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ABSTRACT

In this paper, the geometric design problem of serial-link
robot manipulators with three revolute (R) joints is solved for
the first time using an interval analysis method. In this problem,
five spatial positions and orientations are defined and the
dimensions of the geometric parameters of the 3-R manipulator
are computed so that the manipulator will be able to place its
end-effector at these pre-specified locations. Denavit and
Hartenberg parameters and 4x4 homogeneous matrices are used
to formulate the problem and obtain the design equations and
an interval method is used to search for design solutions within
a predetermined domain. At the time of writing this paper, six
design solutions within the search domain and an additional
twenty solutions outside the domain have been found.

KEYWORDS
Geometric Design, Robot Manipulators, Interval Analysis

INTRODUCTION

The calculation of the geometric parameters of a multi-
articulated mechanical or robotic system so that it guides a rigid
body in a number of specified spatial locations or precision
points is known as the Rigid Body Guidance Problem. In this
paper, it will also be called the Geometric Design Problem. The
precision points are described by six parameters: three for
position and three for orientation. This problem has been
studied extensively for planar mechanisms and robotic systems
and has recently drawn much attention to researchers for spatial
multi-articulated systems. Solution techniques for the geometric
design problem may be classified into two categories: exact
synthesis and approximate synthesis.
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Exact synthesis methods result in mechanisms and
manipulators, which guide a rigid body exactly through the
specified precision points. Solutions in the exact synthesis exist
only if the number of independent design equations obtained by
the precision points is less than or equal to the number of
design parameters. The number of precision points that may be
prescribed for a given mechanism or manipulator is limited by
the system type [1]. This number depends on the number of
design parameters and the type of joints and can be calculated
using Tsai and Roth’s formula [2], [3].

In approximate synthesis, using an optimization algorithm,
a mechanism is found that, although not guiding a rigid body
exactly through the desired poses, it optimizes an objective
function defined using information from all the desired poses.
Approximate synthesis is mainly used in over-determined
geometric design problems where more precision points are
defined than required for exact synthesis and therefore no exact
solution exists. A complete listing of the extensive amount of
research that has been performed in the geometric design of
spatial mechanisms and robotic systems, both exact and
approximate, can be found in [4].

The equations for the geometric design problem of
mechanisms and manipulators are mathematically represented
by a set of non-linear, highly coupled multivariate polynomial
equations. The solutions of these equations can be obtained by
either numerical methods or algebraic methods [5]. Algebraic
methods solve the polynomial system by eliminating all but one
variable that gives a polynomial equation in one variable. All
the solutions are then obtained by solving for the roots of the
final polynomial. While algebraic solutions are usually very
difficult to obtain, numerical methods serve as an alternative to
solve these nonlinear equations. Examples of these methods are
polynomial continuation and interval methods.
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Using algebraic methods, the exact synthesis of planar
mechanisms for rigid body guidance has been studied
extensively by many researchers and is described in most
textbooks on mechanism synthesis [6], [7]. The exact synthesis
of a few spatial mechanisms and manipulators has been solved
using algebraic methods. The spatial geometric design
problems that captured the most attention were the spatial
revolute-revolute (R-R) [8]-[11] and the cylindrical-cylindrical
(C-C) manipulators [12]-[14]. Other than these two dyads, the
geometric design problem has been solved algebraically for the
following spatial manipulators/mechanisms. Innocenti [15]
solved the geometric design problem for the sphere-sphere
binary link. Neilsen and Roth [14] solved the slider-slider
sphere dyad, cylinder-cylinder binary link, revolute-slider-
sphere dyad and cylinder-sphere binary link design problem.
McCarthy [16] also solved the exact synthesis problem for
several types of dyads. Even though algebraic methods had
been demonstrated to be very effective in solving several
geometric design problems for spatial mechanical systems there
exist many types of robotic and mechanical systems that are
used very often in practical applications for which the exact
synthesis of the geometric design problem has not been solved
before. The main reason for this is the high complexity of the
non-linear polynomial design equations that are obtained.

Polynomial continuation methods have been used
extensively in the geometric analysis and design of mechanisms
and robotic systems [17]. Roth and Freudenstein [18] were the
first to use continuation methods to solve polynomial systems
obtained in the kinematic synthesis of mechanisms. Morgan
and Wampler [19] and Wampler, Morgan and Sommese [20]
solved the path following design problem of 4R closed loop
planar mechanisms using continuation method. Dhingra, Cheng
and Kohli [24] solved several design problems for six link,
slider crank and four-link planar mechanisms using polynomial
continuation methods. Lee and Mavroidis [22] wused
continuation methods to solve the spatial 3R geometric design
problem when 3 precision points are specified.

Interval analysis is a numerical method based on interval
arithmetic [23]. It was developed for error control [24] and had
been used in optimization. It can be used as a method for
solving system of non-linear multivariate polynomial equations
[25], but it has never been used in kinematic design of spatial
mechanisms.

In this paper, the geometric design problem of 3R spatial
manipulators when five precision points are defined is solved
for the first time using an interval analysis method. Prior work
related to the synthesis of spatial 3R chains is very limited.
Tsai [2] and Roth [9] used screw theory to obtain the design
equations for this problem but did not solve them. Lee and
Mavroidis [22] used continuation methods to solve the three
precision point synthesis problem for the spatial 3R when 6
design parameters are selected as free choices. They considered
two different schemes for free choice selection and showed that
in both cases the 3R synthesis problem using 3 precision points
can have at the most 8 distinct solutions. In this paper, we solve
the more difficult synthesis problem for the 3R when five
precision points are selected. In this case no free choices are
selected and hence, the number of design unknowns to
calculate is much larger than in the cases with 3 or 4 precision
points. Five spatial positions and orientations are defined and
the dimensions of the geometric parameters of the 3-R

manipulator are computed so that the manipulator will be able
to place its end-effector at these five pre-specified locations.
Denavit and Hartenberg (DH) parameters and 4x4
homogeneous matrices are used to formulate the problem and
obtain the design equations. Interval method is used to search
for design solutions of the design equations within a
predetermined domain. At the time of writing this paper, six
design solutions within the search domain and an additional
twenty solutions outside the domain are found.

INTERVAL METHOD

The basic principle of interval method relies on interval
arithmetic to determine bounds for the minimum and maximum
value of a given function when the unknowns lie in some given
ranges. One of the possible ways to obtain these bounds is to
replace the mathematical operators of the function by their
equivalent in term of interval arithmetic. For example if we
consider the function f(x):xz-x when x lie in the range [2,3],
then we may write:

P(23) =127 {29 49 £23 1] m

The value we get here are lower and upper bound for the
real value of the minimum and maximum of the function. In
other words we guarantee that whatever is the value of X in the
range [2,3], then:

1<f(x)<7 ()

An interesting feature of interval arithmetic is that it can be
implemented to take into account round-off errors i.e. the
bounds we get are guaranteed to include the exact value of the
minimum and maximum of the function. Furthermore interval
arithmetic can be used for almost any mathematical operator
such as the trigonometric functions.

On the other hand a bad point is that the bounds we get
may be over-estimated: in our example the real bounds are
[2,6]. But the error decreases with the width of the input ranges.
A basic solving algorithm relying on interval arithmetic will
use the fact that if the bounds returned by the interval
evaluation of an equation does not include 0O, then the equation
has no solution in the range of the unknowns (e.g. in our
example we can insure that there is no root of the equation x*-
x=0 for x in the range [2,3]).

In a solving algorithm based on interval analysis we will
assume that we are looking for all the solutions within given
ranges for the unknowns (a set of range for the unknowns will
be called a "box") and the algorithm will use a list of boxes,
initialized with the box in which we are looking for solutions.
The algorithm will proceed along the following steps:

1. Compute the interval evaluation of the equations for

the current box.
2. If one of the interval evaluation does not include O,
then there is no solution in this box and we consider
the next box in the list.
3. If all the interval evaluation of the equations include 0:
e If the width of at least one range in the box is
greater than a given threshold, then bisect one of
the range of the box: 2 new boxes will be created
and will be put at the end of the list.

e If the width of all the ranges in the box is lower
than the threshold, then store the box as a
solution.
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*  Restart at 1 with the next box in the list.

4. Stop if all the boxes in the list have been considered.

Such algorithm is general in the sense that it can deal with
equations involving any mathematical operators (we are not
restricted for example to polynomial equations).

It must be noted that the previous algorithm can be
implemented in a distributed way. Indeed the treatment of a box
does not depend on the other boxes in the list. Hence a parallel
implementation may be used, with a master sending the current
box to another computer that will process it.

But there are many ways to improve this basic algorithm.
Two main types of operators may be used:

(1) Filtering operators: these operators take as input a box
and will return either the same box or a smaller box i.e. a box in
which at least one of the range has a lower width than the one
of the input box. In the latter case the eliminated parts of the
input box do not include a solution.

(2) Existence and uniqueness operator: these operators take
as input a box and may return a box with the following
properties:

(i) There is a solution in this box.

(i) This solution is unique.

(iii) The solution can be computed safely with an iterative
algorithm with as initial guess any point within the
box.

There are numerous operators that can be used. As an
example of filtering operator let us mention the 2B method [26]
that we will illustrate on the example. Let us define 2 new
variables y; and y, with y,=x” and y,=x. Clearly if f(x)=x’-x has
a solution for x within some given range, then we will have y,;=
y». As x lie in a range, then yj, y, also lie in a range: if x is in
[2,3], then vy, y, are in [4,9], [2,3]. A solution of the equation
may be found only at the intersection of y, and y,, which is
empty in our case, meaning that there is no solution for the
equation. If we have assumed that x was in [-4,1], then yj, y,
are in [0,16], [-4,1] and a possible solution lie in the range
[0,1]. As y, is x we may reduce the interval for x from [-4,1] to
[0,1].

Existence and uniqueness operator are very useful as they
guarantee the solution and enable one to avoid a large number
of bisection. An example of such operator is the Kantorovitch
operator [27]. This operator needs to be able to compute the
Jacobian and Hessian matrices of the system of equations and,
provided that some conditions on the Jacobian and Hessian are
fulfilled, allows to state that a unique solution exists within
some given box and that this solution can be found with the
Newton scheme.

PROBLEM FORMULATION

In this work, the relative position of links and joints in
mechanisms and manipulators is described using the variant of
DH notation that was introduced by Pieper and Roth [29]. In
this formulation, the parameters a;, O;, d; and 6; are defined so
that: a; is the length of link i, 0; is the twist angle between the
axes of joints i and i+1, d; is the offset along joint i and 6, is the
rotation angle about joint axis i as shown in Figure 1. When
joint i is revolute, then a;, 0; and d; are constants and are called
structural parameters, while the value for 6; depends on the
configurations and is called the joint variable.

@)

Figure 1: Denavit and Hartenberg Parameters

Reference frame R; is attached at link i and its origin O; is
the intersection point of the common perpendicular between
axes i and i-1 with joint axis i. Unit vector z; of frame R; is
along joint axis i unit vector X; is along the common
perpendicular of joint axes i and i-1. Positive directions for X;
and z; are arbitrarily selected. (Note: letters in bold indicate
vectors and matrices.) The homogeneous transformation matrix
A; that describes reference frame R;,; into R; and its inverse
matrix A; ! are found to be equal to:

C TSiC, S8, & c, S 0 -a 3
A = S; CiCp TGS,  AS; Al = -5iC, GGy, Sy 'disu, ©)
i 0 s [ d i S:S -cs, ¢, -dc
a; a, i iSq, iSq o iCq
0 0 0 1 0 0 0 1

where: ¢;=co0s(6,), s;i=sin(8;), cqi=cos(a;) and sg;=sin(q;).

Consider the three-link open loop spatial chain with
revolute (R) joints shown in Figure 2. Two frames are selected
arbitrarily: a fixed reference frame R, and a moving end-
effector frame R.. Frame R, will be defined in three distinct
spatial locations. In addition to the three links of the
manipulator, a stationary virtual link O is also assumed between
axis z, of frame R, and the first revolute joint axis. Frames are
defined at each link using the DH procedure described above.
Frame R; that is stationary is defined attached at link O having
its z; axis along the first revolute joint and its X, axis along the
common perpendicular of z, and z,. Frame R, is attached at
the tip of link i (where i=1, 2, 3). The axis z, is coincident with
the axis z. of the end-effector frame. The axis x4 is defined
along the common perpendicular of z; and z, and the origin Oy
of R, is the point of intersection of z, with its common
perpendicular with z;. So frames R, and R, have the same z-
axis.

The homogeneous transformation matrices A;, with i=0, 1,
2, 3 describe frame R;;; relative to R;. The homogeneous
transformation matrix A relates R. to R,. The relationship
between these frames is a screw displacement: a rotation @
around the z, axis and a translation d along the z, axis.
Homogeneous transformation matrix Ay relates directly the
end-effector reference frame R, to the frame R,. Matrices A,
and A}, are written as:
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¢, s, 00 I, m n x4

A= s, ¢, 00 A = , m, n, vy, 4)
1o 0o 1 .d| " |, m n, gz
0 0 0 1 0 0 0 1

where I=[1;, L, 1], m=[m;, m,, ms]", and n=[n;, ny, ns]",
are the 3 by 1 vectors of the direction cosines of R, in Ry. The
parameters Xq4, Y4, and z4 are the coordinates of the origin of R,
in R().

Joint 2

.

Figure2: 3R Open loop Spatial Manipulator

An important feature in the matrix definition above is the
use of matrix A In general, six parameters are needed to
describe one reference frame relative to another. The DH
parameterization succeeds in using four parameters for the
relative transformation between frames within the serial
kinematic chain itself only after the various motion axes are
fixed. However, a special treatment is required, either at the
origin or at the end-effector of the serial chain, the latter case
being used in this paper. Assuming directions for axes z;, z,
and z; relative to the fixed reference frame, then the
displacement described by the product of matrices AgA;A, can
be treated as a displacement of the fixed reference frame to the
location of frame Rj;. At this stage, a general six-parameter
displacement is needed to transform frame Rj; into the end-
effector frame R.. The transformations described by the
matrices Az and A, provide the complete set of six parameters.

The loop closure equation of the manipulator is used to
obtain the design equations:

AgA1A2AA = Ay )

Equation (5) is a 4 by 4 matrix equation that results in six
independent scalar equations. The right side of Equation (5),
i.e. the elements of matrix Ay, is known since they represent the
position and orientation of frame R, at each precision point.
The left side of Equation (5) contains all the unknown
geometric parameters of the manipulator which are the DH
parameters a;, 0;, d; and 6; for i=0, 1, 2, 3, and parameters ¢ and
d of matrix A.. Joint angles 8, 8, and 05 have a different value
for each precision point while all other 15 geometric parameters
are constant. Thus for five precision points there are 30
unknown parameters in total, and there are 30 scalar equation
that are obtained. Therefore, the maximum number of
precision points for exact synthesis is five.

DESIGN EQUATIONS AT EACH PRECISION POINT
Using the loop closure equation of the manipulator
(Equation 5), six scalar design equations are obtained at each

precision point. The unknowns in these equations are the
manipulator constant structural parameters and the joint
variables 8;, 8, and 0;, which vary from precision point to
precision point. To simplify the solution process, we eliminate
the joint variables from the design equations at each precision
point. Once the joint variables are eliminated, the new set of
equations contains only unknowns that do not change from
precision point to precision point. In this way, for each new
precision point that is defined, new equations are added that
have exactly the same form as for the first precision point. In
this section we present the method to obtain design equations
devoid of the joint variables.

From Equation (3), it can be seen that the 3" and 4™
columns of matrix A are independent of joint angle 6,
Therefore, if Equation (5) is written as:

Ar1A2= Ao  An AT A (6)

then the scalar equations that are obtained by equating the

left and right side of the third and fourth columns of matrix
Equation (6) will be devoid of joint angle 6.

From the third column of Equation (6), three scalar
equations are obtained:

Sa, €182 F Cay S, 8162 F8u, G , 81 =€l +SoLo O
Sq, 8182 7 Cq,8q,C1C T8q Gy, € TG Soly TG Sl tg Ly ®)

“Sa;8a,2 F %o, S, T S0bt T Col2 & L3 ®
where Li=L;A+m;B+n;C, with i = 1, 2, 3, and A=s@s03, B=
c@sa; and C=cad; with c@=cos(@) and s@=sin(¢).
From the fourth column of Equation (6), another three
scalar equations are obtained:
a,C,C; —a,C4 5,5, tac +dlsulsl (10)
= G (M1 +X) +S, (Mz +Y) —a,
a,8,c, +a,¢, ¢;s, —d,8, ¢, +as, =-Cq, 8o (M1 +x)

(an
+c,, € (M, +y) +8g, (M, +z) =d,Sq,

a,8, 8, +d, +dyc, =s, s, (M] +x)
~84,% (M2 +y) +Cq, (M3 +z) =dyeq,
where: Mi=l;P+m;Q+nR, with i = 1, 2, 3 and P=-azc@-
d3s([BG3, Q=a3scpd3c(ps(13 and R=—d3CG3—d.
Note that Equations (9) and (12) are free of 8,, thus, ¢, and
s, can be computed by these two equations and their analytical
expressions are free of O; also. Using this result, 0, is
essentially eliminated, for ¢, and s, can be eliminated from any
equation by substituting the above result.
The final step is to obtain equations free of 6;. To obtain
such equations, we will consider the matrix Equation (6) again,
written here as,

12)

A|_= AR (13)
where A = A; Ayand Ag= Agt Ap At A
We will denote the third column vector of A, and Ag as U,
and Ug, respectively, and the fourth column vector of A_ and
Ar as V| and Vg, respectively (Note: vectors U, Ug, V| and
Vg are 3 by 1; i.e. we neglect the fourth component which is
the homogeneous coordinate). Then, we form the following
three vector equations:

UV, =U, [V, (14)
V, IV, =V, IV, (15)
U, XV, =U, XV, (16)
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Equations (14), (15) and (16) were originally proposed by
Raghavan and Roth to solve the inverse kinematics problem of
general six degree of freedom serial link manipulators [5]. The
same equations are used here for the geometric design of 3R
manipulators.

Equations (14), (15) and (16) give a total of five scalar
equations. For Equation (16), only the third component is used,
ie.

U (1)VL (2) -U, (2) Vi (1)
=Ug (1)VR (2) —Ug (2)VR (1)

It was found that Equations (14), (15) and (17) are
naturally devoid of 6;. With 0, eliminated by using the
expressions of ¢, and s, calculated from Equations (9) and (12),
the three equations are free of ©;, 6, and 6; and have,
respectively, the following form:

A7)

) = 18
X Xy
> fyox, (05,8,,0,)X X, =0 (18)
X;.X, OW
X X, = 19
ok J
> gxx, (000,80,00)X,X, =0 19)
XX, OW
X = 20
X, X
> hy x (00,8,,0,)X X, =0 (20)
X;. X, OW

Where WZ{)\A, )\B, )\C, )\CGz, P, Q, R, dz, dp, 41, do, dl, 1}
and A=a,/sq,.

Note that Equations (18), (19) and (20) depend also on the
parameters l;, m;, n;, (i=1, 2, 3) and x, y and z, which are
defined at each precision point and vary from precision point to
precision point. Therefore, each precision point contributes
three design equations (i.e. Equation (18), (19) and (20)), which
are devoid of the joint variables and have as unknowns only the
15 constant structural parameters.

SOLUTION PROCEDURE USING INTERVAL METHOD

To solve the five points synthesis problem we propose to
use an interval analysis based approach. Interval analysis
requires a careful analysis of the problem to solve. Indeed there
are numerous ways to transform a given problem in a set of
equations with different number of unknowns and various
complexity for the equations. Finding the more appropriate
formulation of the problem is one of the main difficulties when
using interval analysis. Indeed one may assume that having the
least number of unknowns is the best choice as this will reduce
the number of bisection. This is often true but may be wrong if
the associated equations are very complex: indeed due to the
over-estimation of interval arithmetic, complex equations will
require a large number of bisection before we can insure that
there is no solution within a given box. On the other hand,
having more unknowns but simpler equations may lead to very
accurate interval evaluation of the equations and, on the whole,
to a better efficiency.

In our problem, we may consider either a problem with the
smallest number of unknowns or a problem with the maximum
number of unknowns. In the former case, we use all five
Equation (9), (12) and one of five Equation (17). This problem
is denoted the F;; problem and we have a set of 11 unknowns
Vll:{3'27 dl’ 90’ Cp, Oy, A, 92(1)7 62(2)» 62(3)» 62(4)» 62(5)} The
difficulty of using this system of equations is that the equations
are very complex and the computation of the Jacobian and
Hessian is very complicated. In the later case, we may define a

problem with 30 unknowns, denoted as the F5, problem, where
the set of unknowns Vjq are a, dy, a;, di, a5, d», P, Q, R, A. B,
C and the sine and cosine of the angles 8,, g, 0, 0, and of the
5 joint angles 6,(i). The equations used are five equations from
each of (9), (12), (14), (15) and (17), together with the
trigonometric identity cos’p+sin’p=1 for each of the angles
used in V3, Note that there is more than 30 equations in
F50.These equations are structurally quite simple compare with
those used in F,;. There is a one-to-one relation between the
unknowns in the F;; problem and the unknowns in the Fj
problem: being given a set of variable for Fj; we may calculate
uniquely the corresponding set of unknowns for F.

For solving the 5 points problem we have decided to use a
hybrid approach: the basic set of unknowns will be the
unknowns of F;; but we will also use the equations of Fs,. The
procedure of this is:

1. The filtering operation will be used first on the

unknowns of Fy;.

2. Interval evaluation will be performed first on the

equations of Fy;.

3. If a given box of F;; is not eliminated, then the

unknowns are converted to the unknowns of Fj.

4. Filtering and interval evaluation of the equations are

performed for the F5, problem.

5. Existence and uniqueness operator will then be used

for F30.

6. Eventual improvement on V3, will be used to obtain a

new set for V.

The detailed implementation of this algorithm is described

below.

SEARCH DOMAIN

The variables in the Fy; problem are a,, d;, while the other
parameters are angles. For the later parameters an evident
choice for the search domain is [-TT 1. For a,, we can restrict
ourselves to positive values (negative solution exist but they
will lead to the same robot design) and, clearly, a, cannot be 0.

As for the maximum value, we have decided to use
roughly the maximum distance D between the precision points
and the origin: hence the search domain for a, has been fixed to
[0.8, D]. For d,, the search domain is fixed to [-D,D].

We have also fixed a search domain for the variables in the
F5o problems, using the same rule. Hence, boxes for the Fy;
problem that lead to variables for F3, outside the search domain
will be rejected.

GETTING THE F3 UNKNOWNS

As mentioned previously there is a one-to-one relation
between the variables V,; of F;; and the variables V3, of Fs,.
Hence being given ranges for V;; we are able to compute
ranges for V3. As U is relatively simple we may compute the
derivatives of each variable in V3, with respect to the variable
of V. We can also compute the interval evaluation of these
derivatives using the intervals of the unknowns. Let Sj; be the
derivative of the variable u; in V3, with respect to the variable v;
in Vy;. If the interval evaluation of one derivative Sj has a
constant sign, for example as the lower bound of the evaluation
is positive, then a better evaluation of the variable u; of V3, may
be obtained. Indeed its minimum will be obtained by fixing the
value of the variable v; of V,; to its lower bound and the
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maximum to the upper bound and the interval evaluation of the
variable u; will be performed with v; having now a constant
value instead of a range, thereby possibly leading to a restricted
range. Note that the computation has to be done recursively as
fixing the value of the variable vjin V,; may imply that another
derivative which was not of constant sign when computed with
the range for the variable v; may have a constant sign when
computed with a constant value for the variable v;.

FILTERING WITH THE 2B METHODS

The 2B method is implemented in F;; by using equation
(12) that may be written as Hja,+d;+H=0, where H;y, Hy are
functions of the others unknowns and of the precision points k.
We first write d;=-H,-Ha, and consider as range for d; the
intersection between the interval evaluation of the left and right
terms. In a second step, if the interval evaluation of H;, does
not include 0, we write a,=(-d;-H)/Hx and update a, in the
same manner.

Now consider two equations (12) obtained for the precision
points k and j. If we subtract these two equations we get (H-
Hija; + (Ha-Hy)=0.

Provided that the interval evaluation of (H;-H,;) does not
include 0, we write ay=-(Hy-Hy)/(H\-Hy;;) and update
eventually the range for a, by the intersection of the current
range of a, with the range of -(Hy-Hy)/(H-Hy;).

On the other hand the 2B method can be used in F3, for any
variables in equations (9) and (12) which are polynomial of
degree 1 in each of the variable.

Note that the 2B method may be used more than once:
indeed as soon as a range for a variable is changed at one step
of the process, other variables that were not modified at a
previous step, may now be improved. However, the rate of
improvement is usually decreasing very fast and hence we
repeat the 2B method only if the change in at least one variable
is greater than a fixed threshold.

FILTERING USING THE SIMPLEX METHOD

A drawback of filtering only with the interval evaluation of
the equations or by using the 2B method is that each equation is
considered independently (these methods are often called
“local” method). It would be interesting to use a method that
consider the whole set of equations or, at least, a subset of the
equations (this type of method is usually called a “global”
method). In our solving procedure we use a global method
initially proposed by Yamamura [28]. Let x; be a variable in
V3o and let x;;, X;; denote the lower and upper bound of the
current range for this variable. We define now a new variable u;
such that u; = x;-x;; which has a range [0,xj,-X;;]. By substituting
x; by u;+x;; for every variable of V3 in equation (9) or (12), we
get a polynomial equation in the variables u;. Each of these
equations F; may be written as:

30
F =G, +) bu, 21
i=1
where b; are constants and G; are non linear function of the
u;’s. Using interval arithmetic, we may find bounds for G;, that
is, L;<G,<U;-

We define now new variables y; as y;= Gj and the set of
equations (9), (12) is now a set of linear equations in the
variables y;, u;. These variables are also submitted to linear

constraints, defined by the previous inequalities and the
inequalities provided by the range on u;. Hence we may use the
simplex method that, in its first step, allows us to determine if
there is a feasible region for the system (otherwise the current
box can be eliminated as it will not include a solution). We may
also use the simplex algorithm as an optimization method that
will try to find successively the minimum and maximum value
of the variable u;. If a value greater than O is obtained for the
minimum and a value lower than Xy-X;; is obtained for the
maximum, then the range on the variable u; is improved. If such
case occurred it is necessary to compute again the value of the
coefficients b;’s together with the interval evaluation of the
Gj’S.

USING THE NEWTON SCHEME

When processing a box we apply systematically the
Newton iterative scheme on the F;y problem with as initial
guess the center of the box and allowing only a limited number
of iteration. If the scheme converge we then apply the inflation
method of Neumaier that enable one to verify that the solution
found by the Newton scheme is a real solution of the system
and to determine a box that include only this solution.

This box may be outside our search domain in which case
we just store the solution for later analysis. If the box is
included in the search domain then the solution is stored
although the solution may not belong to the current box. Hence
before processing a box we examine if one of the solution
intersects the current box or even covers the current box. In the
later case we just skip the processing of the current box. If
there is only an intersection between a solution and the current
box we modify one of the range of the current box in order to
avoid getting the same solution. More precisely if [a,b] is a
range of x; for the current box and [u,v] the corresponding
range for the solution:

1-if u is in [a,b] and v is not in [a,b], then [a,b] is changed
to [u,b]

2-if u is not in [a,b] and v is in [a,b], then [a,b] is changed
to [a,v]

3-if u and v are in [a,b], then we change the range of the
the current box to [a,u] and we create a new box which has the
same ranges than the current box, except for the variable x;
which has the range [v,b].

IMPLEMENTATION AND NUMERICAL EXAMPLE

Our solving program has been written using our C++
interval analysis library ALIAS. This library has a Maple
interface that enable one to produce most of the necessary C++
code directly within Maple.

The solving program is run on a cluster of PC's. A master
program manages the list of boxes and distributes the load
among the various slaves using PVM. As soon as a slave is
free, the master program will send the next box to the slave. If
no slave is available the master program will process the
current box, this processing being stopped as soon as a slave
has emitted a message indicating that it is free. The slaves run
the same slave program which takes as input a box and returns
as soon as either it has been determined that the box does not
include a solution or that a fixed number of new boxes are
present in the list of the slave, in which case these boxes are
returned to the master.
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The five precision points selected have the following Ay;
matrices:

-.6396094375 .1435961208 0.755168803  8.310644971

A =| 6265434807 4717800207 -.6203764008 -1.993959918 |

ht 1 -.4453571983 -.869944691 -2117857403 4.525646630
0 0 0 1

4273095207 -.3048426696 .8511624523  8.462432080
A= 7180580935 -.4576191690 -.5243827518 3.909344844

h2 —1.5493624920 .8352578302 .02334971838 3.781393231
0 0 0 1

2085023533 .2490486651 .9457809106 8.213357066
A, =| 4704189878 -8222864878 3202357065 4.720930002

hs 1 8574571385 -.5116831972 -.0542914469 1.906020548
0 0 0 1

-.2651650429 5540136722 .7891491309 6.610088080
-.8775374786 .2004602816 -.4355957403 -.9786178219

A = -.3995190528 -.8080127018 .4330127018  7.933012701
0 0 0 1
-.5451561411 -.5421432835 .6394415077 7.498628082
A, =| -2838098567 -.5983617170 -.7492764648 -2.362107226
hs

7888325214  -.5899524689 .1723349570 -.5803329915
0 0 0 1

When writing this paper, full results for the five precision
points problem were not available. However, after 5 days of
computation the algorithm has already found 6 solutions that
were inside our search domain and 20 solutions that were
outside. The 6 solutions that are inside the search domain are
reported in Table 1. The 20 solutions outside the search domain
are reported in Table 2.

CONCLUSIONS

In this paper, the geometric design problem of serial-link
spatial robot manipulators with three revolute (R) joints is
studied using an interval method. Five spatial positions and
orientations are defined and the DH parameters of the 3-R
manipulator are computed so that the manipulator will be able
to place its end-effector at these five pre-specified locations.
Interval method is used to search for design solutions of the
design equations within a predetermined domain. At the time of
writing this paper, six design solutions within the search
domain and an additional twenty solutions outside the domain
are found. This is an important new result for a very difficult
problem related to the exact synthesis of spatial manipulators,
that has not solved before. It will be useful because it can give
insight on both the number and the nature of design solutions
for the synthesis of the 3R.
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Table1: The Six Solutionsthat are Inside the Search Domain

#1 #2 #3 #4 #5 #6
6o .775233248e-1 -.558620402 -.887597446 .785398163 1.02815630 467426668
0o -1.35006277 -1.55503283 -1.77055159 1.57079633 -1.32132713 317368142
of] 778968214 7155785230 .857624579 1.04719755 2.39035747 985347661
o, -1.47839137 -1.75037402 -1.52621309 -1.04719755 -2.79636601 -1.53692129
o3 -1.34748462 1.35240628 1.37593855 523598775 -.298230906 1.43586836
0] -.677568166 -.824382301e-1 -.169340204e-2 1.04719755 -1.25152760 -.544689358
3y 3.669802832 1.899572388 1.593159687 2.000000002 1.716349561 4.279703528
a; 3.210372245 1.553570225 1.347395742 1.999999999 3.758534112 4.083721705
a 3.706618339 5.082353433 6.233230137 3.000000001 3.467544655 4.238238536
a3 245411115 1.97078235 1.92083172 1.00000000 2.59356743 -2.34566763
do .1387432034e-1 .5374031497 6756925237 2 1.497453273 -.6540743372
di 1.163390591 -.3839799612 -.1402507203 2 7137420168 1.416388129
dy 3.133574696 5410782491 5.00638551 2.999999999 3.064435366 1.363225287
ds 1.57538769 -.253103746 -1.21138132 1.00000001 -3.14060054 .4598868e-1
d 4.75122014 2.72334255 1.75524749 1.00000000 7.64504452 4.75277166
6:(1) -.917815361 -.569661836 -.832679011 1.04719754 -1.36859116 2.71876708
0,(2) -.404034827 1.35742784 1.19051562 1.04719755 .398669826 978875535
0:(3) -2.44319716 -2.61861726 -2.66945034 523598786 660884293 840817132
0:(4) -1.50428225 -.969955998 -1.07498897 1.61596841 -.932546645 2.79046807
0:(5) 2.29730358 3.05743854 -2.96386783 -.785398162 -.511547197e-1 -1.15675133
0,(1) 171354876 396771184 695755672 785398163 -.322866871 2.42698301
0,(2) 2.60768841 2.31728491 2.57239980 -.785398163 376399945 .820193236
6,(3) 2.75808653 1.93194838 1.65401499 -.785398163 1.97888095 2.58794420
6,(4) .629554463 259163421 .343466040 -.618054498e-10 1.21020939 2.17836416
0,(5) -2.13340824 3.10075861 2.69936837 .785398163 -1.58493203 -2.66693630
6:(1) -1.33918732 2.16147876 2.08098896 1.04719756 -.276517905 2.12652332
6:(2) 1.49897572 -.727847406 -.439250834 -1.04719755 1.82387667 -.454995625
6:(3) -.854266259 1.11440653 1.16238938 1.04719754 -1.24575318 -.801880494
6;(4) -.453046561 1.84747794 1.80566240 1.00202547 520333244 1.52123150
6:(5) 3.13388122 1.82531601 1.85742067 1.57079633 1.75461360 -1.19894860
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Table 2: The Twenty Solutionsthat are Outside the Search Domain

#1 #2 #3 #4 #5
6o 1.17359169 .350585393 -.292390040 -.142843941 1.31232855
Oo 1.34412025 1.89862600 1.78652178 1.91911139 1.11513011
o 1.91230361 -2.35784644 -2.37655993 -.701471841 1.47064063
'} -.937977154 -2.69377363 -2.41642142 -.767524643 -1.62767951
03 -1.41662619 455415593 996433853 1.18822166 -1.35199268
() -.745781731 1.04168476 317250175 .619059260e-1 1.03764795
a9 7.126804225 4.27568738 2.971134202 3.026250654 6.023782775
a -3.707867014 .8880056112 -.4624035243 -1.42860136 2.114621109
a 27.85066177 -3.961430431 1.939695187 -2.34430932 -16.01751106
a3 -2.01055899 -1.64100629 1.56015173 2.24599679 -.350620268
do -.6695703009 2.940274108 2.573218103 2.132502749 1.851980345
d, -24.0706679 -.3707389167 4965308263 1.80980333 4.429964231
[} -14.21480943 10.31621001 8.419468479 -8.785348923 6608324781
ds 12.0995048 16.1870022 5.08611217 3.95906716 -1.92840395
d 2.70904159 -3.3846047 2.96813554 4.84414996 20.1528657
6:(1) -.995452858 578529478 -.102045718 -2.73713153 -1.92972170
6,(2) 2.00164877 2.58446365 3.06137652 419498681 1.07428276
6:3) -2.70905922 1.88226784 2.18270335 -.731924687 2.80839672
6,(4) -1.08037080 1.56341412 638698219 -1.98672560 -2.10695605
6:(5) -2.61159757 -2.34784500 -3.10175623 .348761073 2.44830379
6,(1) 1.28514037 -3.08310587 -.783063040 -.640327467e-1 541734542
6,(2) 948668527 738182258 607244431 -.844897873 1.86208389
6,3) 1.05017352 .830886476e-2 1.25139530 -1.89953929 2.08267817
6,(4) 1.33937359 -2.22159638 -.639168487 -.341148070 1.21065138
6:(5) .880369960 2.08374094 3.05114118 2.85315477 1.01346249
6;(1) -1.63932155 -1.32236390 1.41701205 -.943541356 -1.83934055
6;(2) -.668241253 -2.16887660 -1.34999730 1.78535324 -1.60749241
6:(3) -.198324045 -.891430329 727867650 -2.04330587 -1.44094816
6:(4) -.995363093 -1.37042179 1.13755827 -1.23775513 -1.88333557
6:(5) -1.31229080 -.411928253 1.77900763 -1.21664090 -1.12714850
#6 #1 #8 #9 #10
6o 927600151 1.02999095 228936614 .586377149 2.02157383
Oo 1.54767820 1.64906511 243598637 1.79938177 1.88960132
o -1.66415034 -2.57695764 -1.13349102 -2.47370576 -1.28960042
53 -1.29370977 -.745271301 -2.04995340 2.74389168 -.655366712
[} 1.04735761 .891045311 .818680133 620867904 .665620439
) 105632773 730099304 .702998044 .841836522 .998618002e-1
a9 .8844625893e-2 -.971537803e-1 -1.448107272 3.81236446 13.83458197
a -.8066292833 4.963493871 2027717983 .501006262 11.32977506
a 1.484299168 2.977955859 5.82555414 5.711073585 -.915858381
a3 1.55979013 3.76856410 -.782345593 -.846028499 .291419623
do 2.035728545 9673033976 7.750182015 3.466461772 -4.17632569
d 3.559738666 2956152612 5.369348706 .8677974031 -.7277756598
da -6.395541634 -9.853808516 -.6410145232 -3.447388904 10.86116344
ds -4.19783069 -4.38765427 2.09771516 1.32515612 -4.83191096
d 3.94570694 -2.41707714 -.32855449 -1.68753796 9.26166420
6,(1) 1.62682146 .502843887 -.474452718 672363475 1.86389817
6:(2) 2.26857384 2.09325636 2.65751543 2.33643502 1.53185818
6,(3) 975227772 453400860 -2.84076395 1.42827331 2.06287515
6:(4) 1.91312169 1.32606720 -.692379002 1.82167171 1.88263083
6:(5) 137499569 -1.38964909 -2.24494572 -1.68520039 2.25680144
6,(1) -1.26907727 -1.94613927 2.91236347 -1.00580571 2.47423642
6,(2) 1.01132874 1.77122427 -1.33709575 2.62873797 -1.16467520
6,(3) -.392248449 111866097 -2.04425701 1.67552078 -2.72813665
6,(4) -.726977517 -.567372400 2.32906881 .531420032e-1 -2.70664285
6,(5) -1.18782335 -2.57381227 -1.04200746 -1.40042239 -.692091120
6;(1) -1.22601192 -.788178953 1.54657584 1.06051979 -.448546190
6:(2) 2.21010746 .503958442 392445721 .337340366e-1 488655967
6:(3) 2.82798025 1.76932088 1.71606193 1.36012109 2.96476296
6;(4) -1.12495801 -1.51666623 1.37097954 972497968 -1.62522234
6;(5) -2.79999852 1.85311182 2.44974237 1.92330435 1.60155175
9
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#11 #12 #13 #14 #15
6o 2.05302298 1.36641900 1.34164380 -1.91462601 .864014281
Oo 2.10879236 -1.95348150 1.23703833 -1.49486428 1.83384086
of! 2.26491086 -.756482027 -2.41634764 -.688456290 2.48297335
oD} -1.79915152 -1.09529645 -2.09308102 -.651601726 -1.98733455
03 1.49271830 .835926185 .836784366 641073663 538724277
0] -1.43383475 .545492482 525565339 1.01880571 -.103772235
a .1600848345 1.820282011 1.89935463 -2.617465405 1.751354712
a -1.702207236 .5560028088 -.6317532668 -1.044325929 5.72716366
o) 5.587558626 -1.601129656 1.525986228 -1.090043242 -6.392799157
a3 -1.70323216 -.885874496 -.929809543 -.489824572 -2.82372970
do 4.692743264 2.177907462 2.347897549 3.638019137 2.440896476
d, 10.28982073 -3.25431734 3.102100845 3.124552794 -15.04441253
da 5.471912845 -6.886364081 -7.156971637 8.748927392 -10.29254414
ds -.98992359-1 -.74866297e-1 -.385237823 -4.20459045 7.32349530
d 747862199 -1.09011307 -1.18229780 -.5452035e-1 6.86349095
6:(1) 1.57424012 -1.93210740 -1.16250163 -1.33658343 .363308623
6:(2) -2.96295738 1.52729490 1.70935740 1.81337490 -1.76288735
6,:3) -.905544422 1.67811101 1.50408607 1.36418796 701153441
6:(4) 974382355 -1.06382723 -2.06493707 -2.37210987 1.52801781
6,(5) -.630064274 -2.51778788 -.678353633 -1.34902689 -2.14842832
6,(1) -.853817880 -1.11319280 -1.11730469 1.21152471 -.150219571
6,(2) -2.39916423 -2.56237172 -2.46036481 2.27688668 .695305372
6,(3) -1.00298655 2.65648366 2.69393826 2.85088941 -.336738261
6,(4) -1.10241616 -2.13912080 -2.18432756 2.29109169 -.255847913
6:(5) -.184257553 1.16120196 1.09443778 -.985958189 -.284436577
6(1) 2.94758274 1.03062998 2.90261458 -.577476221 -3.03981571
6:(2) -1.49328345 943337677 1.73776772 -1.62051249 2.96746511
6:(3) -2.32663102 -2.92016982 2.84533060 .228988792e-1 1.01714501
6:(4) 2.66343866 623156777 2.65122839 -.580969055 1.88295702
63(5) -1.33471457 1.99590876 -2.63296598 492764825 -1.87554440
#16 #17 #18 #19 #20
6o 946128931 1.06744276 1.42443877 1.00427511 916076368
Oo -1.38292767 -1.50654078 1.16098641 1.49206501 1.49722981
oy 222963132 -.367090838 242213668 -2.61126521 1.64091400
a, -1.79637794 -2.58056397 -.911709880 -. 778875246 -2.91343232
03 1.49495006 .693470188 .588524816 1.29724338 1.56866510
[0) -1.00187384 -.678057038e-1 965486696 -.730254557 -1.23410648
a9 15.47654258 6.529515575 5.396430835 6.147850817 5.11206029
a; 9.453350669 17.71415622 -2.195047774 -9.459050441 13.49236541
a -10.58316335 1.575019224 10.17630488 -4.259134281 4.956707472
a3 -5.26523936 -6.74819300 -1.67817804 -5.89701657 10.1276314
do 15.38042453 -10.38341138 2.317895327 -4.290465927 -3.98137681
di -66.13075549 -18.62759207 3.414708243 50.00923713 7.016307489
dy 47.3481895 18.00853108 7.812650287 51.82135966 -35.78528046
ds 1.16852754 5.41643391 -14.0345036 22.2732549 31.9844308
d -12.6649384 -.61162223 27.6477603 -4.99668554 -4.70704071
6,(1) -2.61998683 -2.62304591 1.76592587 974499806 1.52127262
6:(2) 2.78515628 -1.35930588 -2.86076872 -1.47643365 -1.15373351
6:(3) 1.54497786 -2.02446506 -.957408939 -.299537667 184596289
6,(4) -1.72624727 -2.55819802 760710378 .875099098 1.50392961
6:(5) -3.03432324 -2.20139415 389883118 -.525980262e-1 293318748
6,(1) 1.17300655 1.90009881 -.985519437 2.93719232 2.24794540
6,(2) -1.23707796 -2.05252938 3.03536348 -2.67453741 -2.34164688
6,(3) -1.59599660 .846294187 2.95956937 2.74024239 -.502361134
6,(4) .226573061 .657678558 -2.06400445 2.51977153 998789140
6,(5) 3.02960299 -2.65773057 -1.36410453 -2.76391158 -3.02128679
6(1) -2.90317444 2.96758641 490925524 1.44624621 -1.64601022
6:(2) 3.14132240 -2.65890997 -.199768025 1.45549735 .658659166e-1
6:(3) 1.95972936 718407721 -2.79854815 -.739469468 1.61870876
6:(4) 2.54772866 1.61757990 -.249798958 1.74702713 -.518615869
6:(5) -2.88247034 -2.39157160 2.32856680 -.646110298e-1 .378326100
10

Copyright © 2002 by ASME




	Eric Lee, Constantinos Mavroidis*

