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Abstract— This paper addresses the concept of cable config-
uration of cable-driven parallel robots (CDPR). At a given pose
a cable configuration describes the state of cables, i.e. under
tension or slack, and plays a major role for the cable tensions
and the platform positioning errors. Being given a CDPR with
non-elastic cables and a model for the coiling system we describe
how the cable configuration can be determined in a guaranteed
way for a desired trajectory of the platform. We show that if
the CDPR has more than 6 cables it is extremely unlikely that
more than 6 cables will be under tension simultaneously even
under perfect conditions. It appears that on a trajectory the
cable configuration exhibits multiple changes, leading to large
variations in the cable tensions.

I. INTRODUCTION

Cable-driven parallel robot (CDPR) uses a cable coiling

mechanism to change the cable lengths for controlling the

pose of the platform. Although the study of CDPR has started

about 30 years ago, there is currently a renewal of interest

in this field because several new possible applications have

emerged e.g. large scale maintenance studied in the European

project Cablebot [1], rescue robot [2], [3] and transfer robot

for elderly people [4] to name a few. We are interested here

in CDPR that allows to control all the dof of the platform.

If the CDPR is suspended (figure 1) (i.e. the cables cannot

exert a downward force) then it must have at least 6 cables

otherwise if gravity is not used it must have at least 7 cables.
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Fig. 1. Cable driven parallel robots: on the left the suspended version. To
allow the control of the 6 dof of the platform the suspended version must
have at least 6 cables while the non-suspended version must have at least
7 cables.

Cables are attached on the platform at point Bi while the

output point of the coiling mechanism is Ai. Let li be the

length of the cable between the coiling system and Bi. The

length li may be written as li = ai+ρi where ai is a constant

length corresponding to the amount of cable between the

coiling system and Ai and ρi is the cable length between
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Ai, Bi. In this paper we will assume that that there is no

sagging and no elasticity of the cables. If cable i is under

tension, then it exerts a force fi on the platform such that

fi = −
AiBi

ρi
τi (1)

where τi is the positive tension in the cable. As a cable

cannot exert a pushing force fi is 0 if the cable is not under

tension. Consider a CDPR with n cables and let τj denotes

the tension in cable j while F will be the external wrench

applied on the platform with the torques applied around a

point C. The mechanical equilibrium condition are:

τ = {τj > 0} if ||AjBj|| = ρj F = J
−T(X)τ (2)

where J
−T is the transpose of the pose dependent inverse

kinematic jacobian matrix of the robot, whose j-th column

is ((AjBj/ρj CBj ×AjBj/ρj)).
A CDPR is usually called redundant if it has more cables

than the strict minimum to control the dof of the platform.

A clear interest of this redundancy is that additional cables,

if appropriately located, may drastically increase the size

of the workspace. But it is also claimed that redundancy

allows one to modify the tensions in the cables without

changing the pose of the platform. Hence several papers

describe algorithms to calculate a tension distribution that

satisfy some optimality condition [5], [6], [7], [8], [9], [10],

[11], [12], [13], [14]. However we are not convinced that

such schemes may really fulfill their objective. A first reason

is that a cable coiling mechanism is a single input- single

output system (SISO) and hence can be controlled in force or

in cable length but not in both. Therefore a pure cable tension

control scheme cannot guarantee that the cable lengths will

not change so that the platform is kept at the same pose.

But another reason for the difficulty of implementing a

control scheme for managing tension distribution is that

discrete time controllers are used with the consequence that

it seems difficult to ensure that the constraint ||AjBj|| = ρj
for having all cables under tension simultaneously is satisfied

at all time. Hence in spite of tension control some cables will

become slack. We will call a cable configuration (CC) for a

given pose the set of cable numbers that are under tension

at this pose. and a n-cables configuration is a CC with n
cables under tension.

The importance of configuration changes has been il-

lustrated during an experiments with our 6 cables CDPR

MARIONET-CRANE (figure 2). This robot is a very large

scale manipulator with a workspace of 100m× 100m × 50m,

can lift up to 2.5 tons and it is designed to be portable



by a team of rescuer (its total weight, including the power

source, is 200 kg which is distributed in 20kg subparts). It is

intended to be used as a lifting crane during an emergency

(earthquake, road accidents). The task assigned to this robot

was to move a mannequin along an horizontal trajectory

with the mannequin being in vertically seated pose (top left

image). During the motion, although the cable lengths were

calculated to keep the mannequin posture, two cables have

suddenly become slack, which has led the platform in an

unstable pose (top right image) and then to a stable pose with

a ground-looking posture of the mannequin (bottom image)

that was not desired. Intuitively it must be understood that

the robot moves along different kinematic branches which

correspond to different solutions of the forward kinematics

with different set of cables under tension or a different pose.

When the cable lengths change the robot may move along

different manifolds and its pose at a given time depend on the

cable lengths and the history of the system. If two manifolds

cross, then the robot may continue moving on the manifold

it was in before the crossing or may move on the second

manifold, while only measuring the cable lengths does not

allow to detect this change. In our example the CDPR was

moving initially on a given kinematics branch with 6 cables

under tension, has crossed another branches with 4 cables

under tension, in which it was unstable, leading to a new

pose that lies on a branch with 6 cables under tension,

but different from the initial one, although no singularity

were encountered.. During the sequel of the motion the

mannequin has kept this ground looking posture, thereby

exhibiting a large orientation error. It must be emphasized

that configuration change are extremely important because

they induce large positioning error and possibly drastic

changes in cable tensions. We aim at calculating exactly

Fig. 2. An experiment showing a change of cable configuration leading to
a very large orientation error

what are the cable configurations over time when the robot

performs a trajectory

II. CALCULATING CABLE CONFIGURATIONS

The basic idea in this section is to develop a full model of

the system robot/controler/control laws and when the robot

moves along a trajectory to determine exactly the times at

which a change of configuration will occur and the new

configuration. Consequently a first step is to establish a

model for the coiling mechanism and for the control.

A. Model of the coiling mechanism and of the control

We assume that the coiling mechanism velocity is a first

order so that V = Vc + (V0 − Vc)e
−t/ta , where Vc is the

desired velocity, V0 the actuator velocity at time t = 0 and

ta a constant that is motor dependent. Hence if ρ1, V1 are the

cable length and the velocity of the actuator at time t = t1
the amount of cable length change ∆ρ at time t1 +∆t is:

∆ρ = Vc∆t− (V1 − Vc)ta(e
−(t1+∆t)/ta + e−t1/ta) (3)

The controller is a loop with a sampling time of ∆th that

gets the current value of the cable length ρm (supposed to

be perfectly measured), computes what should be the value

ρc of the cable length at the next sampling time and then

calculates a desired actuator velocity Vc using a simple P

controller so that Vc = K(ρc − ρm), where K is a constant

gain. There is then an inner control loop with sampling time

∆ti (with ∆th being a multiple of ∆ti and ∆ti < ∆th), that

control the motor velocity by using a P controller. For the

simulation this loop includes the calculation of the CDPR

state according to time.

B. Pose parametrization and constraints

We will call dominant cables at one pose the cables that

are under tension at this pose. The lengths of the dominant

cables must verify ||AjBj|| = ρj , while for the non dominant

cables we should have ||AjBj|| < ρj . If τ is the tension of

the dominant cables the mechanical equilibrium constraint

is F = Hτ where H is a matrix whose columns are the

normalized Plücker vectors of the dominant cables.

To parametrize the pose of the platform, supposed to

be non planar, of a robot with m cables we will use the

coordinates of four non coplanar Bi points and we will

assume that these points are B1, B2, B3, B4. At a given pose

if these coordinates are known, then the coordinates of the

points B5, . . . , Bm are obtained as:

OBk = l1OB1 + l2OB2 + l3OB3 + l4OB4

OC = n1OB1 + n2OB2 + n3OB3 + n4OB4

where the li, ni are constants that can be determined before-

hand. Note that this parametrization (whose choice will be

motivated later on) allows us to calculate AjBj for all cables

and the Plücker vectors of the dominant cables and hence

matrix H. By using twelve unknowns to parametrize the pose

of the platform we are redundant and we have to introduce

6 additional constraints which are that the distances between

any pair of points in the set B1, B2, B3, B4 are known:

||BiBj||
2 = d2ij i, j ∈ [1, 4], i 6= j (4)

where dij is the distance between the points Bi, Bj . For the

dominant cables we have:

||AjBj||
2 = ρ2j (5)



In summary for a CC with n cables under tension we have

12+n unknowns (the coordinates of the selected Bi and

the n tensions) and 12 +n constraints (6 equations (4), n
equations (5) and the 6 statics equations (2)). Note that if we

have a 6-cables configuration, then the system of geometrical

equations is square.

C. Study of geometrical conditions

We will assume that at certain time t the robot is in

a known 6-cables configuration Ci with the platform pose

X and with velocities V for the actuators and that there

is no singularity in the vicinity of X. We consider the 12

geometrical equations (4) and (5) for the dominant cables and

the m − 6 inequalities ρj > ||AjBj|| for the non dominant

cables during the time interval [t, t + ∆t], where ∆t is a

small time increment. Our objective is to determine if this

geometrical constraints will be verified for any time in the

time interval. Using the cable model (3) we are able to

determine a range [ρm, ρM ] for each ρ such that it includes

all the possible values of ρ during the time interval.

A first problem to solve is to determine if the equations (4)

and (5) always admit a single solution whatever the time is in

the time interval. For that purpose we use the Kantorovitch

theorem [15]1. We may calculate the Jacobian matrix of the

system at X, which is a constant matrix, and let A0 be the

norm of its inverse Γ0. We then consider the equation values

at X: for equations (4) these values are 0 while for (5) they

have interval values because of the interval nature of the ρ.

The equation values at X are summed up in an interval vector

F and we define U = Γ0F which is therefore an interval

vector. Using classical interval arithmetic we calculate the

norm of U and we denote by U the upper bound of this

norm. We then define B0 as U/2 so that ||Γ0F|| ≤ 2B0.

The theorem also requires the value of the maximum of the

norm of the Hessian of the system in the ball centered at X

with radius 2B0. However in our case the equations are all

quadratic in the unknowns so that the Hessian is a constant

matrix with a constant norm Hc (this property is the main

motivation for the chosen parametrization of the pose). If

l = 12 is the the number of equations in the system, then

Kantorovitch theorem states that if 2lA0B0Hc ≤ 1, then the

system admits a single solution, located in a ball centered

at X with radius 2B0 and this solution can be found by

using the Newton-Raphson scheme, that is guaranteed to

converge toward the solution. In our case we note that the

value of 2lA0B0Hc depends on time only through the value

of B0, which decrease if ∆t decreases. Hence if the condition

2lA0B0Hc ≤ 1 is not satisfied for a given ∆t we may always

decrease ∆t until this condition is fulfilled.

Assume now that the condition 2lA0B0Hc ≤ 1 is satisfied

for some ∆t. This implies that the solution of the geometrical

equations for a given time lies inside the interval vector

[X−2B0,X+2B0]. This interval vector is used to determine

an interval evaluation for the Bi coordinates of the non

dominant cables, which in turn allows us to calculate an

1see www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/

interval evaluation [uj , vj ] of ||AjBj||. Note that uj , vj will

converge toward ||AjBj(X)|| < ρj when ∆t converge to 0.

We then define a status for the configuration Ci over the

time interval:

• Ci is geometrically feasible if 2lA0B0Hc ≤ 1 and vj <
ρj for all non dominant cables

• Ci is geometrically unfeasible if 2lA0B0Hc ≤ 1 and

there is a non dominant cable such that uj > ρj
• Ci is geometrically uncertain if 2lA0B0Hc > 1 or if

there is a non dominant cable such that uj < ρj < vj
If Ci is geometrically unfeasible, then this configuration

cannot hold over the time interval and a configuration change

must occur. A geometrically uncertain configuration occurs if

∆t is too large: as the configuration is geometrically feasible

at X we are guaranteed to change the status of the configu-

ration from uncertain to feasible by decreasing ∆t. Finally if

Ci is geometrically feasible, then it may be maintained over

the time interval provided that the mechanical equilibrium is

maintained with positive tensions.

D. Study of the mechanical equilibrium

Let us assume that Ci is geometrically feasible over a

given time interval, which implies that we have interval

values for the coordinates of the Bi that allow us to cal-

culate an interval matrix Hi for the matrix H. We are now

interested in the solution in τ of the linear interval system

F = Hiτ . The interval Gauss elimination method can be

used to determine ranges for τ that are guaranteed to include

all solutions of F = Hτ for all H in Hi. However the H

matrix is poorly conditioned for interval arithmetic and it

is better to pre-condition the system. Let H
m
i be the mid

matrix of Hi, i.e. the scalar matrix whose elements are the

mid-point of the ranges in Hi. Gauss elimination is then used

on the system H
m
i

−1F = H
m
i

−1
Hiτ . Note however that

the interval matrix H
m
i

−1
Hi includes scalar matrices Hn

such that Hm
i Hn has not the structure of a jacobian matrix

(i.e. its column are not Plücker vectors) and thus may be

removed from the interval matrix. We have used this property

to decrease the ranges of the elements of the interval matrix

but we cannot elaborate on this method for lack of space.

Note also that the interval Gauss elimination do not always

lead to a range for the τ : indeed the pivot method that is

used implies a division by an interval, an operation that is

not possible if this interval includes 0. However this situation

will not occur for a sufficiently small ∆t.
Like for the geometrical equations we may confer a status

to the configuration Ci from the statics viewpoint:

• Ci is statically feasible if the interval solutions of F =
Hτ have all positive lower bound

• Ci is statically unfeasible if there is an interval solution

of F = Hτ that has a negative upper bound

• Ci is statically uncertain if the Gauss elimination

scheme cannot determine the solution or if there is an

interval solution of F = Hτ that has a negative lower

bound and a positive upper bound

As for the geometrical equations we are sure that a statically

uncertain configuration will become feasible if ∆t is suffi-



ciently small. We may now state the following theorem for

a configuration Ci over a given time interval:

Theorem: if Ci is geometrically and statically feasible

over the time interval, then the CDPR will remain in this

configuration over the time interval

Proof: assume that the CDPR may be in configuration Ct,

different from Ci, at some time t1 in the time interval. Let j
be a cable belonging to Ct but not to Ci. Hence as j does not

belong to Ci we must have ||AjBj|| < ρj but as j belong

to Ct we must have ||AjBj|| = ρj , hence a contradiction.

E. Extension of geometrical and statical feasibility

The feasibility has been defined for 6-cables configuration

with the advantage that geometrical and statical feasibility

may be studied independently. But it may occur that the robot

is in a n-cables configuration of the robot with n < 6. In that

case the system of geometrical equations is no more square.

On the other hand if we consider both the geometrical and

statical equations we have always a square system with 12+n
equations. However having the statics equations as part of the

system requires to have a look at the Jacobian and Hessian

matrices of these equations that play a role in Kantorovitch

theorem. Without going into details these matrices are no

more constant because of the statics equations but become

interval matrices. This does not prohibit their use except

that the calculation of the inverse jacobian may not be

possible because the interval for the pivots shall not include

0. Consequently an additional feasibility condition will be

the success of the calculation of this inverse Γ0 but basically

we can extend the feasibility concept to the case of any cable

configuration, the geometrical and statical feasibility being

determined in a single step.

F. Configuration change

Let us assume that at a given time t the robot is in a known

cable configuration Ci at a pose X with known velocities of

the actuators. As we have seen previously we know that it

is always possible to find a ∆t such that configuration Ci

is geometrically and statically feasible over the time interval

[t, t + ∆t]. But this ∆t may be very small and it may be

of interest to consider a larger ∆t and to examine if a

configuration change may occur in the time interval. Such

a change may occur in the following cases:

1) the length ρj one of the non dominant cables of Ci

satisfies ||AjBj|| = ρj at some time in the time

interval (i.e. the robot gains one dominant cable)

2) the length ρj one of the dominant cables become such

that ||AjBj|| < ρj at some time in the time interval

(i.e. the robot loses one dominant cable)

3) the cable tension of one dominant cable of Ci becomes

0 (i.e. the robot loses one dominant cable)

We will now present necessary conditions for configuration

change and sufficient one will be given in a later section.

G. Finding possible configuration changes

We examine if the platform at configuration Ci at time t
may move to another configuration in the time interval [t, t+

∆t] by gaining a dominant cable j. A necessary condition

for that is that ||AjBj|| = ρj at some time t1 included in

the time interval.

For taking the time into account we substitute the ρ’s by

their time functions (3). In the general case if Ci is a n-

cables configuration with n < 6 we are looking at a time t1
where the platform may move to a n+1-cables configuration.

Note that by continuity the tension in the new dominant cable

should be 0 at the time t1. We add the equation ||AjBj|| = ρj
of the non dominant cable to the 12 + n equations valid for

Ci and we add the time as unknown. Consequently we get a

square system D of 13+n equations and we are looking for

a method that allow us to determine if there is no solution to

D in the time interval or to determine in a guaranteed way

its solution(s). For that purpose we must emphasize that the

use of interval analysis is a key element because it’s the

only method that allows one to manage numerical round-

off errors, detect that a given problem cannot be solved

using the usual computer accuracy and provide certified

solutions: hence we use extensively our interval analysis

library ALIAS [16]. Certification of a solution is obtained

by using Kantorovitch theorem but it must be noted that the

Hessian matrix of D is somewhat complex because of the

substitution of the ρ’s by equations (3). As for the bound for

the unknowns, time has to lie in the time interval and as ∆t
has a small value we may assume that the solution(s) in the

Bi coordinates are close to X: hence we choose as intervals

for these unknowns an interval centered at X with a wide

amplitude. If a solution is found, then we check that at time

t1 we have ||AkBk|| < ρk for all the non dominant cables

of Ci except cable j. This procedure is repeated for all non

dominant cable(s) of Ci and the eventual solutions are stored

in a list T ordered by increasing time t1. However checking

the geometrical constraint is not sufficient: the platform may

move at t1 in a pose such that ||AjBj|| = ρj with a tension

τj = 0 but immediately afterward to another one such that

||AjBj|| < ρj .

A change of configuration may also occur if the platform

looses a dominant cable j. A necessary condition for this

to happen is that the tension in this cable become 0 at

a time t1 lying in the time interval, while we still have

||AjBj|| = ρj . In that case we set τj = 0 and we have

still the 12 + n constraint equations where the ρ’s are

substituted by their time functions (3). The unknowns are the

12 coordinates of the Bi, the n− 1 dominant cable tensions

and the time. Therefore we end up with a square system

of 12 + n equations, that may be solved exactly using the

ALIAS procedure. If a solution is found it is necessary to

check that at this solution ||AkBk|| < ρk for all the non

dominant cables of Ci. This procedure is repeated for all

dominant cables of Ci and the eventual solution(s) are added

to the list T , which is reordered by increasing time. However

checking the tension is not sufficient: indeed the tension of

the dominant cable j may decrease until it reaches 0 at time

t1 but may increase after this time.

We may also imagine that the robot gains or looses more

than one dominant cable at the same time. If we apply



the method described above we will get an overdetermined

system of equations. The ALIAS solving procedure may

determine that it has no solution but if there are solution(s),

then the procedure cannot certify them and will rise a non-

certification flag (however note that by solving for each cable

the time solutions will be very close to each other). .

In a similar way we have considered up to now only the

case where the robot may gain a dominant cable with 6 as

a limit to the number of dominant cables. The question that

arises is: can we obtain a configuration with 7 (or more)

cables under tension ? Let us assume that at time t the robot

is in a 6-cables configuration. A necessary condition for the

robots to moves to a n-cables configuration with n ≥ 7 is that

the geometrical conditions are satisfied for a time interval

included in the interval [t, t+∆t]. In terms of equations this

amounts to that the system of 6 + n geometrical constraints

in the 13 unknowns (the 12 coordinates of the Bi’s and the

time) should admit a non 0-dimensional solution variety. In

that case the ALIAS solving procedure cannot certify the

solutions and will rise the non-certified flag. A time interval

for which the non-certified flag of ALIAS has been raised

will be called an overconstrained time interval.

H. Finding the first configuration change

If no possible configuration change has been determined,

then the configuration Ci at time t will be preserved in the

time interval [t, t+∆t]. Assume now that we have established

a time-ordered list T of possible configuration changes with

l elements. We will denote by ti the time stamp of the i-th
event in the list and we define t0 = t and tl+1 = t+∆t.

A first lemma is that if a cable k is non dominant at

time ti, then it will stay non dominant in the time interval

[ti, ti+1[. This results from the fact that the list records all

events ||AkBk|| = ρk and hence we are sure that no such

event has occurred in [ti, ti+1[. Similarly if a cable is non

dominant at time ti+1, then it is also non dominant in the

time interval ]ti, ti+1]

In the previous section we have seen necessary conditions

for the platform to gain or loose dominant cables at a given

time ti. They were not sufficient because they describe a

status change that may exist only at this time and will vanish

immediately after it. But if such change lasts the status

will be preserved in the time interval [ti, ti+1[. Hence a

configuration change from Ci to Ct at time ti may be verified

if at any time in [ti, ti+1[ configuration Ct is geometrically

and statically feasible. We select a time tα close to, but larger

than ti and test the feasibility at this time. If this test succeeds

the configuration Ct will be called feasible.

As consequence is that a configuration change in the time

interval can be detected by looking at the first event in T
that leads to a feasible configuration different from Ci.

I. Determining cable configuration over a trajectory

We assume that at the start of the trajectory the platform

is in a given CC Ci, at a known pose and that the actuator

velocities are 0.

At time t = 0 the top level loop calculates the new

desired pose and actuator velocities Vc, which is executed

by the inner loop. We choose as initial value for ∆t the

inner loop sampling time ∆ti and we check if the CC Ci

is geometrically and statically feasible in the time interval

[0,∆t] by using the methods of sections II-C, II-D, II-E. If

this is the case the robot is in the CC Ci at time ∆t and

we go on by verifying if Ci is valid on the time interval

[∆t, 2∆t]. If Ci is uncertain in [0,∆t] we divide ∆t by 2:

• if ∆t is lower than a given threshold ǫ we check

if a configuration change may occur in the current

time interval by using the results of section II-H. If

a configuration change is detected we store the time of

the configuration change and set the time to tα. We then

set ∆t to the smallest positive value of k∆ti−tα where

k is an integer and we start again. Note that in that case

we check if the time interval is overconstrained: if this

is the case the algorithm returns a failure flag,

• otherwise we start again the feasibility check of Ci over

the new time interval.

When the time reaches k∆ti where k is an integer we go

back to the inner loop which will update the command for

the actuator velocities, unless k∆ti = l∆th, where l is an

integer, in which case we go back to the top level loop.

We have implemented this algorithm in the special case of

a CDPR with 8 cables. This was a difficult task because in

many cases computer accuracy is barely enough to guarantee

the correctness of the calculation. The Kantorovitch test is

usually not sensitive to numerical round-off errors and an

initial approximation of the solution may be obtained by

using the standard ALIAS C++ procedure, but not with

the necessary accuracy. In that case we use a specific fast

version of the Newton algorithm implemented in Maple,

that takes as input the approximation of the system solution

as calculated by the solving procedure of ALIAS C++

and returns another approximation with n digits that are

guaranteed to be correct, where n is an arbitrary integer

(fixed to 100 in our case). It must be said that the algorithm

is computer intensive and the simulation of a full trajectory

may require several hours.

III. EXAMPLE

We consider the large scale robot developed by LIRMM

and Tecnalia as part of the ANR project Cogiro [17] which

is a CDPR with 8 cables and we are using meter as length

units. We use as test trajectory a circle centered roughly at the

middle of the workspace (0,0,2) with radius 1 meter, while

the platform have a constant orientation. The trajectory has

to be performed in 20 seconds. Preliminary tests done by

LIRMM for this trajectory have shown that there were large

changes in the motor torques, thereby leading us to believe

that configuration changes were occurring. We start at the

pose (1,0,2) with the CC 345678 while we add 5 cm to the

length of cables 1 and 2 obtained for this pose in order to

ensure that they are slack.

Our algorithm has indeed confirmed that several configu-

ration changes were occurring during the trajectory. This is



illustrated by figure 3 that shows the cables tensions during

the first 0.2 second of the trajectory and by figure 4 which

shows the tension of cable 1. A short time history of the
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Fig. 3. Cable tensions during the first 0.2s of the trajectory
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Fig. 4. Tension of cable 1 during the first 0.2s of the trajectory. This cable
switches between slack and under tension states.

configuration changes is presented in the following table:

Time(s) 0 0.0936 0.0952 0.1010

Configuration 345678 235678 125678 145678

Time (s) 0.1028 0.1116 0.1137 0.122

Configuration 345678 235678 125678 145678

On this particular trajectory there was never an overcon-

strained time interval and all CC’s were 6-cables configu-

rations. However, as shown in the figures, a configuration

change leads to major changes in the cable tensions.

IV. CONCLUSIONS

Configuration change are very important for CDPR has

they lead to major changes in the cable tensions and possible

control errors. In this paper we have considered a perfect

CDPR with perfect measurements and non elastic cables.

Even under that condition we have shown that unavoidable

configuration changes will occur and that computing them

is a demanding task. This raises several issues: can we

determine the current CC in a robust way by adding sensors

and what kind of sensors (cable tension sensors does not

look like a promising way) ? are cable tension management

algorithm really effective or shall we adopt another control

strategy (e.g. imposing voluntary to cables to be slack to

end up in a well defined cable configuration) ? for 6 dof

CDPR n-cables configuration with n < 6 implies a loss

of control: how can we plan a recovery motion so that the

CDPR regains as quickly as possible it’s 6 dof ? Similar

issues have to be addressed if we have elastic cables, the

major one being if configuration change may occur. In spite

of all these important issues CDPR prototypes are working

surprisingly well but the the above issues will most probably

give a lot of work to the community.
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