
Determination of the presence of singularities in

a workspace volume of a parallel manipulator

J-P. Merlet INRIA Sophia-Antipolis
BP 93

06902 Sophia-Antipolis Cedex, France

Abstract: Determining if singularities exist in the workspace of a parallel
manipulator is an important step in the design of a parallel robot. Singularities
are obtained when the determinant of the inverse jacobian matrix of the robot is
equal to 0. Unfortunately this determinant is complex and its value vary accord-
ing to the unit chosen for defining the geometry of the robot. Therefore a pure
numerical approach is difficult to use. We present here an algorithm enabling
to determine the presence of singularities in any type of workspace volume (in
which the orientation of the robot is constant), either defined by a geometrical
object in the Euclidean space or by a volume in the 6-dimensional articular
space. This algorithm is fast and numerically robust. The main component of
this algorithm is a program which compute the minimum and maximum values
of the determinant for any location of the center of the end-effector in a box: if
these values have opposite signs, then at least one singularity exist in the box.
More complex workspaces are analyzed using a box decomposition.

Furthermore this algorithm enables to determine the location of the singular-
ities with a guaranteed accuracy by determining the location of a box in which
a singularity occurs, the distance between the center of the box and any point
in it being lower than the desired accuracy.

1 Introduction

Parallel robot have been extensively studied this recent years and are now start-
ing to appear as commercial product. In this paper we consider a 6 d.o.f. parallel
manipulator constituted of a fixed base plate and a mobile plate connected by
6 extensible links. We assume that both the base and mobile plate are planar
(figure 1). Designing a parallel robot is a difficult task: the designer has to take
into account not only the user’s requirements but also hidden features which
play an important role in the behavior of the robot. An example of these fea-
tures is the singularity problem. In some posture of the robot, called singular

configurations, the robot will gain some degrees of freedom, becoming uncon-
trollable. Furthermore in these configurations the articular forces may go to
infinity, this leading to a breakdown of the robot. Hence, although most of the
users will not be aware of this problem, it is essential that the designer verify
the presence of singularity in the workspace of the robot.

1

SSM
C y

x

A1

A2

A3

A4

A5

A6

B1

B2

B3

B4

B5

B6

A2

A1

A4

A6

A3

A5

mobile

base

Figure 1: Gough platform with planar base and platform

A reference frame (O, x, y, z) is attached to the base and a mobile frame
(C, xr , yr, zr) is attached to the moving platform. Let Ai, Bi be the attachment
points of the legs on the base and mobile platform, ρi be the leg lengths. If J−1

is the inverse jacobian matrix of the robot the articular velocities vector ρ̇ is
related to the cartesian/angular velocities vector Ẋ of the mobile platform by:

ρ̇ = J−1X (1)

The inverse jacobian matrix may be written as:

J−1 = ((
AiBi

ρi

, CBi ×
AiBi

ρi

)) (2)

which is posture dependent. The singular configurations Xs are defined by:

|J−1(Xs)| = 0

Finding the set of singular configurations of a given robot is a difficult task: in-
deed although the inverse jacobian matrix is known the expansion of its determi-
nant leads to an huge expression [3] which is difficult to use. Another approach
is based on Grassmann line geometry and has been successful to determine a set
of conditions on the posture parameters defining the singularities [4]. Another
area of work is the determination of the geometry such that the robot remains
always in a singular configuration [5].

But from the design view point we are more interested in the following
problem: is there a singularity(s) in a given workspace of a given robot ? To the
best of our knowledge this problem has not yet been addressed in the literature.
Related works deal with a global conditionning index (like the condition number
of the inverse jacobian matrix estimated over the whole workspace [2]). But
this index is usually estimated by a discrete method over the whole workspace
henceforth may fail to locate singularities.

2

Before proceeding to the explanation of our algorithm let us make a remark
about the inverse jacobian matrix. Let M be the matrix defined by

M = ((AiBi , CBi × AiBi)) (3)

We have:

|J−1| =
|M |

∏i=6

i=1
ρi

and consequently the singular configuration are also defined by |M | = 0. M
will be denoted the semi-inverse jacobian matrix of the robot.

2 The algorithm

The purpose of our algorithm is to determine the presence of singularities in
a given workspace of the robot in which the orientation is kept constant. The
basic idea is quite simple: assume that we are able to compute the minimal and
maximal value Mm, MM of |M(X)| for any location of X in the workspace. This
determinant being a continuous function of the coordinates of C singularity(s)
will occur in the workspace if and only if the the product M −m MM is equal or
lower to 0. We have thus transformed our initial problem into an optimization
problem.

This optimization problem will be solved in different steps according to the
workspace described by C. First we will solve it when C moves along a segment,
then in an horizontal or vertical rectangle and then in a box. In a latter section
we will address the optimization problem for more complex workspaces.

2.1 Segment workspace

Let assume that C is moving along a segment defined by its extreme points
M1, M2. Any position of C along this segment may be defined by:

OC = OM1 + λM1M2 (4)

where λ is a scalar in the range [0,1]. Therefore |M | is an algebraic function P (λ)
in the parameter λ and it is possible to show that |M | is a third order polynomial
in this variable. Consequently the extremum of |M | will be obtained by deriving
this polynomial and finding the roots of the resulting second order polynomial
P ′(λ). Let Max(x0, ..xn) denote the greater element of the set x0, ..xn and
Min(x0, ..., xn) be the lower element of the set. The values of M −m, MM will
be obtained in the following manner:

• if P ′(λ) has no root in the range [0,1] then Mm = Min(P (0), P (1)), MM =
Max(P (0), P (1))

• if P ′(λ) has some root λ1, λ2 (2 at most) in the range [0,1], then Mm =
Min(P (0), P (1), P (λ1), P (λ2)), MM = Max(P (0), P (1), P (λ1), P (λ2))

3

2.2 Rectangle workspaces

Let xc, yc, zc be the coordinates of C and assume that C is moving inside an
horizontal rectangle defined by:

x1 ≤ xc ≤ x2 y1 ≤ yc ≤ y2

Consequently we introduce two new variables α, β such that the coordinates of
C are:

x = x1 + (1 + sinα)(x2 − x1)/2 y = y1 + (1 + sinβ)(y2 − y1)/2

|M | could then be computed as function of α, β. The derivatives of |M | with
respect to these variables lead to two constraint equations. These equations
show that the extremum will be reached either on the border of the rectangle (in
which case the result of the previous section can be used) or inside the rectangle.
In the latter case the two constraint equations can be combined into a one
variable polynomial of order 9 in the unknown tan(β/2). Solving numerically
this polynomial leads to the determination of all the pairs (α, β) which may be
lead to an extremum of |M |. Therefore by computing the extremum on the four
edges of the rectangle together with the possible extremum for the interior of
the rectangle we will obtain the extremum of |M | for the the whole rectangle.

For vertical rectangles we use the same procedure simply by substituting yc

by zc. The resolution is then identical.

2.3 Box workspace

Now assume that C is moving in a box defined by:

x1 ≤ xc ≤ x2 y1 ≤ yc ≤ y2 z1 ≤ zc ≤ z2

We define three new variables α, β, µ such that:

x = x1 +
(1 + sinα)(x2 − x1)

2

y = y1 +
(1 + sin β)(y2 − y1)

2

z = z1 +
(1 + sin µ)(z2 − z1)

2

The determinant of M can be computed with respect to these three variables
and its derivatives lead to three constraint equations. These equations show
that the extremum will be obtained either for the faces of the box (in which
case the result of the previous section can be used) or for a point in the interior
of the box. In that latter case the three constraints equations can be combined

4

into a one variable polynomial of order 6 in the unknown sin(µ/2). If we solve
numerically this polynomial we may determine the values of α, β, µ leading to
an extremum of |M | for a point inside the box. Then by taking the extremum
for the faces of the box we are able to compute the extremum of |M | for the
whole box.

2.4 General workspaces

We will assume here that the workspace is defined by a set of horizontal polyg-
onal cross-sections,the workspace between two sections being the polyhedra ob-
tained by linking the corresponding vertices of the two polygons (figure 2 present
an example of such workspace). To determine if there is a singularity within

Figure 2: Example of general workspace

this workspace we will split the workspace into as many boxes as necessary and
use the determination of the extremum of |M | for each box.

We maintain a list of boxes B0, .. which is initialized with the bounding box
of the full workspace (without lack of generality we will assume here that we
have only two cross-sections). At the k step we look at the top box Bk in the
list:

1. if Bk is fully outside the workspace we delete it, push the next box of the
list on the top and start again

2. if Bk is fully inside the workspace we compute the extremum of |M | for
this box and determine if a singularity occur within this box. If yes we
have determined that a singularity occur within the workspace and the
algorithm stop. If not we push the next box of the list on the top and
start again.

3. if Bk is partially inside the workspace we determine if a singularity occur
within the box. If there is no singularity within the box we push the next
box of the list on the top and start again. If there is a singularity we look
at the positions of C for which the extremum of |M | are obtained:

5

(a) if the positions where the minimum and maximum of |M | are ob-
tained lie within the workspace there is singularity within the workspace
and the algorithm stops.

(b) otherwise we split the box Bk into 8 smaller boxes by dividing all its
dimension by 2. Bk is deleted from the list , the 8 new boxes are put
at the end of the list and we start again

The algorithm will stop either when a singularity is detected or when the list is
empty (in which no singularity exists in the workspace).

The computation time is clearly heavily dependent upon the number of cross-
sections but a mean computation time for three cross-sections is about 10 s on
a SUN SS5 workstation.

Note that this algorithm may be extended to deal with a workspace defined
in term of articular coordinates. Indeed being given extremum for the articular
coordinates we may deduce a rough box which will include all the the locations
of C whose corresponding leg lengths lie within the articular extremum: for
example we may choose a box with center at the origin O and whose dimensions
will be given by Min(Aixyz

+ ρmax
i + ||CBi||). This box will be the initial box

of the list of the algorithm. The only change with the previous algorithm will
consist in the method used to determine if a box is inside, outside or partially
inside the box defined in term of the articular coordinates. But it is easy to show
that for a cartesian box we are able to compute the extremum of the leg lengths
for all the points located in the box. Therefore for each new box appearing
during the algorithm we will determine the extremum of the leg lengths in order
to determine the position of the articular box corresponding to the cartesian box
with respect to the articular workspace.

3 Remark on the numerical robustness

First of all let us notice that the matrix M is not invariant with respect to the
choice of dimension unit: for a given row the three elements have no unit while
the three last one have a length dimension. Consequently we may change at will
the value of the determinant just by changing the unit length. A bad choice of
unit may result in trouble for the numerical procedure which compute the value
of the determinant of M .

Another possible trouble may appear if one of the extremum is close to zero.
In that case numerical errors may lead to a change of sign in the value of the
determinant, which in turn will lead to an error in the answer of the algorithm
(note that the value of Mm, MM are of no importance, only their signs are
essential). An example of such case can be obtained if we consider a vertical
box over the base, the mobile platform being parallel to the base. In that case
we have:

|M | = k z3

c

6

The extremum of |M | will therefore be obtained for the lowest and highest value
of zc and we may choose at will the lowest zc to get a minimum of |M | as close
as 0 as we want.

Finding exactly the sign of determinant is an old problem and this problem
has been addressed in many papers. In order to deal with this numerical problem
whenever it may occur we have decided to use an exact method as soon as the
determinant obtained from the numerical procedure was close to 0. We use the
Clarckson method as implemented by H. Bronn̈ımann. This method enables to
compute exactly the sign of a determinant as soon as the elements of the matrix
are integers not greater than 253 [1]. As the matrix M is in fact an array of floats
we use the largest element s of this matrix as a normalizing factor, each element
p being then converted in integer value by dividing the element by s, multiplying
the result by 253 and taking the integer pi closest to the result. Then the sign
of the determinant of this new matrix is computed using Clarckson method.

An error may still occur as the new matrix is only an approximation of the
matrix M . A possible improvement will be to consider all the integer matrices
whose elements are constructed from the elements of M either by taking as pi

the integer part t of p 253/s or t+1. All the matrices build from all the possible
combinations of pi will then have their sign of determinant computed and if all
the signs are identical we will be completely confident in the result sign.

4 Conclusion

We have presented in this paper a method which enable to determine the pres-
ence of singularity in given translation workspace of the robot (either specified
in cartesian or articular form). The computation time of this algorithm is quite
low. Still we have to deal with the orientation of the mobile platform. This may
be done either by using a discretisation in the orientation workspace but we are
investigating more efficient approach.

References

[1] Clarkson K. L. Safe and effective determinant evaluation. In Proc. 33rd

Annu. IEEE Sympos. Found. Comput. Sci., pages 387–395, 1992.

[2] Gosselin C. and Angeles J. The optimum kinematic design of a spherical
three-degree-of-freedom parallel manipulator. J. of Mechanisms, Transmis-

sions and Automation in Design, 111(2):202–207, 1989.

[3] Mayer St-Onge B. and Gosselin C. Singularity analysis and representation
of spatial six-dof parallel manipulators. In J. Lenarc̆ic̆ V. Parenti-Castelli,
editor, Recent Advances in Robot Kinematics, pages 389–398. Kluwer, 1996.

7

[4] Merlet J-P. Singular configurations of parallel manipulators and Grassmann
geometry. Int. J. of Robotics Research, 8(5):45–56, October 1989.

[5] Zsombor-Murray P., Husty M., and Hartmann D. Singular Stewart-Gough
platforms with spherocylindrical and spheroconical hip joint trajectories.
In 9th World Congress on the Theory of Machines and Mechanisms, pages
1886–1890, Milan, August 30- September 2, 1995.

8

