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ABSTRACT
Parallel manipulators have in general multiple solutions for

the forward kinematics. In practice however from the control
viewpoint only the current pose of the manipulator is of interest.
We consider here a special class of planar parallel manipulator
and explain how the solution corresponding to the current pose
may be distinguished using a singularity criteria.

INTRODUCTION

We consider a special class of planar 3-RPR parallel ma-
nipulator as described in figure 1. The end-effector B1B2B3
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Figure 1. A special class of 3-RPR planar parallel manipulator

is connected to the ground through 3 legs with revolute
joints at each extremity. A linear actuator enable to change

the leg lengths, which in turn enable to control the position
and orientation of the end-effector.

We define a reference frame A1, (x, y) and a mobile
frame attached to the end-effector B1B2B3 as B1, (xr, yr).
The position and of the end-effector is defined by the coordi-
nates (x, y) of B1 in the reference frame and its orientation
by the angle θ (assumed to lie in the range [−π, π]) between
the x-axis of the reference frame and the line going through
B1, B3. The lengths of the leg AiBi will be denoted by ρi.

DIRECT KINEMATICS

The problem of the direct kinematics is to determine
the position and orientation of the end-effector being given
the 3 leg lengths. For a general 3-RPR robot it is well
known that this problem may have up to 6 solutions which
may be obtained by solving a 6-th order polynomial (?; ?;
?). However for the special class we are considering this
problem may be further simplified (?). First we may note
that if a set (x1, y1, θ1) is solution of the problem then the
set (x1,−y1,−θ1) is also a solution of the problem: pair of
such solution will be denoted symmetrical solutions. Fur-
thermore let us consider the equations of the inverse kine-
matics:

x2 + y2 = ρ2
1 (1)

l1
2 − 2l3 cos(θ)l1 + l3

2 +

(2l3 cos(θ) − 2l1) x + 2yl3 sin(θ) + y2 + x2 = ρ2
2 (2)

l2
2 − 2l4 cos(θ)l2 + l4

2 +

(2l4 cos(θ) − 2l2) x + 2yl4 sin(θ) + y2 + x2 = ρ2
3 (3)
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By subtracting equation (1) to equations (2),(3) we get a
linear system in x, y. Solving this system leads to the value
of x, y as function of θ. Reporting these values in equation
(1) leads to a 3-rd order polynomial in the unknown cos θ.
Each solution of this equation leads to 2 solutions for the
direct kinematics. Furthermore if we assume that the leg
lengths correspond to a real configuration of the robot, then
it may be shown that there will always be 4 solutions to the
direct kinematics.

It must be noted that the above procedure cannot be
used if l2l3 − l1l4 = 0. Indeed under this assumption the
equations of the linear system are not independent. In that
case equation (2-1) is used to determine the value of y as
function of x and θ which is substituted in (3-1) which leads
to an equation in cos θ only. Solving this equation and re-
porting the value of y, cos θ in (1) leads to a second order
polynomial in the unknown x.

SINGULARITY

The inverse jacobian matrix J−1 of the robot is consti-
tuted of three rows J−1

i with:

J−1
i = (

AiBi

ρi

B1Bi ×
AiBi

ρi

)

We may also define the semi-inverse jacobian matrix J−1
s

which is obtained by multiplying each row Ji of J−1 by the
leg length ρi. We have:

|J−1| =
|J−1

s |
ρ1ρ2ρ3

and consequently |J−1|, |J−1
s | have same sign and vanish at

the same point. As |J−1
s | has a slightly less complex for-

mulation than |J−1| we will mostly use J−1
s . Let us now

examine the singularity condition for this robot, which is
obtained by equating the determinant of the inverse jaco-
bian matrix to zero :

(

l3 (sin(θ))
2
l4 l2 − l4 (sin(θ))

2
l3 l1

)

x

+(−l3 cos(θ)l4 sin(θ)l2 + l1 l4 sin(θ)l2

+l4 cos(θ)l3 sin(θ)l1 − l2 l3 sin(θ)l1)y

+(l1 l4 cos(θ) − l2 l3 cos(θ))y2

+(−l1 l4 sin(θ) + l2 l3 sin(θ))xy = 0

For a given θ this equation define an hyperbola (?) whose
asymptotes are the horizontal line defined by:

y =
l3l4 sin θ(l1 − l2)

l2l3 − l1l4
(4)

and the line with slope tan θ defined by:

y = tan θ x − tan θl2l1(l3 − l4)

l2l3 − l1l4
(5)

Two special cases may occur:

• if θ = 0 the hyperbola is reduced to the line y = 0
• if l2l3 − l1l4 = 0 the hyperbola is reduced to the line

y = sin θl3 x/(l3 cos θ − l1) while the determinant is

sin(θ)
l1l4
l3

(xl3 sin θ(l4−l3)+y(l3 cos θ(l3−l4)+l1(l4−l3))

Let D(x, y, θ) be the determinant of the inverse jacobian
matrix: it must be noted that D(x, y, θ) = D(x,−y,−θ).
As a consequence the value of the determinant for the sym-
metrical solutions of the direct kinematics will be identical.

SEPARABILITY OF THE SOLUTIONS

Finding all the solutions of the direct kinematics does
not exactly provide an answer to the practical problem: in-
deed for control purposes we need to determine only the
current pose of the end-effector. In order to determine this
pose we may use the following informations:

• the end-effector cannot cross a singularity
• we know the initial assembly mode of the robot i.e. the

pose xi, yi, θi of the end-effector when the robot was
initially assembled

• we know a neighborhood in which the current pose
should be located. Indeed we may assume that the
pose of the end-effector has to be determined at each
sampling time of the controller. Being given the maxi-
mal velocity vx, vy , ω of the end-effector, the sampling
time ∆t of the controller and the pose x0, y0, θ0 at the
previous sampling time we know that the pose of the
end-effector should be located in the ball x0 ± vx∆t,
y0 + vy∆t, θ0 + ω∆t.

Although it is well known that different solutions of the di-
rect kinematics may be joined by a singularity-free trajec-
tory (?; ?; ?) we want to investigate if we may separate the
different solutions of the direct kinematics and determine
which of them may be the current pose under the above
assumptions.
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Special case l2l3 − l1l4 = 0
We have seen in the direct kinematics section that the

solutions of the direct kinematics can be obtained by first
determining the unique value of cos θ which is only a func-
tion of the leg lengths and then solving a second order poly-
nomial in x:

Ux2 + V x + W = 0 (6)

where U, V, W are only functions of the leg lengths. Be-
ing given the real roots x1, x2 of this polynomial and the
value θ1 of θ we may then compute the value of y. The so-
lutions of the direct kinematics are therefore x1, y(x1), θ1,
x1,−y(x1),−θ1, x2, y(x2), θ1, x2,−y(x2),−θ1. We may also
plug in the value of y, cos θ in the determinant of the inverse
jacobian matrix and get its value as function of x and the
leg lengths. This leads to a linear expression in x:

|J−1| = Ax + B (7)

with A = U/l1, B = V/(2l1). As a consequence the determi-
nant will be 0 for x = −V/(2U) and the line x = −V/(2U)
split the x− y plane into two half-plane in which the deter-
minant of the inverse jacobian has opposite sign. Let ∆ be
the discriminant of equation (6). The roots of this equation
may therefore be written as:

x1 =
−V −

√
∆

2U
x2 =

−V +
√

∆

2U
(8)

Consequently all the solutions of the direct kinematics
which have x1 as value for x will have a determinant of
opposite sign from the determinant of the solutions which
have x2 of value for x. Being given the sign of the determi-
nant of the inverse jacobian matrix for the initial assembly
mode we may determine the only two possible solutions of
the direct kinematics which have the same sign for the de-
terminant. Furthermore we notice that the determinant has
sin θ as factor: consequently there is no singularity-free tra-
jectory between two poses that have opposite value for the
orientation angle. As the two solutions that have the same
sign for the determinant have also opposite value for θ, then
they are always separated by a singularity surface.

In summary we are able to find the current pose by
using the following algorithm:

• compute the 4 solutions of the direct kinematics
• retain the 2 solutions whose determinant of the inverse

jacobian matrix has the same sign than for the initial
assembly mode xi, yi, θi

• among these two solutions the current pose is the one
which has the same sign for sin θ than sin θ0.

GENERAL CASE

We will restrict our study to the case where l2l3−l1l4 >
0, as the result for the other case can be established in the
same way.

For a given θ the singularity hyperbola H(θ) split the
x− y plane into two regions H−,H+, with opposite sign for
|J−1| as shown in figure 2.
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Figure 2. Singularity hyperbola and the sign of |J−1| (for l1 = 1, l2 = 5,

l3 = 1, l4 = 2 and θ = π/2

Singularity-free trajectory between symmetrical solutions

We have seen that symmetrical so-
lutions X1(x1, y1, θ1), X2 have the same x value, opposite
y and θ, and same sign for |J−1|. It must also be noted
that we have:

θ = 0 ⇒ |J−1| = −y2(l2l3 − l1l4)

θ = π ⇒ |J−1| = y2(l2l3 − l1l4)

Consequently a singularity-free trajectory from a solution
X1 to its symmetrical X2 must be such that at some point
the trajectory angle must go through θ = 0 if |J−1(X1)| < 0
or θ = π if |J−1(X1)| > 0. Now it is easy to find a
singularity-free trajectory between two poses in a symmet-
rical solutions:

• if |J−1(X1)| < 0: without changing the orientation of
the end-effector moves the end-effector from (x1, y1) to
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the intersection point P of the asymptotes of the hy-
perbola H(θ1), then from P to X2 = (x1,−y1). Then,
without moving the origin of the end-effector, if θ1 > 0
rotate counter-clockwise to reach −θ1 or if θ1 < 0 ro-
tate clockwise to reach −θ1 (figure 3). The translation
motion from X1 to X2 ensure that the end-effector at
X2 lie in the same component Hx than X1. Then the
rotation keep the sign of the determinant identical.

• if |J−1(X1)| > 0: let D be the line going through the
intersection point P of the asymptotes with a slope
tan(θ/2) and d(θ) being the distance between P and
the hyperbola. Without changing the orientation of
the end-effector go from (x1, y1) to the closest point
M on D such that the distance between P and M is
d(θ) + ǫ, ǫ being an arbitrary positive constant. Then
we will combine a rotation motion of the end-effector
with a translation motion which ensure that the ori-
gin of the end-effector remains on D and at a distance
d(θ) + ǫ from P . If θ1 > 0 the rotation motion is clock-
wise, goes through π and end at −θ1. If θ1 < 0 the
rotation motion is counter-clockwise. As soon as we
have have reached the orientation −θ1 we move M to
X2 (figure 4). This motion ensure that the end-effector
remains in the same Hx than X1.

y

x

P

X1 = x1, y1, θ1 > 0

x1,−y1

H(θ1)

H(−θ1)

Figure 3. A singularity-free trajectory between two symmetrical solutions

X1, X2 if |J−1(X1)| < 0. Without changing the orientation of the end-

effector we move its origin from X1 to P , the intersection point of the

asymptotes of the hyperbola H(θ1), then from P to X2. We rotate then

counter-clockwise which transform the hyperbola H(θ∞) into the hyperbola

H(−θ1), |J
−1(X2)| remaining negative during this transformation.
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Figure 4. A singularity-free trajectory between two symmetrical solutions

X1, X2 if |J−1(X1)| > 0. Without changing the orientation of the end-

effector we move its origin from X1 to the closest point M on the line D
(which goes through P and has a slope tan(θ1/2)) which is at a distance

d(θ1) + ǫ from P . Then we rotate clockwise the end-effector while main-

taining M on D and at a distance d(θ)+ ǫ from P until we reach the angle

−θ1. Then we move M to X2. |J−1(X2)| remains positive during this

transformation.

Separability between non-symmetrical solutions

We have seen that the forward kinematics may be solved
by deriving a 3rd order polynomial Pk in X = cos θ. Using
the expression of x, y as function of θ we may transform the
singularity condition into a fourth order polynomial Ps in
X . For the polynomial Pk we have

Pk(−1) > 0 Pk(1) > 0 (9)

Hence this polynomial may have 0 or 2 real roots in the
interval [−1, 1]. As we assume that their is at least one
assembly mode in the interval we deduce that we have two
real roots X1, X2 ≥ X1 in this interval. Furthermore as the
leading term of Pk is

U = −8l3l1l4l2(l1 − l2)(l3 − l4)

we may deduce from equation (9) that the third root (which
is clearly real) will be lower than -1 if U > 0 and greater
than 1 if U < 0. Indeed if U > 0, then Pk(+∞) → +∞: if
the third root was greater than 1 and as Pk(1) > 0, then we
must have two real roots in [1, +∞], and a total of 4 real
roots for a third order polynomial, which is impossible. A
similar reasoning can be made for U < 0.
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We will now use Sturm theorem to determine the num-
ber of real root of Ps in the interval [−1, 1]. Sturm sequences
for a n-th order polynomial P (X) is defined as a sequence of
functions f0, f1, . . . fn such that f0 = P , f1 = P ′ where P ′

is the derivative of P . The remaining function are defined
by the sequence:

fi+1 = −rem(fi−1, fi)

Thus fi+1 is the opposite of the remainder of the division of
fi−1 by fi. If the polynomial is of order n we will get n + 1
f functions, the last function fn being a constant i.e has a
constant sign. We define as N(x) the number of change of
sign between two successive fi considered at X = x. Sturm
theorem states that the number of real roots of P in the
interval [a, b], counted with their order of multiplicity, is
N(a) − N(b). For the polynomial Ps we have:

f0(−1) > 0 f1(−1) < 0 f2(−1) < 0

f0(1) < 0 f1(1) < 0 f2(1) > 0

and thus N(−1) ≥ 1 and N(1) ≥ 1. Remember that the
last function f4 in the Sturm sequence has a constant sign.
So the only possible sign combination for the last elements
f3, f4 of the sequence are (+,+),(-,+),(+,-),(-,-). Consider,
for example, that the sign sequence for f3(−1) and f4(−1)
is (+,+). Then

if f3(−1) = + f4(−1) = + ⇒ N(−1) = 2

then f3(1) = − f4(1) = + ⇒ N(1) = 3

or f3(1) = + f4(1) = + ⇒ N(1) = 1

Thus there is one real root in the range [-1,1]. If we plug
these other possible sign combinations in the sequence we
will always find the same result. Therefore Ps has only one
real root X3 in the interval [-1,1]. We will now determine
the location of X3 with respect to the interval [X1, X2]. In-
deed if we may prove that X3 always lie inside this interval,
then the non-symmetrical solutions will be separated by a
singularity. We will first show that it is not possible to find
a sequence of leg lengths such that the initial X3 is outside
[X1, X2], then become coincident with either X1 or X2 and
then lie inside [X1, X2]. This is simply done by reminding
that the inverse jacobian is the mathematical jacobian of
the kinematics equations; when its determinant vanished
there is a multiple root for Pk and X1 = X2. Hence for
a leg lengths sequence that does not lead to a singularity

the root X3 has always a fixed position with respect to the
interval [X1, X2]: if for a fixed value of the leg lengths X3

is inside the interval, then for any leg lengths it will remain
inside the interval.

We have now to study what is occurring when crossing a
singularity and in the neighbor of a singularity. Let θ1 such
that Ps(cosθ1) = 0. In the neighborhood of the singularity
we have:

Ps(cos(θ1 + ǫ)) = Ps((cosθ1)) +
dPs

d(cos θ)
(cos(θ1)) ǫ + . . .

=
dPs

d(cos θ)
(cos(θ1)) ǫ + . . .

Hence if the derivative D of Ps at θ1 does not vanish, then
the determinant of the inverse jacobian for the two roots
X1, X2 will have opposite sign and hence X3 must lie in the
interval [X1, X2]. Assume now that D = 0: this means that
Ps has a double root in the interval [-1,1] which is clearly
in contradiction with the result of Sturm theorem.

Hence we have shown that in the neighborhood of a sin-
gularity X3 lie in the range [X1, X2] and as we have already
shown that X3 is always in the same position with respect to
this range we may conclude that X3 is always in the range.
In summary the non-symmetrical solutions of the forward
kinematics are always separated by a singularity.

Separability

Being given the sign of the determinant of the inverse
jacobian matrix at the initial assembly mode we may now
determine the 2 solutions that have same sign for the de-
terminant, these solutions being symmetrical. In a real-
time context we may also have the latest known position
Xl = (xl, yl, θl) of the platform and the elapsed time ∆t
between the time at which the end-effector was located at
Xl and the current time. Being given the maximal velocity
vx, vy, ω of the manipulator we are able to determine the
range in which should lie the current posture Xc = (x, y, θ):

x ∈ [xl ± vx∆t] y ∈ [yl ± vy∆t] θ ∈ [θl ± ω∆t]

If one solution is outside this range then we have determined
the current posture. Otherwise there is no singularity-based
way to distinguish between the solutions and additional in-
formation is needed.

EXAMPLE

In this example we have chosen:

l1 = 1 l2 = 5 l3 = 1 l4 = 2
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and

ρ1 = 3.5 ρ2 = 2 ρ3 = 4

Figure 5 presents the 4 possible solutions together with their
value for J−1

s . It may be seen that the 4 solutions verify

x = 1.95, y = −2.9, θ = 109.71,

|Js−1| = 40.91

x = 1.95, y = 2.9, θ = −109.71,

|Js−1| = 40.91

x = 3.54, y = 0.62

θ = 103.34, |J−1

s
| = −38.06

x = 3.54, y = −0.62

θ = −103.34, |J−1

s
| = −38.06

Figure 5. Four solutions for the forward kinematics

the theorems presented in the previous sections.

CONCLUSION

It is now well known that sorting the forward kinematics
solution using only the singularity condition is not possible.
Still we have shown that, in a special case, singularity may
be useful to determine the current pose of the robot among
all the possible solutions of the forward kinematics.
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