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Abstract 
A s  serial robots parallel manipulator may be in a 

singular configuration. In these configurations the in- 
verse jacobian matrix is singular and the end-effector 
may move although the articular velocities are equal 
to zero. The determination of the loci of these sin- 
gular configurations is an important problem because 
in such configuration the articular forces may go to 
infinity and yield important mechanical damages. In 
a preceding paper we have proposed a geometrical ap- 
proach for finding the singular configurations loci. We 
consider here a specific parallel manipulator and find 
what are the features of the infinitesimal motions as- 
sociated to each of the singular configurations. 

1 Introduction 
We consider in this paper the 6 d.0.f. parallel ma- 

nipulator described in Figure l and called the MSSM 
(it is in fact the well known Bricard’s octahedron [2]). 
Basically it consists in two plates connected by 6 ar- 

Y 

Figure 1: A parallel manipulator : the MSSM (per- 
spective and top view). 

ticulated links. In the following sections the smaller 
plate will be called the mobile and the larger (which 
is in general fixed) will be called the base. A ball-and- 
socket joint connect the links to the mobile and an 
universal joint connect the links to the base plate. In 

each link there is one linear actuator and by changing 
the lengths of the links we are able to control the pc- 
sition and orientation of the gripper. We introduce an 
absolute frame R with origin 0 and a relative frame 
Rb fixed to the mobile with origin C (Figure 1). The 
rotation matrix relating a vector in Ra to the same 
vector in R will be denoted by M .  Each link will be 
numbered from 1 to 6. 

The center of the articulation on the base for link 
i will be denoted Ai and that on the mobile Bi. The 
length of link i will be noted p i ,  and the unit vector 
of this link mi. The coordinates of C in the reference 
frame are Xc = (zc, yc, zC) .  We use the Euler’s angles 
flC = ($J, e,$) to represent the orientation of the mo- 
bile. A vector which components are expressed in the 
relative frame will be denoted by the subscript r .  

We will consider the case where each set of articu- 
lation points of both the base and the mobile lie in a 
plane. 

2 Singularities 
2.1 Inverse and Direct kinematics 

Let us calculate the fundamental relations between 
the links lengths and the position of the mobile. For 
a given link we have : 

AB = pn (1) 

AB = A 0  + OC + CB CB = MCBr (2) 

where CBr means the coordinates of the articulation 
points with respect to frame Rb. n being a unit vector 
we have : 

p = JIAO + OC+MCBrJJ (3) 

If the position of the mobile is given we are able to 
calculate the components of the right side vector of 
the above equation and thus the length of the seg- 
ment. Therefore the inverse kinematics is straight- 
forward (this is in fact a general feature of parallel 
manipulators) and is defined by the above 6 equations 
which constitute a system of non-linear equations de- 
noted by S. 

At the opposite the direct kinematics is much more 
complicated. Indeed to  find the position of the mobile 
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for a given set of links lengths we have to solve the 
system S. It has been shown in [8] that in general the 
solution is not unique (there can be up to 16 solutions). 

2.2 An analytical approach of singular 
configurations 

Let us assume that for a given set of links lengths 
p we know a solution X of the system S. From the 
rank theorem we know tiat in a neighborhood of XO 
the solution of S is unique if the rank of the jacobian 
matrix J of this system is equal to 6 with: 

where X is the position parameters vector. Note that 
this matrix is in fact the inverse jacobian (in a robotics 
sense of the manipulator. I t  relates the linear and 

locities. 
Now let us assume that J is singular: this means 

that the mobile plate may have an infinitesimal mo- 
tion around XO without any change in the links 
lengths. In that case we will say that Xo is a singu- 
lar configuration of the manipulator. In other words 
the velocity of the mobile plate may be different from 
zero although the actuator’s velocities are all equal 
to zero. This means also that in these configurations 
the manipulator gains some degrees of freedom (at the 
opposite of the singular configurations of serial manip- 
ulator where it loses degrees of freedom). 

An important point is that in the case of the MSSM 
(but also for very different mechanical architectures of 
parallel manipulators) the ith row Ji of the jacobian 
J can be written as : 

angu 1‘ ar velocities of the mobile to the actuators ve- 

Ji = ((n; CB; An;)) (5) 

Therefore a row is the Plucker vector of the line asso- 
ciated to  link i. 
2.3 A mechanical approach of singular 

The previous approach indicates that in a singular 
configuration the manipulator is no more controllable. 
But a mechanical approach will give another insight 

Let T denotes the articular 

configurations 

F = J T r  ( 6 )  

If J is singular then no T can be found to equilibrate 
a set of wrenches. Furthermore in the vicinity of a 
singular configuration the articular forces may go to 
infinity. Practically this imply that if the mobile plate 
is ”close” from a singular configuration the robot will 
suffer mechanical damages and this explain why the 
determination of the loci of these configurations is an 
important problem. 

Figure 2: Hunt’s singular configuration. 

2.4 

2.4.1 The determinant of J 

Determination of the loci of the sin- 
gular configurations 

From this point finding the loci of the singular config- 
urations as a function of Xc, Q, seems obvious : as 
the matrix J is fully known we may calculate its de- 
terminant and then find its roots in Xc,&. In fact 
even the first step of this method, the symbolic com- 
putation of this determinant, is rather tedious. To 
get an idea of its complexity the computation of the 
determinant of a MSSM involves 16 powers, 485 mul- 
tiplications, 28 additions and 40 subtractions ..... 

2.4.2 Previous works 
Few researchers have addressed the problem of deter- 
mining the loci of the singular configurations. Using a 
mechanical analysis Hunt [4] has determined a singu- 
lar configuration for a parallel manipulator similar to 
the MSSM but with a triangular mobile plate and an 
hexagonal base plate (Figure 2). In this configuration 
all the segments intersect one line (line BsB5) and an 
external torque around this line cannot be equilibrated 
by the actuator forces. Fichter [3] describes another 
singular configuration for a MSSM in which the mobile 
and base plate are equilateral triangle. It is obtained 
when the mobile plate is rotated around its z axis with 
an angle of &$. This result was obtained by noticing 
that in this case two lines of the determinant were 
constant. But outside these two particular configura- 
tions no systematic method was proposed to find all 
the singular configurations of a parallel manipulator. 

2.4.3 A geometrical approach 
We have proposed in [7] a geometrical approach to this 
problem. If we suppose that the jacobian matrix J is 
singular this means that there is a linear dependency 
between a subset of the Plucker vectors which consti- 
tute this matrix. But Grassmann has shown that such 
a dependency involves some kind of geometrical rela- 
tionship between the lines associated to the Plucker 

32 1 



vectors. For example if we consider three Plucker vec- 
tors and assume that they are linearly dependent then 
the associated lines will belong to  a flat pencil of lines 
(all the lines will lie in a plane and meet the same 
point). Thus a singularity of J can be expressed by 
some geometrical constraints on some sets of lines as- 
sociated to the links. A previous analysis [9] of the 
MSSM has shown that among the geometrical prop- 
erties described by Grassmann only three of the them 
can be fulfilled by the lines associated to  the links of 
this manipulator, namely: 

0 3d case : 4 lines are coplanar 

0 5a case : all the 6 lines belong to  a general com- 

0 5b case : all the 6 lines intersect a line of space 

This result was obtained under the assumption that 
a link cannot lie in the base plane and we keep this 
assumption in this paper. We will now investigate 
the infinitesimal motion associated to these singular 
configurations. As stated by the reviewers the results 
we present in this paper are specific to the MSSM but 
the principle of the analysis can be applied for many 
others parallel manipulators. We focus on the MSSM 
only because it is the most simple manipulator. 

3 Infinitesimal motion associated to 
the singular configuration of a 
MSSM 

3.1 Case 3d 
We consider a set of 4 lines S and investigate for 

which configurations of the mobile plate they will be- 
long to some plane P .  First we notice that the set 
of lines must be such that the number of their dis- 
tinct articulation points Ai is less than three. Indeed 
in the opposite case the plane P will be defined by 
the points ( A l , A z , A s )  i.e. the plane P will be the 
base plane and therefore the links will lie on the base 
plane. Thus the only possible sets for S are (1,2,3,6), 
(2,3,4,5), (1,4,5,6). Let us notice that in each case 
the points B1, B3, B5 belong to P i.e. this plane is 
the mobile plane and we get the singular configura- 
tion described by Hunt. By changing the base and 
relative frame we can consider that all these sets can 
be reduced to  the set (1,2,3,6). The coordinates of the 
articulation points on the base in the reference frame 
are : 

plex 

(special complex) 

As = A i  = [ zuo YUO 0 IT 
A3 = A 2  = [ Z U ~  YUO 0 IT 
A g = A 4 = [  0 Y U ~  0 I* 

The coordinates of the articulation points on the mo- 
bile in the relative frame are : 

Bz, = Bir = [ 0 YO 0 IT 
8 3 ,  = B4, = [ 2 2  YZ 0 IT 
Bs, = B6, = [ 23 Y2 0 IT 

The coplanarity of lines (1,2,3,6) can be expressed by 
two equations: 

(A1B1 A A2B2).A3B3 = 0 
(AlB1 A A2B2).AgBg = 0 (7) 

which constitute a system of two linear equations in 
y,, I, in which x, does not appear. The determinant 
A of this system is: 

If A is not equal to zero we get yc, z, but they are s&h 
that: 

which means that lines (1,2) are colinear and lie in 
the base plane. Therefore we have to consider the case 
where the determinant A is equal to zero. This happen 
for sin0 = 0 i.e. for 0 = 0 or 6J = T .  But in both 
cases the only possible solution for the equations 7) 
IS zc = 0; therefore the links lie in the base plane. T 6 e 
determinant A may also vanish for sin+ = 0 i.e. for 
q5 = 0 or + = T. In this case we get: 

A l B l  A A2B2 = 0 (9) 

For + = 0 a basis for the null space of the linear 
transformation defined by the matrix J is given by a 
vector A. If d, # 0 we have: 

i f 4 # 0  
y ~ s i n 0  y~ cos4 sin0 

sin4coso’ sin47 s i n b c o s O ’ l ’ G I T  
A = [0, -- 

A = [0,sin(0)y2,-cos(0)y2, 1,0,O]* (12) 

i f d , = O  

For + = T we get : 

i f + # O  
~ 2 s i n O  p2 cos4 sin 0 

cos e A =  [0, - 1, --IT 

A = [O,sin(O)yZ, cos(0)yz, 1,0,  o]* (13) 

sin d, cos e ’ sin d, ’ sin d, cos e ’ 
i fq5=0 

The velocity of a point M can be calculated by : 

Using this formula and equation (12) or equation (13) 
it is easy to show that: 

Therefore the corresponding motion is a rotation 
around the line going through Bq, Bg. 

‘This basis is obtained from J by using the kernel function 
of the algebraic computation system Maple. 
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3.2 Case 5a 
A set of 5 skew lines in space defines a linear com- 

plex. Any line whose Plucker vector is a linear com- 
bination of the Plucker vectors of the 5 lines belongs 
to the complex. An interesting property of the linear 
complex of lines is that all the lines of a complex which 
are coplanar belong to a flat pencil of lines i.e. they 
intersect all the same point [6], [5]. Another inter- 
esting property of a complex is that the correspond- 
ing infinitesimal motion is a screw motion around the 
complex axis [l], [4], [5]. 

Let us investigate now in which configuration of the 
mobile plate the 6 lines constitute a complex. Let us 
consider the lines of the flat pencils spanned by (1,6), 
(2,3), 4,5). These lines belong to  the complex. Among 

lie on the base plane. If the 6 lines belong to a linear 
general complex the lines D1, D2, D3 belong to a flat 
pencil of lines of center M ,  whose coordinates in the 
reference frame are (2, y, 0). If vij denotes the normal 
vector to the pencil of lines spanned by line i , j  we 
must have: 

these \ ines consider the three lines D1 , Dz, D3 which 

A ~ M . v ~ G  = 0 (16) 
A 3 M . ~ 2 3  = 0 (17) 
AgM.v45 = 0 (18) 

These three equations are linear in term of z , y .  We 
use the first two to calculate these unknowns and put 
their values in the last equation which yield to  a con- 
straint equation. This equation is of order 3 in zc, 2 in 
zc!yc. An interesting point is that for 8 = 0 or 8 = tr 
this equation can be reduced to: 

tan($) = ( Y O ~ ~ O  - Y O W  - Q Y ~ O  + w 3 X 2  - ~ ~ 3 x 3  
-zaOy2 + zaly2 + yaOZ3)/ 
(x2xal - xaOZ3) (19) 

And if the mobile plate is symmetric (23  = --22,xu1 = 
-zao) equation( 19) is reduced to : 

cos( $) = 0 (20) 

Thus in this case we get a singular configuration for 
$ = &$ whatever are t,, ye, zc : we find the singular 
configuration described by Fichter. Let us determine 
the instantaneous screw axis (ISA) of the motion. If 
point P ( x ,  y, z )  belongs to  the ISA then : 

vp = an (21) 

where V p  is the velocity of point M and CY is a con- 
stant. We have: 

vp = vc + P c A  n (22) 

which yield to: 

V p  A S Z  = Vc A Q  + (PC A O ) A ~  = 0 (23) 

or: 

vc A n  - (0 .n)PC + (a.PC)n = 0 (24) 

Equation (24) defines two plapes and the ISA is the 
intersection between these planes. The pitch h of the 
screw motion is then obtained by: 

n vp = h- 
llnll 

For v,b = 8 a basis for the null space of the linear 
transformation defined by the matrix J is given by a 
vector A: 

A[1] = 

A[2] = 

A[3] = 

A[4] = 

A[5] = 

A[6] = 

Let I ,  = yo - y2, l b  = yao 7 ya3. Although the ISA 
equation is too long to be given here the pitch is: 

If we suppose that the mobile plate and the base plate 
are equilateral triangles and that the radii of the circles 
circumscribed about these triangles are R, , Rb then 
a basis of the null space is: 

if x, # 0 
A =[O,O,-- &nRb - Yc - zc , l ,p 

2xc ’ xc xc 

The pitch of the corresponding screw motion is: 

If x, # 0, yc # 0 the ISA is defined by: 
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If ye = 0 the screw motion axis is the platform z-axis 
as shown by Fichter. 
3.3 Case 5b 

In this case the six lines associated to the link in- 
tersect all the same line (D) in space. An analysis has 
shown that this may happen in two cases: 

(D) is an edge of the mobile plate and four lines 
are coplanar. This is Hunt’s singular configura- 
tion already studied in a previous section. 

0 3 lines are coplanar and ( D )  is defined the two ar- 
ticulations points which are not common to two of 
the coplanar lines. For example if lines (2,3,4) are 
coplanar the line D) defined by Aq, B1 intersects 
lines (1, 2, 3, 4,  55. Then by rotating the mobile 
plate around B1 , 8 4  we may find a configuration 
in which line 6 intersect (D) (Figure 3). 

Figure 3: In this example the links (2,3,4) are coplanar 
and the line (D) going through Ad, B1 intersects lines 
(1,2,3,4,5). By rotating the mobile around its edge 
El ,& line 6 intersects (D) at point M. Therefore 
the 6 lines intersect (D) and the manipulator is in a 
singular configuration. 

It may be shown that by changing the frames the dif- 
ferent cases are equivalent to the case where the lines 
(1,2,3) are coplanar. An example of such singular con- 
figuration is given in Figure 4. If lines (1,2,3) are 
coplanar then we have: 

Figure 4: An example of singular configuration of type 
5b for the MSSM: lines 1,2,3 are coplanar and line 
A5B5 intersects line A1B3. 

Then line (D) is defined by A I ,  B3 and intersect the 
lines (1,2,3,4,6). We may write that this line intersects 
line 5 by: 

AlB3.(0A5 A OB5) + A5Bg.(OA1 A OB3) = 0 

Equations (32)(33) constitute a linear system in y,, z, 
which is solved. A basis of the null space is: 

A[1] = 

A[2] = 

A[3] = 

(33) 

X2YO sin II, 
yo cos 4 - 12 sin + 

yoxaox2 sin $ 
ya3(yO cos 4 - 2 2  sin 4) 
-(12yo sin $(xu0 cos +sin $ + ZOO cos $ 
cos Bsin 4 - yaa sin $ cos Bsin 4 + 
ya3 cos $ cos +))/(sin 4 sin B 
(Yo cos 4 - t 2  sin +)ya3) 

A[4] = (((sin$cosBsin4- cos$cos+) 
(X2ya3 sin - YOYa3 cos 4) + XaOyaO sin $))/ 
(sin + sin B(y0 cos + - x2 sin 4)yas) 
-(12 cos $ cos 8 sin + + x2 sin $ cos 4 - 
yo cos B cos + cos $ + yo sin $ sin +)/ 
((yo cos + - z2 sin +) sin e)  

A[5] = 

A[6] = 1 (34) 

(35) 

It can then be shown that : 

v B 3  = v A 1  = 0 

Therefore the motion associated to this singular con- 
figuration is a rotation around the line going through 
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these points. 

4 Conclusion 
Every singular configuration for a MSSM is in fact 

obtained when the 6 lines associated to  the links of the 
manipulator belong to a linear complex of lines. Con- 
sequently we know that the corresponding infinitesi- 
mal motion is a screw motion. If the complex is singu- 
lar (as in Hunt’s configuration) the pitch of this motion 
is equal to zero and therefore the resulting motion is 
a pure rotation around the ISA (which is the line in- 
tersecting all the 6 lines of the manipulator). If the 
complex is general we have determined the ISA and 
the pitch of the screw motion when the base and m e  
bile plates are parallel. 
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