos(2 π T )− 2 cos(2 π T ) sin(40 π T )

On a SUN Blade the verifier is able to determine that
the trajectory is invalid (figure 3) in a computation
time of less than 1 second. Another example is a
trajectory that simulate the manufacturing of a conic
lens [8], figure 4, which may be described by the equa-
tions:

x:=10*T*sin(20*Pi*T):

y:=10*T*cos(20*Pi*T):

z:=58-3*T:

With the constant orientation defined by ψ = θ = φ =
0 the trajectory is inside the workspace of the robot.
Indeed as shown in figure 5 all the 6 leg lengths lie
within the allowed limit [55,60]. However we may wish
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Fig. 3. The square of one the leg lengths for the gear trajectory.
The dashed lines represent the minimal and maximal value of
this leg length. It may be seen that the trajectory is invalid
and the motion verifier indicates that the trajectory is invalid
at least in the time range [0,0.015625]
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Fig. 4. A trajectory for the manufacturing of a lens

to have the normal of the platform roughly normal to
the lens. This may be obtained by setting the rotation
angle as follows:

p:=21*Pi*T:h:=-p: t:=10*Pi*T/180:

In that case the algorithm determines that the tra-
jectory is outside the workspace at least for T in
[0.75,0.753]. Indeed the leg length of link 5 is at
this time lower than its minimal limit 55 (figure 6).
Orientation motion may be checked as well. Assume
for example that we are using a Gough platform for
tracking celestial object with a telescope. The tele-
scope should be able to modify its orientation in order
to explore some sector in space using a spiral motion
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Fig. 5. On the trajectory all the leg lengths are within their
limit [55,60]
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Fig. 6. A leg length is lower than its lower limit 55

while the center of the telescope is not moving [5].
Such motion may be described by:

p:=40*Pi*T:

h:=-p:

t:=10*Pi*T/180:

while the location of C remains invariant. Figure 7
shows the motion of the tip of the telescope. The mo-
tion verifier determine that the trajectory is valid in
about 1 second. But if we increase the tilt of the plat-
form from 10 degrees to 15 degrees then the trajectory
is no more valid as the actuators exceed the upper limit
(figure 8). By increasing incrementally the maximal
tilt angle in the formula file we are able to determine
that the tilt angle should not exceed 12.5 degrees.

Fig. 7. Trajectory of the tip of a telescope when exploring a
spatial sector
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Fig. 8. For the telescope motion a leg length exceed its upper
limit 60 toward the end of the trajectory

V. Uncertainties

Up to now we have assumed that the robot will fol-
low exactly the specified trajectory. But in practice
control errors and errors in the geometrical model of
the robot may cause the real trajectory to be a little
bit different from the specified one. We still are able
to deal with these uncertainties.

A. First approach

In this approach we will assume that the errors are
small and that each of them may be attributed a range.
Theses ranges will appear then in the expression of
the Fi’s. But remember that the parser is able to
deal with expression involving interval coefficients and
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hence we may still calculate an interval evaluation of
the Fi’s. For example in the lens case with a constant
orientation a trajectory error of ± 0.05 will still keep
the trajectory within the workspace.

But in some case we may end up with a deadlock.
Indeed let us assume that one of the Fi is written as:

Fi = −0.999(T − 1) + [−0.01, 0.05]

the intervals being due to the uncertainties. At time
T = 1 we will not be able to determine if the Fi is
indeed negative.

B. Second approach

In the second approach each parameter that may
have an error is considered as a new variable. Beside
the variable T we will have now to consider also these
new variables {P1, . . . , Pk} . A box will be defined as
a set of ranges for T = P0 and the variables Pi. The
initial box is known and the bisection process will be
applied on the boxes. In that case we need a method to
determine which variable in the box will be bisected.
There are various possibilities:

• always bisect the variable having the largest range.
This method is simple but has the drawback that if the
constraints are not very sensitive with respect to some
unknowns we will still bisect them, thereby inducing
unnecessary calculation
• if the constraints are differentiable use the smear

function [9]. Let G be the Jacobian matrix of the con-

straint equation and Ĝ be its interval evaluation for
a given box. The smear function for a variable Pl is
defined as Max(|Ĝjl|w(Pl)) for all j in [1,m], where
w(Pl) is the width of the range for Pl. It can be seen
as the influence of Pl on the variation of the constraint
equation, weighted by the width of the range of the
variable. The bisected variable will be the one having
the largest smear function

The output of the algorithm will be similar:

• either a box such that at least one constraint will
never be fulfilled. This will mean that whatever are
the errors in the box ranges and whatever is the time
in the time range the trajectory will be outside the
workspace
• or all the boxes for each at least one one constraint
will never be fulfilled. This output contains a lot of
information: for example it will be possible to check if
a parameter in the geometry of the robot has to have
a smaller clearance

C. Dealing with pose-dependent errors

Note that in this approach we are able to take into
account errors that are pose-dependent, as soon as an

analytical form of these errors can be calculated.

Unfortunately in some cases such expression cannot
be calculated or are too complex to be used. For ex-
ample for a Gough platform the influence of the leg
lengths measurements errors on the positioning of the
platform is pose dependent but is extremely difficult to
calculate as it implies the use of the Jacobian matrix
J while only J−1 has a simple analytical expression.
This problem will be addressed in a future paper.

VI. Conclusion

The proposed algorithm allows to check very quickly
the validity of almost any trajectory (or of a su-
face/volume) in a guaranteed manner. It is also able to
deal with uncertainties both on the control and on the
robot’s geometry parameters. It may also provides in-
formation on the part of the trajectory that is outside
the workspace of the robot.

Prospective work will be to design a strategy for
proposing modifications of the trajectory (or of the
robot itself) so that a non valid trajectory will become
valid.
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