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1 Introduction

Parallel robots offer potentially very attractive performances (such as high
accuracy, rigidity and load carrying abilities) and have hence attracted the
interest of researchers since approximatively 15 years and of end-users more
recently. But at the same time the level of performances of parallel robots
is highly sensitive to their dimensioning and high level of performances may
be reached only with a careful design of the robot: appropriate design of the
basic mechanical components, although necessary, will not be sufficient to ob-
tain good performances as shown by the failure of some recently developed
prototypes. Therefore optimal design is a key issue in the field of parallel
robots. Unfortunately there is no known method of optimal design that is
appropriate for dealing with such complex closed-loop mechanism as parallel
robots. Indeed in this type of mechanism there are a large number of param-
eters, most performances are drastically affected by the pose of the platform
and there are large cross-coupling effects between the parameters.

Hence developing an optimal design methodology is a key issue in this field.
The most well known design methodology is the cost-function approach [2]. To
each design requirement j is associated a numerical index Ij that is minimal
for the best robot. The cost function C is defined as:

C =
∑

wjIj ,

where the wj are weight associated to the Ij . In some sense, the cost function
is an indicator of the global behavior of the mechanism with respect to the
requirements. As C is clearly a function of the set of design parameters P , a
numerical procedure is used to find the value of the design parameters that
minimize C. This approach has several drawbacks:

• the result is heavily dependent upon the weights that are used in the
cost-function, and there is no automatic way to find the right weights,

• defining the index I is not always an easy task, for example if we have
constraints on the shape of the workspace. Furthermore, some of these
index are even very difficult to estimate; for example, some authors have
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mentioned the use of a global conditioning index (CGI) defined as the
average value of the condition number over the workspace of the robot.
The condition number itself is obtained as the ratio of the smallest
root of a n dimensional polynomial (where n is the number of d.o.f. of
the robot) over the largest root of this polynomial. Hence in general
the condition number have not an analytical form and consequently
computing exactly the CGI is a very difficult task.

• introducing strict requirements in the minimization is difficult, and in
any case computer intensive,

• as for any optimization problem, it is difficult to guarantee that the
global extremum has been found.

• some of the requirements are antagonistic; for example, it is well known
that dexterity is antagonistic with the workspace volume [6]; using both
criterion in a weighted sum does not have any physical meaning

But the main difficulty is that the computation of the index for a given ge-
ometry must be very efficient as the minimization procedure will use these
calculations extensively. Unfortunately, verifying that a given PKS satisfies a
single requirement is usually a very complex task and this is this issue that
we want to address in this paper.

There are very few works related to performance evaluation in the lit-
erature. Without being exhaustive we may mention: stiffness analysis [1],
manipulability [4, 13], velocity [5], accuracy [12] and even among this works
the proposed method does not always provide exact and guaranteed result.

2 Analysis of the performance evaluation prob-

lem

As seen previously any design methodology will make an intensive use of a
module that computes the performances of a parallel robot of a given geom-
etry. The performance index are numerous and we may mention, without
being exhaustive:

• kinematics: workspace, accuracy, maximal motion of the passive joints,
dexterity,

• statics: load on the platform, stiffness of the robot,
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• dynamics: maximal velocity and acceleration of the actuator and of the
platform, inertia and center of mass,

• geometrical: overall size of the robot, of the mechanical components,
lack of singularity in a given workspace,

• technological: overall information on the actuator, on the sensors and
on the passive joints. Indeed the context of the application may impose
the use of restricted classes of such components.

We will now consider a specific performance index that will allow us to
illustrate the complexity of the task.

2.1 Accuracy analysis

We will consider as an example the evaluation of the accuracy ∆X of the
positioning of the robot with respect to the accuracy ∆ρ of the sensors that
are used to control the actuated joints. it is well known that these quantities
are linearly related by:

∆X = J(X)∆ρ (1)

where X is the pose of the platform and J is the Jacobian matrix of the
robot whose value vary with respect to the pose X. A first difficulty with
this performance index is that J is usually a very complex matrix. In most
cases only the analytical form of its inverse J−1 will be known and a symbolic
inversion of this inverse is a computer intensive task that will anyway give an
almost useless formula with thousands of terms.

A second difficulty with this index is a general problem: what do we intend
to use this index for ? The answers is multi-form:

1. find the worst value of the positioning accuracy over a given workspace
for the robot or over all its workspace (i.e. all the poses that can be
reached by the platform)

2. find the average value of the positioning accuracy over a given workspace
for the robot or over all its workspace

3. eventually find the best value of the positioning accuracy over the workspace

All these three items are essential for estimating the real performances of a
given robot or to compare the performances between two different geometries.
This example allows also to emphasize a major difficulty of the cost function
approach: the index regarding accuracy should represent neither only the
worst case nor only the average value but a balance between these two values.
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2.2 The mathematical problem

We will restrict ourself first to finding the worst and best case positioning
accuracy and we will assume that the sensor error ∆ρ is the interval [−ǫ, ǫ].
We have to solve the following mathematical problem: find the extremum of
each component ∆Xi of ∆X under the following constraints

1. |∆ρi| = ǫ (the maximal error will be obtained when all the sensor errors
are maximum)

2. it exists a ∆X whose i-th component is the maximum of ∆Xi such that
∆ρ = J−1∆X

3. for all the X satisfying a set of inequalities constraints W (X) ≤ 0
(workspace constraints)

Hence the problem to solve is a difficult constrained optimization problem.
Note however that if we are able to develop a solver for the above problem,
then we are able to use it for computing other performance index. For example
the solver may also be used to determine what are the extremum of the joint
forces/torques τ for a given load on the platform F as we have τ = J(X)TF .

2.3 The computation accuracy problem

An important point is to analyze what must be the accuracy with which we
must solve the problem: shall we always determine exactly the result, at least
as far as the use of computer is concerned? Note that exactly means finding
the global extremum of our optimization with guarantees on the result (and
this rules out many numerical optimization procedures that may find only a
local extremum together with the usual method of sampling the workspace).
Clearly the price of computing exactly the result is a large computation time,
that must be avoided if possible.

Intuitively we can see that for some cases it is not always necessary to de-
termine exactly the result. For example assume that the purpose of calculating
the worst case accuracy is to determine what must be the sensor accuracy β
for reaching a defined accuracy γ on the positioning of the platform in order
to be able to choose the sensor among a set of n available sensors with errors
ǫ1, . . . , ǫn (ordered by increasing value). We will compute first the worst case
accuracy γ1 for a unit value of the sensor error ǫ, from which we will deduce
that the maximal sensor error β for reaching the positioning accuracy γ will
be γ/γ1. But it is not necessary to compute exactly the value of γ1. Indeed if
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we can guarantee that γ1 is lower than γ1 and greater than γ1 such that we
have an ǫi with:

γ/γ1 ≥ ǫi−1 γ/γ1 ≤ ǫi

then we have determined that the sensor with accuracy ǫi will be the right
choice. Note however that for finding the right sensor it is necessary to be
able to adjust the maximal value of the difference γ1 − γ1.

Hence it may be sufficient to find an interval that contain the exact value
of γ1, as soon as the result is guaranteed. In summary:

• the design methodology should take into account the fact that com-
puting exactly the value of most performance index will be computer
intensive and should be avoided as much as possible

• the result of the performance evaluation must be guaranteed

• the result of the performance evaluation may be not exact: an interval
containing the exact value may be sufficient as soon as:

– the exact value is guaranteed to lie within the interval

– the maximal width of the interval may be adjusted

• if possible performance evaluation procedures should be designed in such
way that:

– approximate solution can be found

– the computation time must be dependent upon the accuracy with
which the result is calculated

– previous runs of the module with a given accuracy on the result
may be re-used if the accuracy is decreased to avoid unnecessary
computations

3 Genericity for performance evaluation

As we have seen previously there is no difference, in the mathematical sense,
between solving the worst case accuracy problem and finding the extremal
forces/torques for the actuated joints. In my opinion there are numerous
problems in the field of performance evaluation that are similar in term of
structure. Hence solving a few key problems that have a standard form (that
will be called the standard verification form (SVF)) may be sufficient to solve
most of the usual requirements that have to be considered when designing a
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parallel robot as soon as first the requirements may be translated into a SVF
and if it exists an appropriate solver (called the standard verification form
solver (SVFS)).

Another important point in this field is the genericity of the approach i.e.
a performance evaluation procedure should work for the most usual require-
ments but also for any mechanical architecture of parallel robots. Indeed there
is a large architectural diversity between parallel robots (over 100 designs have
been proposed in the literature) and it is unrealistic to develop a performance
evaluation procedure dedicated to each of them.

When addressing a performance evaluation problem there are three major
steps:

1. reducing the problem to a SVF

2. finding the mathematical elements that are used in the SVF, according
to the structure of the robot

3. solving the SVF using the SVFS

Hence the topology of the robot is only important at step 2 and it is therefore
crucial to clearly separate this step from step 1 and 3. If we consider the
accuracy problem this step consists in finding the inverse Jacobian matrix of
the robot. Hence a fully generic performance evaluation procedure should be
able to provide such element to the SVF. This may eventually be done auto-
matically (probably by using symbolic computation) if a standard definition
format allows one to describe any parallel structure. Hence the definition of
a standard definition language is also a key point for the optimal design of
parallel robot. Note also that symbolic computation is a necessary tool that
will be used for all three steps

4 Standard verification form solvers

A crucial point in the development of a generic performance evaluation pro-
cedure is the module that allow the solving of the SVF. As we have seen
previously many such problems may be reduced to a complex constrained op-
timization problem. In my opinion there is not many hope to find a method
for finding the exact solution that may work whatever is the performance and
the topology of the robot. Two alternative approaches may be considered:
hybrid solvers and interval analysis.
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4.1 Hybrid solvers

Hybrid solvers uses a mix of exact and approximate solving: their purpose
is to solve the SVF optimization problem with an accuracy ǫ that is fixed in
advance. Remember that in general we will have to solve the optimization
problem when the pose vector X is constrained i.e. the pose of the platform
belongs to some workspace : for the sake of simplicity we will assume here
that the workspace is defined by a set of intervals such that for all components
Xi of X we have Xi ∈ [Xi, Xi]. If we assume that X is of dimension n, then it
may be possible to find the exact solution to the optimization problem when
the first m < n components of X have a fixed value.

The first step of an hybrid solver consists in solving the SVF optimization
problem when the first m < n components of X are fixed to their lower
bound (Xi = Xi). This gives an initial value S0 for the SVF optimization
problem. Then a second optimization problem is solved: we consider the
SVF optimization problem when the pose parameters having a fixed value are
X1 = X1+α, Xi = Xi for i in [2,m] and we find an α such that the result S1 is
guaranteed to verify |S0−S1| ≤ ǫ. As soon as such an α has been determined
we solve the SVF optimization problem with the new value of X1: according
to the result of this solving we update if necessary the value of S0. We then
iterate the process until we have X1 ≥ X1. At this point we have solved the
SVF optimization problem with an error at most ǫ when m − 1 components
of X have a fixed value, the result being the updated value of S0.

We then solve a third optimization problem which is to find a β such that
the result S2 of the SVF optimization problem for the pose parameters being
Xi = [Xi, Xi] for i = 1, 3 . . . n and X2 = X2 + β verifies |S2 − S0| ≤ ǫ. As
soon as the value of β has been found we repeat the first step with as value
for X2 = X2 +β. The whole process is then repeated until the full workspace
has been explored.

Such an hybrid solver has been used to determine the worst case accu-
racy and maximal joint forces for a Gough-Stewart platform [8, 9] when the
orientation of the platform was supposed to be constant. If the location of
the center of the platform is defined by the variables x, y, z it was possible
to show that the SVF can be solved exactly for a fixed value of y, z, x being
constrained to lie in a range [x, x]. Using the technique described above we are
able to solve the SVF problem when the center of the platform is restricted to
lie within a square defined by x ∈ [x, x], y ∈ [y, y], z = z. By solving the third
optimization problem we determine a new fixed value for z, then we solve the
SVF problem for the square at the new altitude. This process is repeated
until the whole workspace has been explored.
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4.2 Interval analysis

Interval analysis is a powerful method initially proposed by Moore [11], whose
application to global optimization problems has been emphasized by Hansen [3].
Let us illustrate this method on a simple example: let f be the function x2−2x
and assume that we are looking for the maximal value of f when x is in the
range [3, 4].

Intuitively it is easy to see that if x is in [3,4], then x2 is in [9,16] and
similarly −2x is in the range [-8,-6]. Now consider the sum of 2 intervals
A = [a, a], B = [b, b]. It may be seen that A + B = [a + b, a + b] = C, which
means that for any value of x in A and y in B, then x + y lie in C. In our
case we will write f([3, 4]) = [9, 16]+ [−8,−6] = [1, 10]. The resulting interval
defines therefore lower and upper bound for the values of f : we may guarantee
that for any x is [3,4], 1 ≤ f(x) ≤ 10 and hence that the maximum of f is
at least 1. Now assume that we want to determine the maximal value of f
with an accuracy 0.1. The result obtained up to now does not allow to get
such accuracy as the difference between the lower and upper bound is larger
than this value. We will now bisect the initial interval in two new intervals
[3, 3.5], [3.5, 4] and repeat the interval evaluation for each of them. We found
f([3, 3.5]) = [2, 6.25] and f([3.5, 4]) = [4.25, 9]. Hence the maximal value
of f is at least 4.25. We then repeat the bisection process on each interval
[x, x] for x such that the upper bound of f([x, x]) is greater than the current
maximum value+0.1 (for example the interval [3,3.1] will not be bisected as
f([3, 3.1]) = [2.8, 3.61] and 3.61 < 4.25 + 0.1) and the algorithm will stop
when all the intervals have been processed. Note that the above description
illustrate only the basic principle of interval analysis and that, although this
basic method will work, it may be deeply improved.

Note also that a similar approach may be used to solve f(x) = 0: in that
case a solution will be obtained if the width of the interval for x is lower than
a given threshold and the interval evaluation of f contains 0 (in our example
as f([3, 4]) = [1, 10] does not contain 0 we may state that there is no solution
of f(x) = 0 for x in the range [3,4]).

The advantages of interval analysis are:

• this method works for all the classical mathematical functions such as
sin, cos, sinh, . . .

• it may be implemented to take into account numerical round-off errors
and is therefore safe from a numerical view point

• it allows to determine global extrema
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• it may be implemented in a distributed way: assuming that n computers
are available each of them may process a set of intervals and return the
result to a master program, thereby drastically increasing the efficiency
of the method.

In my opinion interval analysis is a very promising method to implement
SVFS: we have started implemented in our ALIAS C++/Maple library 1 a
set of such methods and this library has been used to solve various problems
related to parallel robots:

• singularity detection [10]: we have implemented a generic procedure
to detect singularity within the workspace of any 6 dof parallel robot.
Symbolic computation is used to calculate the determinant of the matrix
J−1 and a C++ program allow to determine if this determinant may be
0 within some given workspace. The workspace may be defined either as
a set of intervals for the pose parameters X or as any pose that satisfy a
set of inequalities constraints G(X) ≤ 0 (for example all the poses such
that the joint coordinates satisfy some inequalities)

• trajectory verification [7]: interval analysis is used here to determine if
an arbitrary trajectory fully lie within the workspace of a parallel robot
i.e. the joint coordinates satisfy a set of constraints. The trajectory is
defined as a set of time-dependent analytical functions, one for each of
the pose parameters.

5 Conclusion

Performance evaluation is a key issue for the development of efficient parallel
robots. A bad point is that this is also a very complex issue that has been
carefully analyzed in this paper. In my opinion the main conclusions are:

• the design methodology should take into account the fact that com-
puting exactly the value of most performance index will be computer
intensive and should be avoided as much as possible

• the result of the performance evaluation must be guaranteed

• the result of the performance evaluation may be not exact: an interval
containing the exact value may be sufficient

1http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS.html
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We have then proposed a framework to establish a performance evaluation
procedure that is generic (i.e. will work for most usual design requirements
and for any type of parallel robot). Implementing such procedure will require
a huge effort: hence this will be possible only through a collaborative work
between academia, companies and end-users.
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