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Abstract

Manipulation of algebraic equations arise frequently in kinematic prob-
lems. But in many of these problems it is not necessary to solve the algebraic
equations to establish interesting results as sometime only the number of real
solutions is important. Fortunately many theorems in algebraic geometry,
some of them being not well known, may give some insight on this point.
We present some of these theorems and show how they can be applied to
demonstrate interesting results in the field of kinematic problems for parallel
manipulators.

1 Introduction

Systems of algebraic equations play an important role in kinematics problems as
most of these problems can be stated as solving such a system. For some kinematics
problems it is not necessary to solve the equations but it is more important to
determine:

e the maximum number of real roots of the system
e the number of real roots of a polynomial in a given interval

We will present some tools which can be used for these purposes without com-
puting the roots of the equations and study their application for some kinematics
problems related to parallel manipulators.

2 Order of an algebraic equation

Let F} be an algebraic equation in the unknowns 1, xs,...z,

i=m o )
Fi(xy, 29, ..2,) = Z aixzfllx;%...xﬁ =0 (1)
i=0



where u; is the degree of the unknown z; for the term of coefficient a;. Let C; be
the sum of the degree of each unknown for the term of F; with coefficient a;

C; = Jifbuj (2)
j=1
The order dy of Fj is defined as the maximum of the C;’s:
dy = Max(C;) i€ [0,m] (3)
For example the equation

Fi(z,y,2) = 2%y*2 + 2292 + 32°%°2% + 22%y* 2% + 0?2 = 0

is of order 9 (which come from the term x3y?2?)

3 Bezout’s theorem

This theorem is one of the most interesting in algebraic geometry. An extensive study
of Bezout’s theorem can be found in Walker. We give here a simplified version of
this theorem:

The intersection of m algebraic equations in n unknowns (m>n) of degree ny,
Ng,...,Ny 1S constituted of at most [[;Z]" n; points

In the case of planar algebraic curves a version of Bezout’s theorem can be stated
as:

two curves of order m,n with no common components have exactly mn intersec-
tion points.

4 Circularity

This notion and its application to kinematic problems has been dealt in detail by
Hunt.

4.1 Planar case

Bezout’s theorem may seem to be rather strange in some case. Let us consider two
circle described by algebraic equation of order 2. It is well known that they will
have at most two real intersection points....

Let a circle of radius r, with a center at coordinates (a, b) defined by the equation:

(z—a)’+(@y—0>—r*=0



By expanding this equation we get:
w? —2xa+a* +y* —2yb+b* —1r* =0

The terms of this equation are not homogeneous, i.e. their order with respect to the
variables x,y are 2, 1 or 0. Let us rewrite this equation with a new unknown w:

2 Y 2 2
——a)’+(=—=0)"—=r"=0
-+ (L)
where w is simply a scaling factor. The previous equation is now homogeneous as
it can be written as:

(z — aw)® + (y — bw)* — r*w® = 0

or
? — 2zaw + a*w? + y* — 2ybw + b*w? — r*w? =0

for which the order of each term with respect to the variables x,y,w is now 2. The
system of unknowns z, y,w is called a planar homogeneous system of coordinates.
If w = 0 the circle is infinitely enlarged and every point is at infinity. The line
w = 0 is called the line at infinity and this line cross the circle in two points defined
by:
2 +y* =0 (4)

i.e. at the points &7, Sy

51{ w=0 52{ w=0
T =1y T = —1iy

These two imaginary points are called the the imaginary circular points and equa-
tion (4) defines the imaginary circle

As the parameters a, b, r does not appear in the definition of the imaginary cir-
cular points they belong to any circle. Therefore they belong too to the intersection
of two circles. Accordingly two circles with two real intersection points have also in
common the two imaginary circular points i.e. a total of four intersection points, in
accordance with Bezout’s theorem.

If a planar curve has the points &7, Sy as double, triple.. points it will be said
that this curve has a circularity of 2,3,... Therefore a circle has circularity 1.

4.2 Application of circularity

Let consider the following planar parallel manipulator described in figure 1. The
triangular plate BDFE is connected to the three fixed points A, C, F' by three links



Figure 1: A planar parallel manipulator.

with rotoid joints at each extremity. A linear actuator in each link enables to change
the link length and it may be shown that by controlling these lengths the posture
of the triangular plate can be adjusted at will. Indeed let us assume that we have
fixed the position and orientation of the triangular plate BDE in some reference
frame. Therefore the positions of its vertices are also known in this frame. The link
lengths corresponding to the given posture is simply the distance between the points
AB,CD, EF and we have solved the inverse kinematic problem of this manipulator.
Formally let us define the reference frame such that: A : (0,0),C : (¢2,0),F : (c3,d3)
and we define the posture of the triangular plate by the coordinates (x,y) in the
reference frame of point B and its orientation by the angle ® between the line BD
and the z axis. The link lengths p can be computed as:

pi = ¥4y’ (5)
ps = (x4 Ilycos® — c)* + (y + lo sin @)? (6)
5 = (z+1l3c08(®+0) —c3)* + (y + lzsin(® + 0) — d3)* (7)

Let T' = tan(®/2). We have:

2T 1-T2

e = (®)

sin(®)
The previous equations can be written now as:
2yt —pi =0 (9)
2?4+ 22T + *T? + > + a1z + asxT? + asT? + ayyT* + a5 = 0 (1
2% 4+ 2?T% + 92T? + oy + by + boxT? + bsT? + byyT? 4 bs = 0 (11)

The orders of these equations are 2, 4, 4. Suppose now that the lengths of the
links are fixed and that we want to determine the position and orientation of the



triangular plate i.e. solve the direct kinematic problem. We have therefore to solve
the previous system of algebraic equations. Using Bezout’s theorem we deduce that
this system will have at most 32 (2x4x4) solutions, either real or complex. We will
show now that in fact a smaller upper-bound of the number of real solutions can be
established. Let us consider another mechanism described in figure 2.

coupler

Figure 2: A four-bar mechanism.

This mechanism is called a four-bar mechanism. Many authors (see for example
Hunt) have shown that point C' of this mechanism describes a sixth order curve, a
sextic with a circularity of 3 (which is the maximum for the circularity of a sextic).

Now let us consider the four-bar mechanism ABFEDC' in the mechanism of fig-
ure 1. F lie on the sextic of the four-bar mechanism but also belongs to the circle
centered in F', of radius F'E for a valid solution of the direct kinematic problem. E
is therefore the intersection point of two algebraic curves of order 2 and 6 and there
will be at most 12 intersection points according to Bezout’s theorem.

But the intersection will contain the two circular imaginary points S;, Ss as
triple points. Therefore there will be at most 6 real intersection points and therefore
this is upper bound of the number of posture of the direct kinematic problem.

This has been confirmed by Gosselin which has shown that the system of equa-
tions (5, 6, 7) can be reduced to a 6th order polynomial in one variable. Indeed
let substract equation (5) from equations (6), (7). We get a linear system of two
equations in the two unknowns x, y which can be solved, the result being substituted
in equation 5. The only unknown in this equation is now ®. Using the susbstitution
described by equation (8) the remaining equation becomes a 6th order polynomial



in T
&6T6 -+ a5T5 -+ &4T4 -+ a3T3 -+ &QTZ -+ alT + ag = 0 (12)

4.3 Spatial case

Let us consider now the intersection of two spheres i.e. two surfaces of degree 2
which, according to Bezout’s theorem, must intersect along a curve of order 4.

But it is known that the intersection of two spheres is a circle of degree 2. We
must therefore find a conic at infinity which explains the missing degree. We rewrite
the equation of the sphere in homogeneous coordinates:

(z — aw)® + (y — bw)* + (2 — cw)?® — r*w® = 0

The plane w = 0 is called the plane at infinity and the intersection of the sphere
and this plane is found as:
4yt 422 =0 (13)

As none of the parameters a, b, r appear in this equation this curve of order 2 belong
to all the spheres and therefore to the intersection of any two spheres. Equation 13
defines an imaginary cone whose intersection with the plane at infinity is the imag-
wnary spherical circle which belong to all the spheres.

The imaginary cone intersects the plane z = 0 along two imaginary lines defined
by x = +iy and therefore the circular imaginary points belong to the cone. As a
consequence there cannot be more than 2 real intersection points between a sphere
and a circle.

The circularity of a surface is then defined as the order of multiplicity with which
it contains the imaginary spherical circle. A sphere has therefore a circularity 1. For
example it may be shown that a general torus (fourth-order surface) has a circularity
2 (maximal circularity).

4.4 Application for a kinematic problem

Let us consider the spatial mechanism described in figure 3. A triangular plate
BBy B3 is connected to three fixed points A;, Ay, A3 by three links which have a
rotoid joint at point A and a ball-and-socket joint at point B. We assume that the
lengths of links A, By, As By, A3B3 are fixed and we want to determine the possible
locations of the triangular plate B; By Bs i.e. solve the direct kinematic problem for
this mechanism.

We will consider the spatial mechanism obtained when we dissociate one of the
B;. We get the mechanism described in figure 4 which is known under the name
RSSR.

We use now one of Cayley’s theorem (see Hunt):
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Figure 3: A general spatial mechanism.

Figure 4: The RSSR mechanism




A line with two points C, D lying on two algebraic curves of degree n.,ng and
circularity pe, pa describes a ruled surface of degree 2n.(nqg — pa) + 2nq(pe — ne)

For the RSS R we have two points lying on two circles i.e. n. =ng = 2, p. = pq =
1. The order of the surface is therefore 8 and B lie on a surface of order 16 (as point
B can freely rotate around the line joining the centers of the ball-and-socket joints).
It may be shown that the circularity of this surface is 8 (see Merlet). For a valid
posture of the mechanism described in figure 3 point B; belongs to such a surface
but also to the circle centered in A; whose radius is the link length . According to
Bezout’s theorem there is 32 intersection points (either complex or real) between
the surface and the circle and according to the circularity of the surface and the
circle 16 points among these 32 intersection point are the circular imaginary points.
Therefore there is at most 16 real intersection points and consequently the direct
kinematic problem as at most 16 solutions.

Now let us consider a parallel manipulator (figure 5). In this manipulator the 6

Figure 5: A parallel manipulator.

legs have their extremities connected to the plates by ball-and-socket joints. Their
lengths can be modified in order to control the position and orientation of the upper
plate.

Suppose that the legs have a known fixed length. The direct kinematics problem
consist in determining the maximum number of postures of the upper plate for these
leg lengths. Let us consider two legs with a common point B on the upper plate.
As the leg lengths are fixed B will lie on a circle whose center and radius can be
computed from the leg lengths and the position of the joint centers on the fixed
plate. We can therefore substitute the two legs by a virtual leg whose only possible
motion is a rotation around a fixed axis.

This can be done for any pair of leg sharing a common point on the upper
plate and therefore the parallel manipulator upper plate will have the same possible
postures as the mechanism described in figure 3: its maximum number of postures



will be 16.

A more tedious way to demonstrate this result is to combine the algebraic equa-
tions describing the inverse kinematic problem to get a polynomial in one variable
which order shall be 16 or less. A sixteen order polynomial has been first found by
Charentus and Renaud and later by many authors, for example Dedieu (which give
additional result about the convexity of the solution), Griffis, Innocenti. Using this
result an example of manipulator with 16 possible postures for the end-effector has
been presented by Merlet and Dedieu. In the former reference it has been shown
that this result can be extended to many others manipulators as soon as they have
a triangular end-effector.

5 Number of real roots of a polynomial in a given
interval

Systems of algebraic equations arising in some kinematic problem can be reduced
to the analysis of a polynomial in only one variable which shall furthermore lie in
a given interval. Therefore it is of interest to consider a polynomial in one variable
and to determine the number of its real roots in a given interval.

5.1 Sturm’s method

An excellent and practical introduction to this method can be found in the book of
Mineur.

Principle

Let a polynomial of degree n in x:

We consider the first derivative of this polynomial with respect to x:

fi(z) = fo(x)

We denote by Rem(f;_1(x), fi(z)) the remainder of the Euclidian division of f;_(z)
by fi(z)
We build a sequence of function by:

fiz1 = —Rem(fi_1(z), fi(x)) 1€ [1,n—1]



The last function of this sequence does not depend upon z. Let [z1, 23] be the
interval in which we are looking for the real roots of fo(z) = 0.

Sturm’s theorem

The number of real roots of the equation fo(x) = 0 in the interval [x1, xs] is obtained
as the number of sign changes in the sequence f;(x1), fiz1(x1),4 € [0,n — 1] minus
the number of sign changes in the sequence fi(x2), fir1(xa),1 € [0,n — 1].

5.2 Application example

We consider a particular case of the planar parallel mechanism described in a pre-
vious section (figure 6). The equations giving the links lengths for a given posture
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Figure 6: A special case of planar parallel manipulator.

of the end-effector are:

pi = ¥ +y’
p5 = (x4 1lycos® — cy)? + (y + losin @)?
5 = (z+I3c08® — c3)* + (y + l3sin @)?

By manipulating these equations in a similar manner as in section 4.2 they can be
reduced to a polynomial in one variable:

fo(T) = &3T3 + a2T2 + &1T +ag = 0 (14)

with T' = cos ®. Therefore they can be up to 3 real roots to this polynomial and as
each root define two values for & we may think that an upper bound of the number
of postures for the direct kinematic problem is 6. We will show now that in fact
there will be at most 4 solutions to this problem.

To solve the direct kinematic problem we have to find the real roots of the
polynomial but we are looking only for the roots in the interval [-1,1]. It may



be shown that fy(1), fo(—1) are always strictly positive (their symbolic values are
squares)

If we build the Sturm’s sequence we get four functions fy, f1, f2, f3 where f5 is
a constant. We are looking for sequences such that the number of real roots in the
interval [-1,1] is maximal. This number will be maximum in four cases:

fo fi fo f3| number of sign changes
r=-1+ - + + 2
r=1 |+ + + + 0

fo fi fo fs | number of sign changes
r=-1[+ + - + 2
r=1 |+ + + + 0

fo fi fo fs | number of sign changes

r=—-1|+ - 4+ - 3
r=1 |+ + + - 1
fo fi fo f3| number of sign changes
r=—-1|+ - 4+ - 3
r=1 + - - - 1

In all cases the number of roots will be at most 2 and therefore the direct kinematic
problem will have up to 4 solution.

6 Huat’s Theorem

Let a polynomial equation of degree n in x:

with real coeflicients.
Theorem

If the roots of fo(x) are all real the square of all the non extremal coefficients is
necessarily greater than the product of its neighbour coefficients

a; > ap_1ap Yk € [1,n —1]

In fact Huat’s theorem is a result of Newton inequalities (see Hardy), which state
that if fo(x) has only real roots then:

k(n —k)a; > (k+1)(n — k+ Vag_1ap11 ¥V k€ [1,n—1]



6.1 Application in kinematics

Let us consider the planar parallel manipulator described in figure 1. We have seen
in a previous section that for a fixed set of link lengths there can be a maximum of
6 different postures for the triangular mobile plate. We are considering now a robot
with a given geometry and are looking for a set of link lengths such that the direct
kinematic problem has effectively 6 solutions i.e. 6 postures of the end-effector can
be found.

To solve this problem we may choose randomly three link lengths, compute the
coefficients of the 6th order polynomial (12) and then solve the polynomial until
we find a set of link lengths such that all the 6 roots of the polynomial are real.
Although this method has worked in practice (an example of solution is given in
Merlet) the computation time may be great.

A faster way is to choose randomly only two of the three link lengths, say p1, p2
and then compute the 7 coefficients a; of the forward kinematics polynomial (12) as
functions of the unknown link length ps.

Then we compute the square of all the non extremal coefficients minus the prod-
uct of their neighbour coefficients i.e. a? —agpas, a3—ajaz, a3 —asay, a2 —asaz, a2 —asaq
which happen to be all fourth order polynomials in ps.

The roots of these 5 polynomials P; are computed and are used to determine for
each polynomial the intervals of ps such that the polynomial is positive.

If the intersection I of these intervals is empty then there is no value of p3 such
that the direct kinematic problem will have 6 solutions for the link lengths pq, ps.

At the opposite if the intersection is not empty the possible solutions for ps will
lie in the interval In. Therefore random values for p3 can be tested but only in /.

Such an algorithm has been implemented using the symbolic computation pro-
gram MAPLE.

7 Conclusion

Dealing with algebraic equations is the "essence” of kinematic problems but many
of these problems can be solved in an elegant way without determining the roots
of these equations. By using basic theorems of algebraic geometry we have shown
that many powerful results can be established in the field of parallel manipulators
kinematic problems. These results have been established in most cases by dealing
either with the geometrical aspect of the problem or with manipulation on the
symbolic value of the coefficient of the algebraic equations which arise during the
resolution of the problem. Therefore we have avoided to use numerical procedures in
which numerical errors may introduce spurious results. Unfortunately many of these
algebraic geometry theorems are not well known and are missing in many textbooks.
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