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Abstract—We consider a parallel manipulator for which

we want to determine the possible rotation around a

fixed point. We present an algorithm enabling to cal-

culate all the possible motions on the unit sphere of

the extremity of any unit vector linked to the mobile

platform. This algorithm enables to take into account

the constraints on the links lengths, mechanical limits

on the joints and interference between the links.

I. Introduction

Determining the workspace of a manipulator is an im-
portant step in the design phase. For the serial link manip-
ulator family called ”wrist-partionned” one can represent
independently the translations of the wrist and the rotation
of the end-effector around this center. For a parallel manip-
ulator as the one represented in figure 1 the constraints lim-
iting the workspace are: limited range of the linear actua-
tors, mechanical limits on the passive joints and link inter-
ference. This kind of constraints imply that the reachable
region for a point of the end-effector is deeply dependent
upon the current orientation of the end-effector. There-
fore the workspace is completely imbedded in R3 × SO(3)
and there is no graphical method to display it in human
readable form.
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Figure 1: A parallel manipulator: two plates are connected
through 6 articulated links whose length can be modified
through a jack.

Therefore in most of the works addressing the workspace

problem only some subset of the full workspace is calcu-
lated. For example it is usual to compute the reachable re-
gion of a point of the end-effector in a given plane and for a
given orientation of the end-effector. In most of the works
the possible translations in this plane are determined by
using a discretisation method (at each point of a grid the
constraint are calculated and the extremal points define
the border of the workspace). The constraints taken into
account are mostly the limitation on the links lengths [4]
and sometimes the mechanical limits of the joints [3, 9, 13].
This method is time consuming and may yield to incorrect
results as there may be void into the workspace. Another
approach uses the fact that on the border of the workspace
the velocity in the direction of the outer normal of the bor-
der is equal to zero [1, 8, 12] but it is not clear how to take
into account the mechanical limits on the passive joints
and possible link interference.

A better method has been proposed by Gosselin who
present a fast geometrical method enabling to find the
border of the workspace according to the links lengths con-
straints either in the 2D case [5] or in the 3D case [6]. We
have proposed an extension of this method [10] which en-
able to take into account also the mechanical limits on the
joints and the link interference. Some results have been
presented for the orientation workspace of parallel manip-
ulators, mainly for planar manipulators, but these works
deal only with the limitation on the link lengths [7, 11].

We present here an algorithm which enable to represent
the possible rotation of the end-effector around a given
point under the assumption that this point is fixed in the
reference frame.

II. Orientation workspace

We will suppose that point C (origin of the frame linked
to the end-effector, see figure 1) is fixed. Let N be a seg-
ment of length 1 attached to the end-effector with origin
C. As the end-effector rotates around C the extremity Ne

of N moves on the unit sphere centered in C. We will rep-
resent the motion of Ne for any rotation of the end-effector
around a fixed vector X1 followed by a rotation around an-
other fixed vector X2. For example we may represent the
motion of the normal to the end-effector for any rotation
around the vectors of the reference frame x, z (figure 2).
This kind of representation enables to represent two rota-
tionnal degree of freedom of the robot.
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Figure 2: An example of the representation of the orienta-
tion workspace: we will represent the motion on the unit
sphere of the normal zr of the end-effector for a given rota-
tion around the x axis of angle θ1 when the end-effector ro-
tates around the z axis (the motion is the ellipsis in dashed
line). Here X1 = [1, 0, 0],X2 = [0, 0, 1].

A. Possible motion of the points Bi
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Figure 3: Point B1 must lie on the sphere SC1
centered

in C with radius ||CB1|| and between the sphere Se1
, Si1

centered in Ai whose radii are ρmin, ρmax

We first examine the possible motion of a point Bi, cen-
ter of the joint of link i on the end-effector under the as-
sumption that the only constraints are that the length ρ

of the link AiBi must lie in the range ρmin, ρmax. Firstly
let us notice that point Bi rotate around C and therefore
must lie on a sphere SCi

whose center is C and whose ra-
dius is the constant norm of the vector CBi. According to
the link length constraints point Bi must also lie inside a
volume defined by the spheres Sei

, Sii
centered in Ai whose

radii are ρmin, ρmax (figure 3).
Therefore the allowable zone ZBi

for a point Bi on SCi

SCi
with the spheres Sei

, Sii
. For a given rotation around

X1 as the end-effector rotates around X2 point Bi will
move on a circle CBi

(figure 4).
First let us suppose that there is no intersection between

CBi
and Cei

, Cii
. In that case either Bi can be allowed to

lie on the whole circle CBi
(case 1 on the figure) or CBi

is
fully outside the zone ZBi

(case 2) and therefore for any
position of Bi on CBi

(and consequently for any rotation
of the end-effector) the link length will always be greater
than ρmax or lower than ρmin. In order to find in which
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Figure 4: For a given rotation around X1 point Bi moves
on a circle CBi

(in dashed line) as the end-effector rotates
around X2. If CBi

lie fully inside the zone delimited by
Cei

, Cii
(represented in fine dashed line) the whole circle is

allowed for Bi (1). At the opposite if CBi
is fully outside

this zone (2) no rotation is allowed for Bi.

case we are it is sufficient to test any position of Bi on CBi

(for a given position of Bi the end-effector position and
orientation is fully known). If for this particular point the
link length satisfy the constraint then any position on the
whole circle will be allowed.

Let us assume now that there are intersection points be-
tween CBi

and Cei
or Cii

. Except in some particular cases
there will be either two intersection points I1, I2 (CBi

in-
tersect only one of the circles, see 3 on figure 4) or four
intersection points I ′1..4 (case 4 on figure 4). These inter-
section points define arcs of circle on CBi

. On these arcs
either the link length is outside its allowed range for any
point on the arc or the link length constraints are always
satisfied and the arc describe valid positions of Bi (theses
arcs will be called the valid arcs. Therefore to determine
the valid arcs it is sufficient to test the link length for one
particular point of each arc (for example the middle point).
After completing this test we have determined the possible
positions of Bi on CBi

for a given rotation around X1 as
a list of arcs of circle.

B. Calculation of the allowable zone for N

Let us suppose that point Bi moves on one of its valid
arcs on CBi

, Ai
j . As N is attached to the end-effector the

point Ne, extremity of N, will also move on an arc of cir-
cle NAi

j lying in a plane parallel to the plane containing
CBi

. Let suppose that the location of Bi is one of the ex-
tremal points of Ai

j . For this position of Bi the orientation



corresponding rotation matrix. We have:

N = CNe = CBi + BiNe (1)

Let CN
r
e be the known coordinates vector of Ne expressed

in the relative frame and CB
r
i the coordinates vectors of

Bi in the relative frame. We have:

BiNe = ReCN
r
e − ReCB

r
i (2)

Combining equations (1) and (2) we get:

N = CBi + Re(CN
r
e − CB

r
i ) (3)

Equation (3) enables to find the location of the extremal
points of NAi

j according to the location of the extremal

points of Ai
j .

Now we have to determine the radius and center coor-
dinates of NAi

j . Let CN
1
e be the the vector obtained from

CN
r
e after rotation around X1. The radius Nri

j of NAi
j

is given by ||X2 × CN
1
e|| where || denotes the Euclidian

norm and × the cross-product, and its center NCi
j may

be determined by C
N
C

i
j = (X2.CN

1
e) X2. Therefore the

valid arcs of circle described by Ne are fully determined as
soon as the arcs of circle Ai

j are known. On these arcs the
constraints on link i are satisfied. The center and radius of
the arcs NAi

j is identical for every link. Therefore in order
to find the motion of Ne on the unit sphere we have simply
to find the intersection of the set of arcs NAi

j for i varying
from 1 to 6. By calculating this intersection for a set of
angles of rotation around X1 we are able to determine an
approximation of the possible locations of Ne on the whole
unit sphere. Note that the range on the variation of the
angle of rotation should not be greater than π in order to
avoid any interference between the various sections. We
need therefore to show two unit spheres to illustrate the
orientation motion for a 2π rotation around X1. We show
on figure 5 the result for the manipulator defined in [2].
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Figure 5: The possible motion of the normal of the end-
effector on the unit sphere for a first rotation around the
x-axis of angle in the range [0-2π] followed by a rotation
around the z-axis

III. Mechanical limits on the joints

We may modelize the mechanical limits on a joint in the
same manner as in [10]: we assume that the operator may

that the segment AiBi will lie inside the pyramid if the
joints angle are within the mechanical limits of the joint.
For example in figure 6 the pyramid has four faces (this
will be a good model in the case where the joint is below
the base and the link go through a square opening). For a
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Figure 6: A model for the constraint on the joint A1.

given circle CBi
let us consider its intersection points with

the circle Cei
, Cii

together with its intersection points with
the various faces of the pyramids. All these points define
arc of circles which are either fully valid or fully invalid.
To find the valid arcs we consider the middle point of each
arc and test if in this position of Bi the links lengths are
within the range and if Bi lie inside the pyramid. The
allowable position of Bi are the arcs where these conditions
are fulfilled (figure 7). From the allowable arcs for each

Cii

pyramid

Figure 7: The intersection points of the circles CBi
with

the pyramid and with Cei
, Cii

(dotted points) enable to
define the allowable arc for Bi (in dashed line)

Bi we deduce the allowable arcs for N as in the previous
section (figure 8).

IV. Dealing with links interference

Clearly during a rotation motion links interference may
occur. We assume that the links are cylindrical with ra-
dius ri and that there will be interference between link i, j

if the distance between them is less than ri + rj . Let us



Range of rotation:0.00, 180.00 Range of rotation:180.00, 360.00

Figure 8: The possible motion of the normal of the end-
effector on the unit sphere for a first rotation around the
x-axis of angle in the range [0-2π] followed by a rotation
around the z-axis. The constraints on the links lengths and
the mechanical limits on the joint in Ai have been taken
into account.

remember [10] that the distance between two links is ei-
ther the distance dij between the line if the points of their
common perpendicular lie on the links or the minimum dis-
tance between the points Ai, Aj , Bi, Bj . We will denote by
d(A, B) the distance between points A, B. Let us consider
that point Bi moves on a circle CBi

i.e. that the angle
of rotation around X1 is fixed. As Bi moves on CBi

the
angle of rotation θ2 around X2 vary from 0 to 2π. For two
links i, j we consider the various cases where there is links
interference. We thus write:

dij = ri + rj d(Ai, Aj) = ri + rj (4)

d(Ai, Bj) = ri + rj d(Bi, Bj) = ri + rj (5)

d(Bi, Aj) = ri + rj (6)

These equations can be written as functions of θ2 and have
all the same form :

a1 sin(θ2) + a2 cos(θ2) + a3 = 0 (7)

which yield to two solutions in θ2. Therefore on a circle
CBi

we may have up to 10 position of Bi such that the
distance between the links i and j is ri + rj (figure 9).
These points define arcs on CBi

and on these arcs either
the distance between the links is lower than ri + rj (which
means that we have links interference) or greater than this
quantity (no links interference).

Therefore we can describe now the general procedure
enabling to determine the valid arcs for Bi on a given CBi

.
On this CBi

we consider the various transition points i.e.
the intersection points of CBi

with Cei
, Cii

, the intersection
points of CBi

with the pyramids faces and the points on
CBi

where the distance between the link i and another link
j is ri + rj . These points define arcs of circle on CBi

and
the valid arcs for Bi are the arcs where the middle point
verify all the constraints. From the set of valid arcs for Bi

we deduce the valid arcs for N as presented in section II.
B.
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Figure 9: On some point of the circles CBi
(in dashed line)

the distance between the link i an another link j is equal
to ri + rj (dotted point)

V. Examples

We show in figures 10, 11 the possible location of the
extremity of the normal of the end-effector for successive
rotation around x, z for the manipulator described in [2].
In each case we consider that we have constraints on the
link lengths, mechanical limits on the joints and we check
for link interference (the radii of the links is 2cm).
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Figure 10: In gray possible location of the normal to the
end-effector for the location of C defined by xC = yC =
0, zC = 530.

VI. Conclusion

We have presented in this paper an algorithm to find
the orientation workspace of a parallel manipulator. This
algorithm shows the possible motion on the unit sphere of
an axis linked to the mobile plate. It takes into account
all the constraints limiting the workspace of a parallel ma-
nipulator: maximum and minimum of the links lengths,
mechanical limits on the joints and checks links interfer-
ence. We intend to use this algorithm to study motion
planning of parallel manipulators.

VII. *

References

[1] Agrawal S.K. Workspace boundaries of in-parallel ma-
nipulator systems. In ICAR, pages 1147–1152, Pise,
June 19-22, 1991.



x
y

z

x
y

z
Range of rotation:180.00, 360.00
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