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Abstract

Forward kinematics has been studied mainly for polyhedral parallel manipulators. We present
here an algorithm for the forward kinematic of non-polyhedral manipulators which plates have a
symmetry axis. We show that there will be at most 352 possible solutions and exhibit a configu-
ration with eight solutions.

1 Introduction

Parallel manipulators present a great interest for many industrial applications due to their high
positionning ability and high nominal load. Many applications has been presented in the past
either for flight simulator [11] or as robotic devices [4], [3], for example with force-feedback control
[10], [6], [7]. This kind of applications use both inverse kinematics (which is in general straightfor-
ward) but also forward kinematics. The later is known to be a difficult problem from a long time
[1]. If we consider a closed-loop mechanism where two plates are connected through six
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Figure 1: Top view of the considered manipulator

articulated links the forward kinematics problem is to find the position and orientation of one
plate (the mobile plate) with respect to the fixed plate for a given set of links lengths. In the case
where the manipulator is a polyhedra (i.e. the mobile plate is a triangle and each of the three
articulation points on the mobile are shared by two links) Hunt [5] conjectured that there will be
at most sixteen solutions and this has been now proved [8], [2] by the use of a method initially
developed by Nanua [9]. This method consists in reducing the number of unknown from 6 (the
position of a point of the mobile and three orientation angles) to 3 by noticing that for a fixed
set of links lengths the initial mechanism is equivalent to a RRR-3S mechanism. The 3 unknowns
are defined as the three angles of the R articulations. By expressing the position of the three
articulation points of the mobile as a function of the 3 unknowns and writing that the distance
between these points are known quantities one get three equations in the sines and cosines of the
unknown angles. These three equations can then be reduced to a polynomial in one variable which
is of degree 16, with only even power, if the R articulation axis are coplanar , of degree 20 if they
are parallel or intersect and of degree 24 if they are in a general position [8]. In the first case
numerical computation has enabled to find a set of links lengths for which there is effectively 16
solutions. Furthermore it has been possible to show that in any case there will be at most 16
solutions.

But this method cannot be applied if the manipulator is not a polyhedra. We will consider
here the case where both plates are hexagons with a symmetry axis (y and yr in Figure 1).

All the articulation points Ai on the base are coplanar as well as the articulations points Bi on
the mobile. The links are numbered from 1 to 6 and we define a reference frame (O, x, y, z) where
y is the symmetry axis of the fixed base. We then define a mobile frame (C, xr , yr, zr) for the
mobile with yr the symmetry axis of the mobile plate. The coordinates of the articulations point
Ai in the reference frame are (xai, yai, zai) and for convenience the axis z of the reference frame
is chosen such that zai = 0. In the same manner the coordinates of the articulations points Bi in
the mobile frame are (xbi, ybi, 0). The position of the mobile plate is defined in the reference frame
by the coordinates of point C(x0, y0, z0) and its orientation by three Euler’s angles ψ, θ, φ with the
associated rotation matrix R. ρi will denote the length of link i. The subscripts will be omitted
each time there cannot be any misunderstanding. A subscript r will denote that the coordinates
are expressed in the mobile frame.
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2 Relation between C and R

We will consider here the expression of ρ as a function of the position and orientation of the mobile
plate. We have:

AB = AO +OC + CB = AO +OC +RCBr (1)

Therefore:

ρ2 = AO AO T +CBr CBr
T +2(AO T +CBr

TRT )OC +2AO TRCBr +OC OC T (2)

Let us denote dA the distance between A and O and dB the distance between B and C. Thus we
have:

ρ2 = d2

A + d2

B + 2(AO T + CBr
TRT )OC + 2AO TRCBr +OC OC T (3)

Let us consider now two links. We define

Uij = d2

Ai
+ d2

Bi
− d2

Aj
− d2

Bj
Wij = AiO

T −AjO
T

Tij = CBir
T − CBjr

T Sij = AiO
TRCBir −AjO

TRCBjr

Therefore we have:

ρij = ρ2

i − ρ2

j = Uij + 2Sij + 2(Wij + Tij
TRT )OC (4)

This equation is linear in term of the coordinates of C. If we consider the three equations
ρ12, ρ45, ρ65 we get thus a linear system S in the three unknowns x0, y0, z0. The determinant
∆ of the system is

∆ = 32 sin θ(xa0xb3 − xa3xb0)(sinψ(yb3 − yb2) + sinφ(ya3 − ya2)) (5)

which will vanished if sin θ = 0, sinφ = sinψ = 0 or sinψ(yb3 − yb2) = − sinφ(ya3 − ya2). We will
suppose first that none of these conditions are fulfilled. The resolution of the system S enables to
find the coordinates of C as a function of ψ, θ, φ. An important remark is that if a set (ψ, θ, φ)
yields to a solution (x0, y0, z0) then the set (ψ,−θ, φ) yields to the solution (x0, y0,−z0).

3 The φ-curve

The system S being solved it may be shown that the two equations ρ24, ρ36 can be written as:

u1 cos θ + u2 = 0 v1 cos θ + v2 = 0 (6)

where u1, u2, v1, v2 contain only terms in sine and cosine of ψ, φ. From these two equations we get
an equation in ψ, φ by writing eq = u1v2 − v2u1 = 0:

eq = p1 sin3 ψ + p2 cos3 ψ + (p31 cosψ + p32) sin2 ψ + (p41 sinψ +

p42) cos2 ψ + sinψ(p51 cosψ + p52) + p6 cosψ = 0 (7)

If we define x = tan ψ
2

equation (7) is then a sixth order polynomial in x. Let us consider this
equation for a given φ = φs. We get then at most 6 solutions in ψ, ψsi

. For each pair φs, ψsi
equation (6) yields two solutions in θ, (θs,−θs). Thus for a given φs we get at most 6 pairs of
possible solutions (φs, ψsi, θs), (φs, ψsi,−θs) which in turn yields to six pairs of solution for the
coordinates of C, (x01

, y01
, z01

), (x02
, y02

, z02
). But using the remark done during the resolution

of the system S we know that x02
= x01

, y02
= y01

, z02
= −z01

. Thus the second solution yields
simply to the symmetric with respect to the fixed base of the first one. Thus for every φ we get
a possible solution of the forward kinematics. It is only a possible solution because we have used
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Figure 2: A typical phi-curve (φ in degree)

only fives equatons among the six defined by equations (2) and therefore we have to verify that
the links lengths associated to this solution are identical to the initial set.

In order to verify the validity of one solution we define a performance index C:

C =

6∑

1

||ρsi
− ρi|| (8)

where ρsi
denotes the length of link i for a possible solution. This index will vanished for each

solution of the forward kinematics. By the use of a discretization of φ we are able to get a plotting
of C as a function of φ which is called a φ-curve. Figure 2 presents a typical φ-curve . By looking at
the φ-curve we can determine among the possible solutions those which have a performance index
close to zero. These solutions are then fed to a least square algorithm which enables to get the
exact solutions. For example if we consider the φ-curve described in the figure we may seen that 4
solutions have an index close to zero. Taking into account the symmetrical solutions we will thus
have 8 solutions for this particular case. Furthermore it can be shown that the discretization of
φ has not to be done between [0, 2π] but only between [0, π] because any solution between [π, 2π]
will give identical solutions to those find in the interval [0, π].

4 Particular cases

The previous section does not deal with particular cases for which the determinant of the system
S vanishes.

First we consider the case where sin θ = 0. In this case ρ12 is linear in term of x0. Then ρ34

becomes linear in term of y0. By using this results ρ2

6 can be written as z2

0 + c = 0. Thus we get
two possible solutions and have only to verify if the corresponding links lengths are the same as
the original set.

If sinψ(yb3− yb2) = − sinφ(ya3− ya2) then equation ρ65 does not contain any term in z0. It is
possible to show that the φ-curve will be identical if we choose any other equation instead of ρ65.
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Thus the only change compared with the general case is that we use another equation to compute
the value of z0.

If sinψ = sinφ = 0 then ρ12 is linear in term of x0. Then ρ24, ρ65 are linear in term of y0, z0.
We expand ρ2

1
and if we define x = tan θ

2
we get a fourth order polynomial in x. Thus we get a

four possible solutions and have only to verify if the corresponding links lengths are the same as
the original set.

5 Maximum number of solutions

Let us consider the two equations (6). We define x = tan ψ
2
,y = tan φ

2
, z = tan θ

2
. Then it can

be shown that these equations are of order 6 and 10 in term of x, y, z. Consider now the general
equation:

ρ2

1s
(ψ, θ, φ) = ρ2

1 (9)

It can be written as:

a4 cos4 θ + a3 cos3 θ + a2 cos2 θ + a1 cos θ + a0 = 0 (10)

where the coefficients ai are independent from θ. From equation (6) we deduce:

cos θ = −
u2

u1

(11)

Substituting this value in equations (10),(7) yield to polynomials in x, y whose order are respectively
32 and 11. By calculating the resultant of the two polynomials we will get a polynomial which
order will be at most 352 (32 x 11) and therefore there is at most 352 possible solutions for the
forward kinematics of this parallel manipulator.

6 Numerical example

The following algorithm has been implemented:
1)verify if the initial set of links lengths can satisfied the particular cases.
2)compute the performance index C for a discretization of φ in the range [0, π].
3)if C is sufficiently low use the possible solution as an estimate for a least-square method.

This algorithm has been used for a manipulator with the following characteristics:

number xa ya xb yb
0 -7 10 -2 7
2 10 7 6 -1
3 2 -10 4 -3

The initial set of links lengths is determined for the configuration x0 = 1, y0 = 2, z0 = 10, ψ =
10, θ = 20, φ = 30. The eight solutions are given in table 1.

7 Conclusion

The proposed algorithm enables to find all the solutions of the forward kinematics problem even in
the case of non-polyhedral parallel manipulator. Its main drawback is that the computation time is
rather important (about thirty seconds on a SUN 3-60 workstation). However many improvements
can be made to simplify the computation.
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x0 y0 z0 ψ θ φ

1.0 2.0 10.0 10.0 20.0 30.0
4.253603 1.212795 6.867130 1.127391 63.026008 56.207058
-1.802148 4.346853 5.755688 286.858708 -68.123310 140.5
-3.165565 0.707157 4.248109 66.626576 -73.802803 19.714532
-3.165565 0.707157 -4.248109 66.626576 73.802803 19.714532
-1.802148 4.346853 -5.755688 286.858708 68.123310 140.5
4.253603 1.212795 -6.867130 1.127391 -63.026008 56.207058
1.0 2.0 -10.0 10.0 -20.0 30.0

Table 1: Solution of the forward kinematics problem (all the angles are in degree)
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