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Abstract. This paper addresses the concept of redundancy for cable-driven parallel robot (CDPR).

We show that although CDPR may be considered as kinematically redundant, they constitute a

special class for which the self-motion manifold is 0-dimensional and that they are not not statically

redundant (i.e. the tension distribution cannot be changed continuously while keeping the platform

at a given pose). A direct consequence is that a CDPR with more than 6 cables is always in a

configuration where at most 6 cables are simultaneously under tension. However for a given pose

there may be several set of 6 cables that are valid, which allow us to define the concept of weak

statical redundancy. We show how the possible valid configuration(s) may be determined on a

trajectory. All these concepts are illustrated on a real robot.
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1 Introduction

Cable-driven parallel robot (CDPR) have the mechanical structure of the Gough

platform with UPS rigid legs except that the UPS rigid structure is substituted by a

cable whose length may be controlled. In practice we may assume that the output

of the coiling system for cable i is a single point Ai while the cable is connected

at point Bi on the platform (figure 1). The flexibility of the cable at Ai,Bi allows to

consider that we have a U and S joint at these points. We denote by di the distance

||AiBi|| and by li the length of the cable between the coiling system and Bi. The

length li may be written as li = ai +ρi where ai is a constant length corresponding

to the amount of cable between the coiling system and Ai and ρi is the cable length

between Ai,Bi. In this paper we will assume that the weight of the cable is negligible

so that there is no sagging. If cable i is under tension, then it exerts a force fi on the

platform such that

fi =−
AiBi

ρi

τi (1)

where τi is the positive tension in the cable. As a cable cannot exert a pushing force,

if the cable is not under tension then fi is 0. Consider a CDPR with n cables and let τ
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Fig. 1 Cable driven parallel robots: on the left the suspended version

denotes the set of fi which are not 0 while F will be the external wrench applied on

the platform with the torques applied around a point C. The mechanical equilibrium

imposes

F = J−T(X)τ (2)

where J−T is the transpose of the inverse kinematic jacobian matrix of the robot

whose j-th column is ((AjBj/ρ j CBj ×AjBj/ρ j)). This matrix is dependent upon

the pose X of the platform. A CDPR will be called pure force submitted (PFS) if the

wrench F at is center of mass G is reduced to a force while the torque components

are 0. A pose will be called suspended if

1. the robot is PFS and the platform is only submitted to a force g composed of the

gravity force and of small non vertical disturbances

2. at this pose we have g.AiBi > 0 for all i such that cable i is under tension

A CDPR will be called suspended (SCDPR) if all poses of its workspace are sus-

pended. Hence the cables of a SCDPR cannot exert a downward force and the me-

chanical equilibrium of the robot relies on the gravity force.

A CDPR with a platform having m dof is also called fully constrained if all

the dof can be controlled. A well known result is that a fully constrained robot

must have at least m+ 1 cables, except in the case of a SCDPR where only m are

required. However a strong argument for designing CDPR with more than the strict

minimum of cables (and hence usually called redundant CDPR) is that additional

cables, if appropriately located, may drastically increase the size of the workspace

of the robot. Hence several authors have addressed the problem of calculating the

reachable workspace with positive tensions in the cables [1, 4, 5, 7, 11, 13, 15, 16].

Another reason to have more cables is to to be able to change the distribution of

the cable tensions. Numerous works have addressed the problem of computing an

appropriate set of cable tensions, for a given platform pose, see [2, 3, 10, 12, 14]

to name a few. In this paper we will consider CDPR with more than 6 cables and

examine the notion of redundancy of such a robot.
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2 Redundancy of CDPR

In this paper we assume that the cables of a CDPR are not elastic (elasticity of the

cables induce other difficulties that has been partly addressed in [8]). The concepts

of redundancy of parallel robots has been properly addressed recently by Müller [9]

but needs to be refined for CDPRs. Let q be the set of the n joint variables of the

robot and let us define the loop closure constraints by h(q) = 0. Time differentiat-

ing this equation leads to J(q)q̇ = 0 where J is the constraint jacobian. The local

dof of the robot is defined as n− rank(J) while the maximal value of this quantity

over a given workspace W is referred as the global dof δ . The robot will be denoted

kinematically redundant if δ > Dim(W ) while the degree of kinematic redundancy

is defined as δ −Dim(W ). The self-motion of a kinematically redundant robot is

defined as the set of joint variables that may be obtained for a fixed pose of the

end-effector. The dimension of this manifold may be equal to the degree of kine-

matic redundancy (e.g. for a 7R serial robot) but this is not always the case. For

example for a 6 dof CDPR with m > 6 cables at a given pose the joint variables ρ
have fixed values: hence although the degree of kinematic redundancy is m−6 > 0

the self-motion manifold is zero-dimensional. Hence we may refine the concept of

kinematics redundancy by asserting that a robot is kinematically redundant iff the

dimension of its self-motion manifold is not equal to 0: with that definition CDPR

are not kinematically redundant.

Now let’s look at the actuation scheme and define m as the number of actuated

joint variables, under the assumption that the CDPR have at least 7 cables (or 6

for SCDPR). The degree of redundancy of the actuation is defined as m− δ and

a parallel robot is called redundantly actuated if m− δ > 0. With that definition a

CDPR with at least 8 cables (7 for SCDPR) is redundantly actuated. But we have to

to determine if this redundancy can be used to change the distribution of the tension

in the cables while maintaining the pose of the platform: in other words we have to

examine if actuation redundancy implies statical redundancy.

We must first note that a cable coiling mechanism is a single input- single output

system (SISO) which implies that, for example, we may control the length of the

cable or its tension but not both. As for preserving the pose of the platform we have

to control the lengths of the cables we consequently cannot change their tensions.

Another point in that direction is to look at the mechanical equilibrium condition

(2) which is used as the basic equation for workspace and tension distribution algo-

rithm. There is a constraint for using this equation that is seldom mentioned: they are

valid only if ρ j = ||AjBj||. Even if we assume that we have an exact measurement of

ρ j managing the distribution of all cable tensions implies that the CDPR controller

is able to satisfy the constraint ρ j = ||AjBj|| at any time. Such an assumption is

unrealistic (especially with the discrete time controller that is used) and with the

unavoidable uncertainties in the measurements and control. In reality a CDPR at

each time will have at most six cables under tension, while the other cables will

be such that ρ j > ||AjBj|| and consequently are slack. This allows us to claim that

redundantly actuated CDPR are not statically redundant.
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We define the cable configuration of a CDPR at a given pose as the set of cable

number that are under tension at this pose. A m cable configuration is a cable con-

figuration with m cables under tension, the others being slack. We consider CDPR

with non elastic cables with m > 7 cables (m > 6 for SCDPR). In that case the num-

ber of cables under tension is at most 6. But for a given pose the number of cables

sextuplets such that the cable tension are positive and satisfy the mechanical equi-

librium condition (2) may not be unique. If this is the case let us define m6 as the

number of valid cables sextuplets. For each of them we may calculate the cables

tensions by solving (2) which is a set of 6 linear equations in the 6 unknown cable

tensions. These tensions will differ for each of the m6 cable configurations. Hence a

pose will be called weakly statically redundant if m6 > 1: at such a pose we may

adjust the cable tension distribution by selecting one of the cable configuration in

the set of m6 cable configurations. In practice this means that the cables that are not

part of the selected cable configuration should be made slack by setting their control

variable ρ j to a value that is significantly larger than ||AjBj|| for this pose. We will

illustrate these concepts on an example.

We consider the large scale robot developed by LIRMM and Tecnalia as part of

the ANR project Cogiro [6] This robot is a SCDPR with 8 cables whose Ai coordi-

nates are given in the following table will all dimensions in meters:

x y z x y z

-7.175 -5.244 5.462 -7.316 -5.1 5.47

-7.3 5.2 5.476 -7.161 5.3 5.485

7.182 5.3 5.488 7.323 5.2 5.499

7.3 -5.1 5.489 7.161 -5.27 5.497

The platform pose is defined by the coordinates xg,yg,zg of its center of mass in a

given reference frame. The orientation is defined by the three Euler’s angles ψ,θ ,φ .

We consider a circular trajectory for this robot defined by

xg = cos(λπ) yg = sin(λπ) zg = 2 ψ = θ = φ = 0

where λ is a parameter in the range [0,1]. As mentioned previously although this

CDPR has 8 cables only 6 of them at most will be in tension simultaneously. Our

purpose is to determine what are the cable configurations that satisfy the constraint

(2) on the trajectory. For that purpose we will consider all combinations of 6 cables

among the possible 8. It is then relatively easy to determine on which part of the

trajectory a given set of 6 cables allows to satisfy the constraints.

Figure 2 shows the result for all the trajectory. The analysis of these curves shows

that there is not a single 6 cables configuration that remain valid on all the trajectory.

Furthermore at any pose on the trajectory there are at least 3 valid cable configura-

tions and up to 7 configurations. A possible strategy to perform this trajectory while

minimizing the number of configuration changes will be to start with λ = 0 un-

der configuration 345678 until λ reaches the value 0.39239, switch to configuration

123456 at this pose until λ is 0.589, move to configuration 123478 at this point until

λ is 0.9043 and then move again to configuration 345678 until λ = 1.
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Fig. 2 The possible cable configuration on the circular trajectory. The arcs have been translated

to show the valid cable configuration.

The circular trajectory has been tested by LIRMM on the robot without taking

into account the cable configurations. An analysis of the measured motor torques

(which does not exactly reflect the cable tensions but give a rough idea) have shown

that indeed the robot switches between 6 cables configurations during its motion at

time that are compatible with our calculation.

This trajectory is hence weakly statically redundant and we may use this property

to manage the tension distribution. For example for λ = 0 there are 4 valid cable

configurations with ||τ ||∞ and ||τ ||2 for a mass of 1N: 125678 (0.78425, 1.48345),

145678 (0.81685, 1.51699), 235678 (0.76469, 1.4422), 345678 (0.76623, 1.4639).

3 Cable configuration and uncertainties

Up to now we have examined the cable configuration at a given pose but we have

also to consider that the pose is obtained from the uncertain cable lengths measure-

ments. Hence to reach a nominal pose X0 we apply as control ρ0 but the real lengths

of the j-th cable lies in the range [ρ j
0 −∆ρ ,ρ j

0 +∆ρ ] where ∆ρ represents the limits

of the control and measurement errors. The problem we want to solve may be stated

as follows:

Problem: determine all possible valid 6-cables configurations for all values of

the ρ’s in their ranges

An assumption is made in our algorithm: the actual pose of the platform is close

to X0, i.e. the platform has not moved close to another solution X1 of the forward
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kinematic problem ρ0 = f(X). This is a weak sssumption as as we are able to cal-

culate all the forward kinematics solutions and therefore the full set of valid cable

configurations. We will call dominant cables the one under tension in a given cable

configuration.

As the ρ’s have interval values we consider solving this problem with interval

analysis. Under that assumption the mechanical equilibrium constraints become a

interval linear system F = Aτ for which there are methods that allows one to de-

termine if this system admits only positive solutions in τ or has at least one of the

τ that is always negative or maybe either positive or negative according to the real

values of the ρ’s. In the samme manner interval analysis allows to determine if for

given ranges for the ρ’s constraints such as ||AjBj||< ρ j is always valid, is always

violated or may be valid for some some ρ j and violated for some others..

For a given cable configuration with n cables under tension the unknowns are

the pose parameters, the real values of the ρ of the CDPR with m ≥ 6 cables and

the n tensions. With the minimal representation of a pose we end up with 6+m+n

unknowns. If n = 6 the constraints we have can be decomposed into three sets

• a system of 6 equations composed of the 6 kinematic equations in the pose pa-

rameters and the 6 ρ
• the 6 equations (2) that is easily solvable as soon as the pose is known

• a set of m−6 inequalities ρ j > ||AjBj||

Note that all the unknowns may be bounded as we have assumed that the pose

remains close to the nominal pose X0 so that all solutions shall lie within a set of

ranges I0. The interval analysis algorithm we are using is a classical branch and

bound algorithm whose principle has been explained in several papers. It basically

consider a list L of possible set of intervals for the unknowns, called a box, that is

initialized with I0.

For each box in L we start the algorithm by fixing the pose parameters to the

mid-points of their intervals. For this pose we have a unique value for the cable

lengths and we check if the lengths of the dominating cables all lie in the ρ ranges

and for the non dominating cables k that we have a value ρ l
k in the ρk ranges such

that ρ l
k > ||AkBk||. If the cable lengths satisfy these properties we then check the

positiveness of the τ of the dominating cables by solving the linear system (2). If

this is the case the current cable configuration is valid and the algorithm completes.

If this test fails the algorithm checks if at least one of the constraints is always

violated, in which case the box is eliminated from L . If this cannot be asserted

the box is bisected (i.e. one unknown is selected and its range ist bisected into two

ranges) and the 2 boxes resulting from this bisection are placed at the end of L and

the algorithm moves to the next box in L .

This algorithm is guaranteed to complete because of the bisection process except

in 2 cases: there is a singularity around X0 or a box is reduced to a single point and

the numerical round-off errors do not enable to assert the constraints In both cases

we perform a local analysis that is not described here for lack of space.

We have implemented the algorithm described in the previous section to deter-

mine all 6-cables configurations. We use as test an analysis of the possible cable
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configurations for the pose obtained for λ = 0 of the circular trajectory for the robot

presented in section 2. At this pose if we have no uncertainty on the cable lengths,

then we have 4 possible cable configurations: 125678, 145678 ,235678 , 345678. If

we have an uncertainty of ± 3 cm on the ρ measurement the cable configuration

124578 becomes possible. The 5 cable configuration are determined in a compu-

tation time of 43 mn. If we extend ∆ρ to ± 4 cm, then the cable configuration

123678 becomes also possible and it takes about 3h to determine all cable config-

urations. For a ∆ρ of 1 cm the maximal deviation of the platform pose ||X−X0||
is 0.019307+ [0,0001] meter for the Euclidean distance and the maximal absolute

deviation for each components of C are 0.008064, 0.007066, 0.011388 meters with

an error in the range [0,0.0001].

4 Conclusions

This first major contribution of this paper is to clarify the concept of redundancy for

CDPR. Having more cables than strictly necessary to control the 6 dof of the plat-

form has a large influence on the robot workspace but the redundancy level is much

weaker than is usually believed: the kinematics redundancy and static redundancy

manifolds are 0 dimensional (meaning that the cable tensions cannot be continu-

ously controlled). Hence it is unclear if a cable tension control scheme will really

improve the tensions distribution while certainly will leads to poor positioning ac-

curacy. On the other hand position and velocity control are much less sensitive to

parameters errors, which explain the surprisingly good performances of CDPR pro-

totypes. Note that the concept of cable configurations with 6 cables under tension

while the other one are slack has been observed experimentally on a 8 cables CDPR.

The performances of CDPR may possibly be improved by using a cable config-

uration planning algorithm that will

• select the best set of 6 dominating cables among the possible cable configura-

tions. For example the best set may be the one leading to the lowest positioning

errors for given bound of the ρ measurement errors or the one satisfying an opti-

mality criterion for the cable tensions

• deliberately let the non dominating cables become slack.

This strategy of voluntary letting cables become slack is clearly counter-intuitive

and has to be confirmed experimentally but may be the best one for CDPR.

To conclude we have examined cable configuration having 6 dominant cables at

a given pose but we have already extended the cable configuration research to less

than 6 dominant cables and to a trajectory. This result will be presented in another

paper.
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Mechatronics. Montréal ( July, 6-9, 2010)

3. Bruckman, T., et al.: Parallel manipulators, New Developments, chap. Wire robot part I, kine-

matics, analysis and design, pp. 109–132. ITECH ( April 2008)

4. Diao, X., Ma, O.: Workspace determination of general 6 d.o.f. cable manipulators. Advanced

Robotics 22(2-3), 261–278 (2008)

5. Gouttefarde, M., Daney, D., Merlet, J.P.: Interval-analysis based determination of the wrench-

feasible workspace of parallel cable-driven robots. IEEE Trans. on Robotics 27(1), 1–13 (

February 2011). URL http://hal.inria.fr/lirmm-00573491/en

6. Gouttefarde, M., et al.: Simplified static analysis of large-dimension parallel cable-driven

robots. In: IEEE Int. Conf. on Robotics and Automation, pp. 2299–2305. Saint Paul ( May,

14-18, 2012)

7. Lim, W., et al.: A generic force closure algorithm for cable-driven parallel manipulators.

Mechanism and Machine Theory 46(9), 1265–1275 ( September 2011)

8. Merlet, J.P.: Managing the redundancy of N-1 wire-driven parallel robots. In: ARK, pp. 405–

412. Innsbruck ( June, 25-28, 2012). URL http://www-sop.inria.fr/coprin/PDF/ark2012.pdf

9. Müller, A.: On the terminology and geometric aspects of redundant parallel manipulators.

Robotica 31(1), 137–147 ( January 2013)

10. Pott, A., Bruckmann, T., Mikelsons, L.: Closed-form force distribution for parallel wire robots.

In: Computational Kinematics, pp. 25–34. Duisburg ( May, 6-8, 2009)

11. Riechel, A., Ebert-Uphoff, I.: Force-feasible workspace analysis for underconstrained point-

mass cable robots. In: IEEE Int. Conf. on Robotics and Automation, pp. 4956–4962. New

Orleans ( April, 28-30, 2004)

12. Roberts, R., Graham, T., Lippit, T.: On the inverse kinematics, statics and fault tolerance of

cable-suspended robots. J. of Robotic Systems 15(10), 581–597 (1998)

13. Stump, E., Kumar, V.: Workspaces of cable-actuated parallel manipulators. ASME J. of Me-

chanical Design 128(1), 159–167 ( January 2006)

14. Taghirad, H., Bedoustani, Y.: An analytic-iterative redundancy resolution scheme for cable-

driven redundant parallel manipulator. IEEE Trans. on Robotics 27(6), 670–676 ( December

2011)

15. Tavolieri, C., Ceccarelli, M., Merlet, J.P.: A workspace analysis of a fully constrained cable-

based parallel manipulator by using interval analysis. In: Musme. San Juan, Argentina ( April,

8-12, 2008)

16. Verhoeven, R.: Analysis of the workspace of tendon-based Stewart platforms. Ph.D. thesis,

University of Duisburg-Essen, Duisburg (2004)


