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ABSTRACT 
In this paper, the geometric design problem of serial-link 

robot manipulators with three revolute (R) joints is solved for 
the first time using an interval analysis method. In this problem, 
five spatial positions and orientations are defined and the 
dimensions of the geometric parameters of the 3-R manipulator 
are computed so that the manipulator will be able to place its 
end-effector at these pre-specified locations. Denavit and 
Hartenberg parameters and 4x4 homogeneous matrices are used 
to formulate the problem and obtain the design equations and 
an interval method is used to search for design solutions within 
a predetermined domain. At the time of writing this paper, six 
design solutions within the search domain and an additional 
twenty solutions outside the domain have been found. 
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INTRODUCTION 

The calculation of the geometric parameters of a multi-
articulated mechanical or robotic system so that it guides a rigid 
body in a number of specified spatial locations or precision 
points is known as the Rigid Body Guidance Problem. In this 
paper, it will also be called the Geometric Design Problem. The 
precision points are described by six parameters: three for 
position and three for orientation. This problem has been 
studied extensively for planar mechanisms and robotic systems 
and has recently drawn much attention to researchers for spatial 
multi-articulated systems. Solution techniques for the geometric 
design problem may be classified into two categories: exact 
synthesis and approximate synthesis. 

Exact synthesis methods result in mechanisms and 
manipulators, which guide a rigid body exactly through the 
specified precision points. Solutions in the exact synthesis exist 
only if the number of independent design equations obtained by 
the precision points is less than or equal to the number of 
design parameters. The number of precision points that may be 
prescribed for a given mechanism or manipulator is limited by 
the system type [1]. This number depends on the number of 
design parameters and the type of joints and can be calculated 
using Tsai and Roth�s formula [2], [3]. 

In approximate synthesis, using an optimization algorithm, 
a mechanism is found that, although not guiding a rigid body 
exactly through the desired poses, it optimizes an objective 
function defined using information from all the desired poses. 
Approximate synthesis is mainly used in over-determined 
geometric design problems where more precision points are 
defined than required for exact synthesis and therefore no exact 
solution exists. A complete listing of the extensive amount of 
research that has been performed in the geometric design of 
spatial mechanisms and robotic systems, both exact and 
approximate, can be found in [4]. 

The equations for the geometric design problem of 
mechanisms and manipulators are mathematically represented 
by a set of non-linear, highly coupled multivariate polynomial 
equations. The solutions of these equations can be obtained by 
either numerical methods or algebraic methods [5]. Algebraic 
methods solve the polynomial system by eliminating all but one 
variable that gives a polynomial equation in one variable. All 
the solutions are then obtained by solving for the roots of the 
final polynomial. While algebraic solutions are usually very 
difficult to obtain, numerical methods serve as an alternative to 
solve these nonlinear equations. Examples of these methods are 
polynomial continuation and interval methods.  
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Using algebraic methods, the exact synthesis of planar 
mechanisms for rigid body guidance has been studied 
extensively by many researchers and is described in most 
textbooks on mechanism synthesis [6], [7]. The exact synthesis 
of a few spatial mechanisms and manipulators has been solved 
using algebraic methods. The spatial geometric design 
problems that captured the most attention were the spatial 
revolute-revolute (R-R) [8]-[11] and the cylindrical-cylindrical 
(C-C) manipulators [12]-[14]. Other than these two dyads, the 
geometric design problem has been solved algebraically for the 
following spatial manipulators/mechanisms. Innocenti [15] 
solved the geometric design problem for the sphere-sphere 
binary link. Neilsen and Roth [14] solved the slider-slider 
sphere dyad, cylinder-cylinder binary link, revolute-slider-
sphere dyad and cylinder-sphere binary link design problem. 
McCarthy [16] also solved the exact synthesis problem for 
several types of dyads. Even though algebraic methods had 
been demonstrated to be very effective in solving several 
geometric design problems for spatial mechanical systems there 
exist many types of robotic and mechanical systems that are 
used very often in practical applications for which the exact 
synthesis of the geometric design problem has not been solved 
before. The main reason for this is the high complexity of the 
non-linear polynomial design equations that are obtained.  

Polynomial continuation methods have been used 
extensively in the geometric analysis and design of mechanisms 
and robotic systems [17].  Roth and Freudenstein [18] were the 
first to use continuation methods to solve polynomial systems 
obtained in the kinematic synthesis of mechanisms. Morgan 
and Wampler [19] and Wampler, Morgan and Sommese [20] 
solved the path following design problem of 4R closed loop 
planar mechanisms using continuation method. Dhingra, Cheng 
and Kohli [24] solved several design problems for six link, 
slider crank and four-link planar mechanisms using polynomial 
continuation methods. Lee and Mavroidis [22] used 
continuation methods to solve the spatial 3R geometric design 
problem when 3 precision points are specified. 

Interval analysis is a numerical method based on interval 
arithmetic [23]. It was developed for error control [24] and had 
been used in optimization. It can be used as a method for 
solving system of non-linear multivariate polynomial equations 
[25], but it has never been used in kinematic design of spatial 
mechanisms. 

In this paper, the geometric design problem of 3R spatial 
manipulators when five precision points are defined is solved 
for the first time using an interval analysis method. Prior work 
related to the synthesis of spatial 3R chains is very limited.  
Tsai [2] and Roth [9] used screw theory to obtain the design 
equations for this problem but did not solve them. Lee and 
Mavroidis [22] used continuation methods to solve the three 
precision point synthesis problem for the spatial 3R when 6 
design parameters are selected as free choices. They considered 
two different schemes for free choice selection and showed that 
in both cases the 3R synthesis problem using 3 precision points 
can have at the most 8 distinct solutions. In this paper, we solve 
the more difficult synthesis problem for the 3R when five 
precision points are selected. In this case no free choices are 
selected and hence, the number of design unknowns to 
calculate is much larger than in the cases with 3 or 4 precision 
points. Five spatial positions and orientations are defined and 
the dimensions of the geometric parameters of the 3-R 

manipulator are computed so that the manipulator will be able 
to place its end-effector at these five pre-specified locations. 
Denavit and Hartenberg (DH) parameters and 4x4 
homogeneous matrices are used to formulate the problem and 
obtain the design equations. Interval method is used to search 
for design solutions of the design equations within a 
predetermined domain. At the time of writing this paper, six 
design solutions within the search domain and an additional 
twenty solutions outside the domain are found.  

INTERVAL METHOD 
The basic principle of interval method relies on interval 

arithmetic to determine bounds for the minimum and maximum 
value of a given function when the unknowns lie in some given 
ranges. One of the possible ways to obtain these bounds is to 
replace the mathematical operators of the function by their 
equivalent in term of interval arithmetic. For example if we 
consider the function f(x)=x2-x when x lie in the range [2,3], 
then we may write: 

[ ]( ) [ ] [ ] [ ] [ ] [ ]2f 2,3 2,3 2,3 4,9 2,3 1,7= − = − =   (1) 

The value we get here are lower and upper bound for the 
real value of the minimum and maximum of the function. In 
other words we guarantee that whatever is the value of x in the 
range [2,3], then: 

( )1 f x 7≤ ≤     (2) 

An interesting feature of interval arithmetic is that it can be 
implemented to take into account round-off errors i.e. the 
bounds we get are guaranteed to include the exact value of the 
minimum and maximum of the function. Furthermore interval 
arithmetic can be used for almost any mathematical operator 
such as the trigonometric functions. 

On the other hand a bad point is that the bounds we get 
may be over-estimated: in our example the real bounds are 
[2,6]. But the error decreases with the width of the input ranges. 
A basic solving algorithm relying on interval arithmetic will 
use the fact that if the bounds returned by the interval 
evaluation of an equation does not include 0, then the equation 
has no solution in the range of the unknowns (e.g. in our 
example we can insure that there is no root of the equation x2-
x=0 for x in the range [2,3]). 

In a solving algorithm based on interval analysis we will 
assume that we are looking for all the solutions within given 
ranges for the unknowns (a set of range for the unknowns will 
be called a "box") and the algorithm will use a list of boxes, 
initialized with the box in which we are looking for solutions. 
The algorithm will proceed along the following steps: 

1. Compute the interval evaluation of the equations for 
the current box. 

2. If one of the interval evaluation does not include 0, 
then there is no solution in this box and we consider 
the next box in the list. 

3. If all the interval evaluation of the equations include 0: 
• If the width of at least one range in the box is 

greater than a given threshold, then bisect one of 
the range of the box: 2 new boxes will be created 
and will be put at the end of the list. 

• If the width of all the ranges in the box is lower 
than the threshold, then store the box as a 
solution. 
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• Restart at 1 with the next box in the list. 
4. Stop if all the boxes in the list have been considered. 
Such algorithm is general in the sense that it can deal with 

equations involving any mathematical operators  (we are not 
restricted for example to polynomial equations). 

It must be noted that the previous algorithm can be 
implemented in a distributed way. Indeed the treatment of a box 
does not depend on the other boxes in the list. Hence a parallel 
implementation may be used, with a master sending the current 
box to another computer that will process it. 

But there are many ways to improve this basic algorithm. 
Two main types of operators may be used: 

(1) Filtering operators: these operators take as input a box 
and will return either the same box or a smaller box i.e. a box in 
which at least one of the range has a lower width than the one 
of the input box. In the latter case the eliminated parts of the 
input box do not include a solution. 

(2) Existence and uniqueness operator: these operators take 
as input a box and may return a box with the following 
properties: 

(i)  There is a solution in this box. 
(ii)  This solution is unique. 
(iii)  The solution can be computed safely with an iterative 

algorithm with as initial guess any point within the 
box.  

There are numerous operators that can be used. As an 
example of filtering operator let us mention the 2B method [26] 
that we will illustrate on the example. Let us define 2 new 
variables y1 and y2 with y1=x2 and y2=x. Clearly if f(x)=x2-x has 
a solution for x within some given range, then we will have y1= 
y2. As x lie in a range, then y1, y2 also lie in a range: if x is in 
[2,3], then y1, y2 are in [4,9], [2,3]. A solution of the equation 
may be found only at the intersection of y1 and y2, which is 
empty in our case, meaning that there is no solution for the 
equation. If we have assumed that x was in [-4,1], then y1, y2 
are in [0,16], [-4,1] and a possible solution lie in the range 
[0,1]. As y2 is x we may reduce the interval for x from [-4,1] to 
[0,1]. 

Existence and uniqueness operator are very useful as they 
guarantee the solution and enable one to avoid a large number 
of bisection. An example of such operator is the Kantorovitch 
operator [27]. This operator needs to be able to compute the 
Jacobian and Hessian matrices of the system of equations and, 
provided that some conditions on the Jacobian and Hessian are 
fulfilled, allows to state that a unique solution exists within 
some given box and that this solution can be found with the 
Newton scheme. 

PROBLEM FORMULATION 
In this work, the relative position of links and joints in 

mechanisms and manipulators is described using the variant of 
DH notation that was introduced by Pieper and Roth [29]. In 
this formulation, the parameters ai, αi, di and θi are defined so 
that: ai is the length of link i, αi is the twist angle between the 
axes of joints i and i+1, di is the offset along joint i and θi is the 
rotation angle about joint axis i as shown in Figure 1. When 
joint i is revolute, then ai, αi and di are constants and are called 
structural parameters, while the value for θi depends on the 
configurations and is called the joint variable. 

 
Figure 1: Denavit and Hartenberg Parameters 

Reference frame Ri is attached at link i and its origin Oi is 
the intersection point of the common perpendicular between 
axes i and i-1 with joint axis i. Unit vector zi of frame Ri is 
along joint axis i unit vector xi is along the common 
perpendicular of joint axes i and i-1. Positive directions for xi 
and zi are arbitrarily selected. (Note: letters in bold indicate 
vectors and matrices.) The homogeneous transformation matrix 
Ai that describes reference frame Ri+1 into Ri, and its inverse 
matrix Ai

-1 are found to be equal to: 
i i

i i i i i i

i i i i i i

i i i i i i i i

i i i i i i α i α α i α

i i α i α α i α

c s c s s a c c s 0 -a
s c c c s a s -s c c c s -d s
0 s c d s s -c s c -d c
0 0 0 1 0 0 0 1

α α

α α

α α

−

−   
   −   = =
   
      
   

1
i iA A

 (3) 

where: ci=cos(θi), si=sin(θi), cαi=cos(αi) and sαi=sin(αi). 
Consider the three-link open loop spatial chain with 

revolute (R) joints shown in Figure 2. Two frames are selected 
arbitrarily: a fixed reference frame R0 and a moving end-
effector frame Re. Frame Re will be defined in three distinct 
spatial locations.  In addition to the three links of the 
manipulator, a stationary virtual link 0 is also assumed between 
axis z0 of frame R0 and the first revolute joint axis. Frames are 
defined at each link using the DH procedure described above. 
Frame R1 that is stationary is defined attached at link 0 having 
its z1 axis along the first revolute joint and its x1 axis along the 
common perpendicular of z0 and z1. Frame Ri+1 is attached at 
the tip of link i (where i=1, 2, 3). The axis z4 is coincident with 
the axis ze of the end-effector frame. The axis x4 is defined 
along the common perpendicular of z3 and ze and the origin O4 
of R4 is the point of intersection of ze with its common 
perpendicular with z3. So frames R4 and Re have the same z-
axis.  

The homogeneous transformation matrices Ai, with i=0, 1, 
2, 3 describe frame Ri+1 relative to Ri. The homogeneous 
transformation matrix Ac relates Re to R4. The relationship 
between these frames is a screw displacement: a rotation φ 
around the z4 axis and a translation d along the z4 axis. 
Homogeneous transformation matrix Ah relates directly the 
end-effector reference frame Re to the frame R0. Matrices Ac 
and Ah are written as: 
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1 1 1 d

2 2 2 d

3 3 3 d

c -s 0 0 l m n x
s c 0 0 l m n y
0 0 1 d l m n z
0 0 0 1 0 0 0 1

φ φ

φ φ

   
   
   = =
   
      
   

c hA A  (4) 

where l=[l1, l2, l3]
T, m=[m1, m2, m3]

T, and n=[n1, n2, n3]
T, 

are the 3 by 1 vectors of the direction cosines of Re in R0. The 
parameters xd, yd, and zd are the coordinates of the origin of Re 
in R0. 

 
Figure 2:  3R Open loop Spatial Manipulator 

An important feature in the matrix definition above is the 
use of matrix Ac. In general, six parameters are needed to 
describe one reference frame relative to another.  The DH 
parameterization succeeds in using four parameters for the 
relative transformation between frames within the serial 
kinematic chain itself only after the various motion axes are 
fixed. However, a special treatment is required, either at the 
origin or at the end-effector of the serial chain, the latter case 
being used in this paper. Assuming directions for axes z1, z2 
and z3 relative to the fixed reference frame, then the 
displacement described by the product of matrices A0A1A2 can 
be treated as a displacement of the fixed reference frame to the 
location of frame R3. At this stage, a general six-parameter 
displacement is needed to transform frame R3 into the end-
effector frame Re. The transformations described by the 
matrices A3 and Ac provide the complete set of six parameters.  

The loop closure equation of the manipulator is used to 
obtain the design equations: 

A0 A1 A2 A3Ac = Ah  (5) 
Equation (5) is a 4 by 4 matrix equation that results in six 

independent scalar equations. The right side of Equation (5), 
i.e. the elements of matrix Ah, is known since they represent the 
position and orientation of frame Re at each precision point. 
The left side of Equation (5) contains all the unknown 
geometric parameters of the manipulator which are the DH 
parameters ai, αi, di and θi for i=0, 1, 2, 3, and parameters φ and 
d of matrix Ac. Joint angles θ1, θ2 and θ3 have a different value 
for each precision point while all other 15 geometric parameters 
are constant. Thus for five precision points there are 30 
unknown parameters in total, and there are 30 scalar equation 
that are obtained.  Therefore, the maximum number of 
precision points for exact synthesis is five.  

DESIGN EQUATIONS AT EACH PRECISION POINT 
Using the loop closure equation of the manipulator 

(Equation 5), six scalar design equations are obtained at each 

precision point.  The unknowns in these equations are the 
manipulator constant structural parameters and the joint 
variables θ1, θ2 and θ3, which vary from precision point to 
precision point. To simplify the solution process, we eliminate 
the joint variables from the design equations at each precision 
point. Once the joint variables are eliminated, the new set of 
equations contains only unknowns that do not change from 
precision point to precision point. In this way, for each new 
precision point that is defined, new equations are added that 
have exactly the same form as for the first precision point. In 
this section we present the method to obtain design equations 
devoid of the joint variables. 

From Equation (3), it can be seen that the 3rd and 4th 
columns of matrix Ai

-1 are independent of joint angle θi. 
Therefore, if Equation (5) is written as:  

A1 A2 = A0
-1 Ah Ac

-1 A3
-1  (6) 

then the scalar equations that are obtained by equating the 
left and right side of the third and fourth columns of matrix 
Equation (6) will be devoid of joint angle θ3. 

From the third column of Equation (6), three scalar 
equations are obtained: 

2 1 2 1 21 2 1 2 1 0 1 0 2s c s c s s c s c s c L s Lα α α α α+ + = +      (7) 

2 1 2 1 2 0 0 01 2 1 2 1 0 1 0 2 3s s s c s c c s c c -c s L c c L s Lα α α α α α α α− − = + +         (8) 

1 2 1 2 0 0 02 0 1 0 2 3-s s c c c s s L s c L c Lα α α α α α α+ = − +         (9) 

where Li=liA+miB+niC, with i = 1, 2, 3, and A=sφsα3, B= 
cφsα3 and C=cα3 with cφ=cos(φ) and sφ=sin(φ). 

From the fourth column of Equation (6), another three 
scalar equations are obtained: 

( ) ( )
1 12 1 2 2 1 2 1 1 1 1

0 1 0 2 0

a c c a c s s a c d s s
  c M x s M y a

α α− + +
= + + + −

  (10) 

( )
( ) ( )

1 1 0

0 0 0

2 1 2 2 1 2 2 1 1 1 0 1

0 2 3 0

a s c a c c s d s c a s -c s M x
c c M y s M z d s

α α α

α α α

+ − + = +
+ + + + −

 (11) 

( )
( ) ( )

1 1 0

0 0 0

2 2 1 2 0 1

0 2 3 0

a s s d d c s s M x
s c M y c M z d c

α α α

α α α

+ + = +
− + + + −

 (12) 

where: Mi=liP+miQ+niR, with i = 1, 2, 3 and P=-a3cφ-
d3sφsα3, Q=a3sφ-d3cφsα3 and R=-d3cα3-d. 

Note that Equations (9) and (12) are free of θ1, thus, c2 and 
s2 can be computed by these two equations and their analytical 
expressions are free of θ1 also. Using this result, θ2 is 
essentially eliminated, for c2 and s2 can be eliminated from any 
equation by substituting the above result. 

The final step is to obtain equations free of θ1. To obtain 
such equations, we will consider the matrix Equation (6) again, 
written here as, 

AL= AR    (13) 
where AL= A1 A2 and AR= A0

-1 Ah Ac
-1 A3

-1. 
We will denote the third column vector of AL and AR as UL 

and UR, respectively, and the fourth column vector of AL and 
AR as VL and VR, respectively (Note: vectors UL, UR, VL and 
VR are 3 by 1; i.e. we neglect the fourth component which is 
the homogeneous coordinate). Then, we form the following 
three vector equations: 

⋅ = ⋅L L R RU V U V    (14) 

⋅ = ⋅L L R RV V V V    (15) 

× = ×L L R RU V U V   (16) 
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Equations (14), (15) and (16) were originally proposed by 
Raghavan and Roth to solve the inverse kinematics problem of 
general six degree of freedom serial link manipulators [5]. The 
same equations are used here for the geometric design of 3R 
manipulators. 

Equations (14), (15) and (16) give a total of five scalar 
equations. For Equation (16), only the third component is used, 
i.e. 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

−

= −
L L L L

R R R R

U 1 V 2 U 2 V 1

U 1 V 2 U 2 V 1
  (17) 

It was found that Equations (14), (15) and (17) are 
naturally devoid of θ1. With θ2 eliminated by using the 
expressions of c2 and s2 calculated from Equations (9) and (12), 
the three equations are free of θ1, θ2 and θ3 and have, 
respectively, the following form: 

( )
j k

j k

X ,X 0 0 1 j k
X ,X W

f , , X X 0
∈

α θ α =∑  (18) 

( )
j k

j k

X ,X 0 0 1 j k
X ,X W

g , , X X 0
∈

α θ α =∑  (19) 

( )
j k

j k

X ,X 0 0 1 j k
X ,X W

h , , X X 0
∈

α θ α =∑  (20) 

Where W={λA, λB, λC, λcα2, P, Q, R, d2, a0, a1, d0, d1, 1} 
and λ=a2/sα2. 

Note that Equations (18), (19) and (20) depend also on the 
parameters li, mi, ni, (i=1, 2, 3) and x, y and z, which are 
defined at each precision point and vary from precision point to 
precision point.  Therefore, each precision point contributes 
three design equations (i.e. Equation (18), (19) and (20)), which 
are devoid of the joint variables and have as unknowns only the 
15 constant structural parameters. 

SOLUTION PROCEDURE USING INTERVAL METHOD 
To solve the five points synthesis problem we propose to 

use an interval analysis based approach. Interval analysis 
requires a careful analysis of the problem to solve. Indeed there 
are numerous ways to transform a given problem in a set of 
equations with different number of unknowns and various 
complexity for the equations. Finding the more appropriate 
formulation of the problem is one of the main difficulties when 
using interval analysis. Indeed one may assume that having the 
least number of unknowns is the best choice as this will reduce 
the number of bisection. This is often true but may be wrong if 
the associated equations are very complex: indeed due to the 
over-estimation of interval arithmetic, complex equations will 
require a large number of bisection before we can insure that 
there is no solution within a given box. On the other hand, 
having more unknowns but simpler equations may lead to very 
accurate interval evaluation of the equations and, on the whole, 
to a better efficiency. 

In our problem, we may consider either a problem with the 
smallest number of unknowns or a problem with the maximum 
number of unknowns. In the former case, we use all five 
Equation (9), (12) and one of five Equation (17). This problem 
is denoted the F11 problem and we have a set of 11 unknowns 
V11={a2, d1, θ0, α0, α1, α2, θ2(1), θ2(2), θ2(3), θ2(4), θ2(5)}. The 
difficulty of using this system of equations is that the equations 
are very complex and the computation of the Jacobian and 
Hessian is very complicated. In the later case, we may define a 

problem with 30 unknowns, denoted as the F30 problem, where 
the set of unknowns V30 are a0, d0, a1, d1, a2, d2, P, Q, R, A. B, 
C and the sine and cosine of the angles θ0, α0, α1, α2 and of the 
5 joint angles θ2(i). The equations used are five equations from 
each of (9), (12), (14), (15) and (17), together with the 
trigonometric identity cos2ρ+sin2ρ=1 for each of the angles 
used in V30. Note that there is more than 30 equations in 
F30.These equations are structurally quite simple compare with 
those used in F11. There is a one-to-one relation between the 
unknowns in the F11 problem and the unknowns in the F30 
problem: being given a set of variable for F11 we may calculate 
uniquely the corresponding set of unknowns for F30. 

For solving the 5 points problem we have decided to use a 
hybrid approach: the basic set of unknowns will be the 
unknowns of F11 but we will also use the equations of F30. The 
procedure of this is: 

1. The filtering operation will be used first on the 
unknowns of F11. 

2. Interval evaluation will be performed first on the 
equations of F11. 

3. If a given box of F11 is not eliminated, then the 
unknowns are converted to the unknowns of F30. 

4. Filtering and interval evaluation of the equations are 
performed for the F30 problem. 

5. Existence and uniqueness operator will then be used 
for F30. 

6. Eventual improvement on V30 will be used to obtain a 
new set for V11. 

The detailed implementation of this algorithm is described 
below. 

SEARCH DOMAIN 
The variables in the F11 problem are a2, d1, while the other 

parameters are angles. For the later parameters an evident 
choice for the search domain is [-π, π]. For a2, we can restrict 
ourselves to positive values (negative solution exist but they 
will lead to the same robot design) and, clearly, a2 cannot be 0. 

As for the maximum value, we have decided to use 
roughly the maximum distance D between the precision points 
and the origin: hence the search domain for a2 has been fixed to 
[0.8, D]. For d1, the search domain is fixed to [-D,D]. 

We have also fixed a search domain for the variables in the 
F30 problems, using the same rule. Hence, boxes for the F11 
problem that lead to variables for F30 outside the search domain 
will be rejected. 

GETTING THE F30 UNKNOWNS 
As mentioned previously there is a one-to-one relation ψ 

between the variables V11 of F11 and the variables V30 of F30. 
Hence being given ranges for V11 we are able to compute 
ranges for V30. As ψ is relatively simple we may compute the 
derivatives of each variable in V30 with respect to the variable 
of V11. We can also compute the interval evaluation of these 
derivatives using the intervals of the unknowns. Let Sij be the 
derivative of the variable ui in V30 with respect to the variable vj 
in V11. If the interval evaluation of one derivative Sij has a 
constant sign, for example as the lower bound of the evaluation 
is positive, then a better evaluation of the variable ui of V30 may 
be obtained. Indeed its minimum will be obtained by fixing the 
value of the variable vj of V11 to its lower bound and the 
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maximum to the upper bound and the interval evaluation of the 
variable ui will be performed with vj having now a constant 
value instead of a range, thereby possibly leading to a restricted 
range. Note that the computation has to be done recursively as 
fixing the value of the variable vj in V11 may imply that another 
derivative which was not of constant sign when computed with 
the range for the variable vj may have a constant sign when 
computed with a constant value for the variable vj. 

FILTERING WITH THE 2B METHODS 
The 2B method is implemented in F11 by using equation 

(12) that may be written as H1ka2+d1+H2k=0, where H1k, H2k are 
functions of the others unknowns and of the precision points k. 
We first write d1=-H2k-H1ka2 and consider as range for d1 the 
intersection between the interval evaluation of the left and right 
terms. In a second step, if the interval evaluation of H1k does 
not include 0, we write a2=(-d1-H2k)/H1k and update a2 in the 
same manner. 

Now consider two equations (12) obtained for the precision 
points k and j. If we subtract these two equations we get (H1k-
H1j)a2 + (H2k-H2j)=0. 

Provided that the interval evaluation of (H1k-H1j) does not 
include 0, we write a2=-(H2k-H2j)/(H1k-H1j) and update 
eventually the range for a2 by the intersection of the current 
range of a2 with the range of -(H2k-H2j)/(H1k-H1j). 

On the other hand the 2B method can be used in F30 for any 
variables in equations (9) and (12) which are polynomial of 
degree 1 in each of the variable. 

Note that the 2B method may be used more than once: 
indeed as soon as a range for a variable is changed at one step 
of the process, other variables that were not modified at a 
previous step, may now be improved. However, the rate of 
improvement is usually decreasing very fast and hence we 
repeat the 2B method only if the change in at least one variable 
is greater than a fixed threshold. 

FILTERING USING THE SIMPLEX METHOD 
A drawback of filtering only with the interval evaluation of 

the equations or by using the 2B method is that each equation is 
considered independently (these methods are often called 
�local� method). It would be interesting to use a method that 
consider the whole set of equations or, at least, a subset of the 
equations (this type of method is usually called a �global� 
method). In our solving procedure we use a global method 
initially proposed by Yamamura [28]. Let xi be a variable in 
V30 and let xi1, xi2 denote the lower and upper bound of the 
current range for this variable. We define now a new variable ui 
such that ui = xi-xi1 which has a range [0,xi2-xi1]. By substituting 
xi by ui+xi1 for every variable of V30 in equation (9) or (12), we 
get a polynomial equation in the variables ui. Each of these 
equations Fj may be written as: 

30

j j i i
i 1

F G b u
=

= +∑   (21) 

where bi are constants and Gj are non linear function of the 
ui�s. Using interval arithmetic, we may find bounds for Gj, that 
is, 

j j jL G U≤ ≤ . 

We define now new variables yj as yj= Gj and the set of 
equations (9), (12) is now a set of linear equations in the 
variables yj, ui. These variables are also submitted to linear 

constraints, defined by the previous inequalities and the 
inequalities provided by the range on ui. Hence we may use the 
simplex method that, in its first step, allows us to determine if 
there is a feasible region for the system (otherwise the current 
box can be eliminated as it will not include a solution). We may 
also use the simplex algorithm as an optimization method that 
will try to find successively the minimum and maximum value 
of the variable ui. If a value greater than 0 is obtained for the 
minimum and a value lower than x2i-x1i is obtained for the 
maximum, then the range on the variable ui is improved. If such 
case occurred it is necessary to compute again the value of the 
coefficients bi�s together with the interval evaluation of the 
Gj�s. 

USING THE NEWTON SCHEME 
When processing a box we apply systematically the 

Newton iterative scheme on the F30 problem with as initial 
guess the center of the box and allowing only a limited number 
of iteration. If the scheme converge we then apply the inflation 
method of Neumaier that enable one to verify that the solution 
found by the Newton scheme is a real solution of the system 
and to determine a box that include only this solution. 

This box may be outside our search domain in which case 
we just store the solution for later analysis. If the box is 
included in the search domain then the solution is stored 
although the solution may not belong to the current box. Hence 
before processing a box we examine if one of the solution 
intersects the current box or even covers the current box. In the 
later case we just skip the processing of the current box.  If 
there is only an intersection between a solution and the current 
box we modify one of the range of the current box in order to 
avoid getting the same solution. More precisely if [a,b] is a 
range of xi for the current box and [u,v] the corresponding 
range for the solution: 

1-if u is in [a,b] and v is not in [a,b], then [a,b] is changed 
to [u,b] 

2-if u is not in [a,b] and v is in [a,b], then [a,b] is changed 
to [a,v] 

3-if u and v are in [a,b], then we change the range of the 
the current box to [a,u] and we create a new box which has the 
same ranges than the current box, except for the variable xi 
which has the range [v,b]. 

IMPLEMENTATION AND NUMERICAL EXAMPLE 
Our solving program has been written using our C++ 

interval analysis library ALIAS. This library has a Maple 
interface that enable one to produce most of the necessary C++ 
code directly within Maple. 

The solving program is run on a cluster of PC's. A master 
program manages the list of boxes and distributes the load 
among the various slaves using PVM. As soon as a slave is 
free, the master program will send the next box to the slave. If 
no slave is available the master program will process the 
current box, this processing being stopped as soon as a slave 
has emitted a message indicating that it is free. The slaves run 
the same slave program which takes as input a box and returns 
as soon as either it has been determined that the box does not 
include a solution or that a fixed number of new boxes are 
present in the list of the slave, in which case these boxes are 
returned to the master. 



 7 Copyright © 2002 by ASME 

The five precision points selected have the following Ahi 
matrices: 

-.6396094375 .1435961208 0.755168803 8.310644971
-.6265434807 .4717800207 -.6203764008 -1.993959918
-.4453571983 -.869944691 -.2117857403 4.525646630

0 0 0 1

 
 =  
 
 

h1A
,  

.4273095207 -.3048426696 .8511624523 8.462432080

.7180580935 -.4576191690 -.5243827518 3.909344844

.5493624920 .8352578302 .02334971838 3.781393231
0 0 0 1

 
 =  
 
 

h2A
,  

.2085023533 .2490486651 .9457809106 8.213357066
-.4704189878 -.8222864878 .3202357065 4.720930002
.8574571385 -.5116831972 -.0542914469 1.906020548

0 0 0 1

 
 =  
 
 

h3A
,   

-.2651650429 .5540136722 .7891491309 6.610088080
-.8775374786 .2004602816 -.4355957403 -.9786178219
-.3995190528 -.8080127018 .4330127018 7.933012701

0 0 0 1

 
 =  
 
 

h4A
,  

-.5451561411 -.5421432835 .6394415077 7.498628082
-.2838098567 -.5983617170 -.7492764648 -2.362107226
.7888325214 -.5899524689 .1723349570 -.5803329915

0 0 0 1

 
 =  
 
 

h5A
 

When writing this paper, full results for the five precision 
points problem were not available. However, after 5 days of 
computation the algorithm has already found 6 solutions that 
were inside our search domain and 20 solutions that were 
outside. The 6 solutions that are inside the search domain are 
reported in Table 1. The 20 solutions outside the search domain 
are reported in Table 2. 

CONCLUSIONS 
In this paper, the geometric design problem of serial-link 

spatial robot manipulators with three revolute (R) joints is 
studied using an interval method. Five spatial positions and 
orientations are defined and the DH parameters of the 3-R 
manipulator are computed so that the manipulator will be able 
to place its end-effector at these five pre-specified locations. 
Interval method is used to search for design solutions of the 
design equations within a predetermined domain. At the time of 
writing this paper, six design solutions within the search 
domain and an additional twenty solutions outside the domain 
are found. This is an important new result for a very difficult 
problem related to the exact synthesis of spatial manipulators, 
that has not solved before. It will be useful because it can give 
insight on both the number and the nature of design solutions 
for the synthesis of the 3R.  
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Table 1: The Six Solutions that are Inside the Search Domain 

 #1 #2 #3 #4 #5 #6 
θ0 .775233248e-1 -.558620402 -.887597446 .785398163 1.02815630 .467426668 
α0 -1.35006277 -1.55503283 -1.77055159 1.57079633 -1.32132713 .317368142 
α1 .778968214 .755785230 .857624579 1.04719755 2.39035747 .985347661 
α2 -1.47839137 -1.75037402 -1.52621309 -1.04719755 -2.79636601 -1.53692129 
α3 -1.34748462 1.35240628 1.37593855 .523598775 -.298230906 1.43586836 
φ -.677568166 -.824382301e-1 -.169340204e-2 1.04719755 -1.25152760 -.544689358 
a0 3.669802832 1.899572388 1.593159687 2.000000002 1.716349561 4.279703528 
a1 3.210372245 1.553570225 1.347395742 1.999999999 3.758534112 4.083721705 
a2 3.706618339 5.082353433 6.233230137 3.000000001 3.467544655 4.238238536 
a3 2.45411115 1.97078235 1.92083172 1.00000000 2.59356743 -2.34566763 
d0 -.1387432034e-1 .5374031497 .6756925237 2 1.497453273 -.6540743372 
d1 1.163390591 -.3839799612 -.1402507203 2 .7137420168 1.416388129 
d2 3.133574696 5.410782491 5.00638551 2.999999999 3.064435366 1.363225287 
d3 1.57538769 -.253103746 -1.21138132 1.00000001 -3.14060054 .4598868e-1 
d 4.75122014 2.72334255 1.75524749 1.00000000 7.64504452 4.75277166 

θ1(1) -.917815361 -.569661836 -.832679011 1.04719754 -1.36859116 2.71876708 
θ1(2) -.404034827 1.35742784 1.19051562 1.04719755 .398669826 .978875535 
θ1(3) -2.44319716 -2.61861726 -2.66945034 .523598786 .660884293 .840817132 
θ1(4) -1.50428225 -.969955998 -1.07498897 1.61596841 -.932546645 2.79046807 
θ1(5) 2.29730358 3.05743854 -2.96386783 -.785398162 -.511547197e-1 -1.15675133 
θ2(1) .171354876 .396771184 .695755672 .785398163 -.322866871 2.42698301 
θ2(2) 2.60768841 2.31728491 2.57239980 -.785398163 .376399945 .820193236 
θ2(3) 2.75808653 1.93194838 1.65401499 -.785398163 1.97888095 2.58794420 
θ2(4) .629554463 .259163421 .343466040 -.618054498e-10 1.21020939 2.17836416 
θ2(5) -2.13340824 3.10075861 2.69936837 .785398163 -1.58493203 -2.66693630 
θ3(1) -1.33918732 2.16147876 2.08098896 1.04719756 -.276517905 2.12652332 
θ3(2) 1.49897572 -.727847406 -.439250834 -1.04719755 1.82387667 -.454995625 
θ3(3) -.854266259 1.11440653 1.16238938 1.04719754 -1.24575318 -.801880494 
θ3(4) -.453046561 1.84747794 1.80566240 1.00202547 .520333244 1.52123150 
θ3(5) 3.13388122 1.82531601 1.85742067 1.57079633 1.75461360 -1.19894860 
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Table 2: The Twenty Solutions that are Outside the Search Domain 

 #1 #2 #3 #4 #5 
θ0 1.17359169 .350585393 -.292390040 -.142843941 1.31232855 
α0 1.34412025 1.89862600 1.78652178 1.91911139 1.11513011 
α1 1.91230361 -2.35784644 -2.37655993 -.701471841 1.47064063 
α2 -.937977154 -2.69377363 -2.41642142 -.767524643 -1.62767951 
α3 -1.41662619 .455415593 .996433853 1.18822166 -1.35199268 
φ -.745781731 1.04168476 .317250175 .619059260e-1 1.03764795 
a0 7.126804225 4.27568738 2.971134202 3.026250654 6.023782775 
a1 -3.707867014 .8880056112 -.4624035243 -1.42860136 2.114621109 
a2 27.85066177 -3.961430431 1.939695187 -2.34430932 -16.01751106 
a3 -2.01055899 -1.64100629 1.56015173 2.24599679 -.350620268 
d0 -.6695703009 2.940274108 2.573218103 2.132502749 1.851980345 
d1 -24.0706679 -.3707389167 .4965308263 1.80980333 4.429964231 
d2 -14.21480943 10.31621001 8.419468479 -8.785348923 .6608324781 
d3 12.0995048 16.1870022 5.08611217 3.95906716 -1.92840395 
d 2.70904159 -3.3846047 2.96813554 4.84414996 20.1528657 

θ1(1) -.995452858 .578529478 -.102045718 -2.73713153 -1.92972170 
θ1(2) 2.00164877 2.58446365 3.06137652 .419498681 1.07428276 
θ1(3) -2.70905922 1.88226784 2.18270335 -.731924687 2.80839672 
θ1(4) -1.08037080 1.56341412 .638698219 -1.98672560 -2.10695605 
θ1(5) -2.61159757 -2.34784500 -3.10175623 .348761073 2.44830379 
θ2(1) 1.28514037 -3.08310587 -.783063040 -.640327467e-1 .541734542 
θ2(2) .948668527 .738182258 .607244431 -.844897873 1.86208389 
θ2(3) 1.05017352 .830886476e-2 1.25139530 -1.89953929 2.08267817 
θ2(4) 1.33937359 -2.22159638 -.639168487 -.341148070 1.21065138 
θ2(5) .880369960 2.08374094 3.05114118 2.85315477 1.01346249 
θ3(1) -1.63932155 -1.32236390 1.41701205 -.943541356 -1.83934055 
θ3(2) -.668241253 -2.16887660 -1.34999730 1.78535324 -1.60749241 
θ3(3) -.198324045 -.891430329 .727867650 -2.04330587 -1.44094816 
θ3(4) -.995363093 -1.37042179 1.13755827 -1.23775513 -1.88333557 
θ3(5) -1.31229080 -.411928253 1.77900763 -1.21664090 -1.12714850 

 
 #6 #7 #8 #9 #10 

θ0 .927600151 1.02999095 2.28936614 .586377149 2.02157383 
α0 1.54767820 1.64906511 2.43598637 1.79938177 1.88960132 
α1 -1.66415034 -2.57695764 -1.13349102 -2.47370576 -1.28960042 
α2 -1.29370977 -.745271301 -2.04995340 2.74389168 -.655366712 
α3 1.04735761 .891045311 .818680133 .620867904 .665620439 
φ .105632773 .730099304 .702998044 .841836522 .998618002e-1 
a0 .8844625893e-2 -.971537803e-1 -1.448107272 3.81236446 13.83458197 
a1 -.8066292833 4.963493871 .2027717983 .501006262 11.32977506 
a2 1.484299168 2.977955859 5.82555414 5.711073585 -.915858381 
a3 1.55979013 3.76856410 -.782345593 -.846028499 .291419623 
d0 2.035728545 .9673033976 7.750182015 3.466461772 -4.17632569 
d1 3.559738666 2.956152612 5.369348706 .8677974031 -.7277756598 
d2 -6.395541634 -9.853808516 -.6410145232 -3.447388904 10.86116344 
d3 -4.19783069 -4.38765427 2.09771516 1.32515612 -4.83191096 
d 3.94570694 -2.41707714 -.32855449 -1.68753796 9.26166420 

θ1(1) 1.62682146 .502843887 -.474452718 .672363475 1.86389817 
θ1(2) 2.26857384 2.09325636 2.65751543 2.33643502 1.53185818 
θ1(3) .975227772 .453400860 -2.84076395 1.42827331 2.06287515 
θ1(4) 1.91312169 1.32606720 -.692379002 1.82167171 1.88263083 
θ1(5) .137499569 -1.38964909 -2.24494572 -1.68520039 2.25680144 
θ2(1) -1.26907727 -1.94613927 2.91236347 -1.00580571 2.47423642 
θ2(2) 1.01132874 1.77122427 -1.33709575 2.62873797 -1.16467520 
θ2(3) -.392248449 .111866097 -2.04425701 1.67552078 -2.72813665 
θ2(4) -.726977517 -.567372400 2.32906881 .531420032e-1 -2.70664285 
θ2(5) -1.18782335 -2.57381227 -1.04200746 -1.40042239 -.692091120 
θ3(1) -1.22601192 -.788178953 1.54657584 1.06051979 -.448546190 
θ3(2) 2.21010746 .503958442 .392445721 .337340366e-1 .488655967 
θ3(3) 2.82798025 1.76932088 1.71606193 1.36012109 2.96476296 
θ3(4) -1.12495801 -1.51666623 1.37097954 .972497968 -1.62522234 
θ3(5) -2.79999852 1.85311182 2.44974237 1.92330435 1.60155175 
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 #11 #12 #13 #14 #15 

θ0 2.05302298 1.36641900 1.34164380 -1.91462601 .864014281 
α0 2.10879236 -1.95348150 1.23703833 -1.49486428 1.83384086 
α1 2.26491086 -.756482027 -2.41634764 -.688456290 2.48297335 
α2 -1.79915152 -1.09529645 -2.09308102 -.651601726 -1.98733455 
α3 1.49271830 .835926185 .836784366 .641073663 .538724277 
φ -1.43383475 .545492482 .525565339 1.01880571 -.103772235 
a0 .1600848345 1.820282011 1.89935463 -2.617465405 1.751354712 
a1 -1.702207236 .5560028088 -.6317532668 -1.044325929 5.72716366 
a2 5.587558626 -1.601129656 1.525986228 -1.090043242 -6.392799157 
a3 -1.70323216 -.885874496 -.929809543 -.489824572 -2.82372970 
d0 4.692743264 2.177907462 2.347897549 3.638019137 2.440896476 
d1 10.28982073 -3.25431734 3.102100845 3.124552794 -15.04441253 
d2 5.471912845 -6.886364081 -7.156971637 8.748927392 -10.29254414 
d3 -.98992359e-1 -.74866297e-1 -.385237823 -4.20459045 7.32349530 
d 7.47862199 -1.09011307 -1.18229780 -.5452035e-1 6.86349095 

θ1(1) 1.57424012 -1.93210740 -1.16250163 -1.33658343 .363308623 
θ1(2) -2.96295738 1.52729490 1.70935740 1.81337490 -1.76288735 
θ1(3) -.905544422 1.67811101 1.50408607 1.36418796 .701153441 
θ1(4) .974382355 -1.06382723 -2.06493707 -2.37210987 1.52801781 
θ1(5) -.630064274 -2.51778788 -.678353633 -1.34902689 -2.14842832 
θ2(1) -.853817880 -1.11319280 -1.11730469 1.21152471 -.150219571 
θ2(2) -2.39916423 -2.56237172 -2.46036481 2.27688668 .695305372 
θ2(3) -1.00298655 2.65648366 2.69393826 2.85088941 -.336738261 
θ2(4) -1.10241616 -2.13912080 -2.18432756 2.29109169 -.255847913 
θ2(5) -.184257553 1.16120196 1.09443778 -.985958189 -.284436577 
θ3(1) 2.94758274 1.03062998 2.90261458 -.577476221 -3.03981571 
θ3(2) -1.49328345 .943337677 1.73776772 -1.62051249 2.96746511 
θ3(3) -2.32663102 -2.92016982 2.84533060 .228988792e-1 1.01714501 
θ3(4) 2.66343866 .623156777 2.65122839 -.580969055 1.88295702 
θ3(5) -1.33471457 1.99590876 -2.63296598 .492764825 -1.87554440 

 
 #16 #17 #18 #19 #20 

θ0 .946128931 1.06744276 1.42443877 1.00427511 .916076368 
α0 -1.38292767 -1.50654078 1.16098641 1.49206501 1.49722981 
α1 .222963132 -.367090838 2.42213668 -2.61126521 1.64091400 
α2 -1.79637794 -2.58056397 -.911709880 -.778875246 -2.91343232 
α3 1.49495006 .693470188 .588524816 1.29724338 1.56866510 
φ -1.00187384 -.678057038e-1 .965486696 -.730254557 -1.23410648 
a0 15.47654258 6.529515575 5.396430835 6.147850817 5.11206029 
a1 9.453350669 17.71415622 -2.195047774 -9.459050441 13.49236541 
a2 -10.58316335 1.575019224 10.17630488 -4.259134281 4.956707472 
a3 -5.26523936 -6.74819300 -1.67817804 -5.89701657 10.1276314 
d0 15.38042453 -10.38341138 2.317895327 -4.290465927 -3.98137681 
d1 -66.13075549 -18.62759207 3.414708243 50.00923713 7.016307489 
d2 47.3481895 18.00853108 7.812650287 51.82135966 -35.78528046 
d3 1.16852754 5.41643391 -14.0345036 22.2732549 31.9844308 
d -12.6649384 -.61162223 27.6477603 -4.99668554 -4.70704071 

θ1(1) -2.61998683 -2.62304591 1.76592587 .974499806 1.52127262 
θ1(2) 2.78515628 -1.35930588 -2.86076872 -1.47643365 -1.15373351 
θ1(3) 1.54497786 -2.02446506 -.957408939 -.299537667 .184596289 
θ1(4) -1.72624727 -2.55819802 .760710378 .875099098 1.50392961 
θ1(5) -3.03432324 -2.20139415 .389883118 -.525980262e-1 .293318748 
θ2(1) 1.17300655 1.90009881 -.985519437 2.93719232 2.24794540 
θ2(2) -1.23707796 -2.05252938 3.03536348 -2.67453741 -2.34164688 
θ2(3) -1.59599660 .846294187 2.95956937 2.74024239 -.502361134 
θ2(4) .226573061 .657678558 -2.06400445 2.51977153 .998789140 
θ2(5) 3.02960299 -2.65773057 -1.36410453 -2.76391158 -3.02128679 
θ3(1) -2.90317444 2.96758641 .490925524 1.44624621 -1.64601022 
θ3(2) 3.14132240 -2.65890997 -.199768025 1.45549735 .658659166e-1 
θ3(3) 1.95972936 .718407721 -2.79854815 -.739469468 1.61870876 
θ3(4) 2.54772866 1.61757990 -.249798958 1.74702713 -.518615869 
θ3(5) -2.88247034 -2.39157160 2.32856680 -.646110298e-1 .378326100 
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