
A generic trajectory verifier for the motion planning

of parallel robots

Jean-Pierre MERLET

INRIA Sophia-Antipolis

BP 93 06902 Sophia-Antipolis, France

E-mail: Jean-Pierre.Merlet@sophia.inria.fr

Abstract

In this paper we consider the problem of trajectory verification for a classical Gough-Stewart platform i.e. we

want to verify if a given trajectory verify various criteria which define its validity, for example that the trajectory

lie fully inside the workspace of the robot and is singularity-free. We propose an almost real-time method for

this purpose that may deal with almost any trajectory and any validity criterion and can manage uncertainties

on the specified trajectory, for example to take into account control errors.

1 Introduction

Off-line verification of a trajectory of a parallel robot is very important in practical application, for example

when using such machine for manufacturing operation. Indeed it is necessary to verify if the trajectory is valid.

i.e. verify a set of criterion, that we will call the validity criteria. Example of validity criterion are:

• the trajectory must be inside the reachable workspace of the robot

• the minimum of the dexterity of the robot on the trajectory should not be lower than a fixed threshold.

1

• the absolute value of the articular forces should not exceed a fixed threshold

The validity criteria may be quite various and so may be the trajectories that have to be checked, from straight

lines and arcs of circle to quite complex trajectories as shown in figure 1. Furthermore we will assume that the

Figure 1: An example of complex trajectory

trajectories are 6-dimensional i.e. both the location and orientation of the end-effector are time-dependent.

Surprisingly few papers in the literature are devoted to the problem of trajectory verification and motion

planning for parallel robots. Singularity-free path planning has been addressed in [3] and path planning was

addressed from a control view point in [14] and in the neighborhood of a singularity in [13]. An algorithm for

checking the validity of a trajectory composed of straight line segments has been proposed in [10] (this paper is

an extension of this algorithm).

Another approach is to design the robot in such way it verify some validity criteria by design. For example

it is possible to determine the robot geometry in such way that its workspace include a specified workspace [1,

4, 6, 8, 12] and then to check that this workspace is singularity-free [2, 7, 9, 15]. But this approach is quite

complex and for the time being it can be used for few validity criterion.

Our purpose in this paper is to propose an algorithm which enable to check almost any type of trajectory

and set of validity criteria, even very complex one, taking into account the fact that the trajectory followed by

the robot will always be a little bit different from the specified one due to control errors.

2

In this paper we will present our algorithm for the classical Gough-type parallel manipulator [5] illustrated

in figure 2, although our algorithm may be used for almost any type of parallel machine. In this robot a base

A1
A2

A3

A4

A5

A6

B1

B2

B3 B4

B5

B6

C

O

x

y

z

yr

zr

xr

U joint

S joint

Figure 2: The classical Gough-type parallel robot

and a platform are connected through 6 legs which have a ball-and-socket joint at each extremity Ai, Bi. Linear

actuators enable to change the leg lengths which in turn enable to control the position and orientation of the

platform.

We define a reference frame O, (x,y, z) which is attached to the base and a mobile frame C,xr,yr, zr) which

is attached to the platform. We may represent a pose of the platform by the coordinates xC , yC , zC of the origin

C of the mobile frame in the reference frame and its orientation by using the classical Euler angles ψ, θ, φ which

enable to define a rotation matrix R for transforming the coordinates of a vector expressed in the mobile frame

into its coordinates in the reference frame. The coordinates of the attachment points Ai are supposed to be

known in the reference frame, while the coordinates of the Bi points are known in the mobile frame.

3

2 Trajectory and validity criteria

We will assume that a trajectory of the platform is specified by defining the parameters of the pose of the

platform as analytical functions of time T , supposed to lie in the range [0,1], i.e. that we have

xC = Dx(T) yC = Dy(T) zC = Dz(T) (1)

ψ = Dψ(T) θ = Dθ(T) φ = Dφ(T) (2)

2.1 Workspace constraints

A first validity criteria can be defined immediately: in practice the leg lengths must lie in some range that will

be denoted by [ρmin, ρmax] and therefore a valid trajectory must verify at least this constraint.

For a Gough platform the length ρ of a leg is simply the norm of the vector AB which may be written as

ρ2 = ||AB||2 AB = AO + OC + CB (3)

For a given robot the first element of the right hand term of AB is known. The last element, CB is equal

to RCBr where R is the rotation matrix, a function of ψ, θ, φ, and CBr is the coordinates vector of B in the

mobile frame, which is known.

Using equations (1,2) we may transform equation (3) into a time function. Verifying that ρ lie in the range

[ρmin, ρmax] for any T in the range [0,1] is not a simple problem. For example, due to the non linearity, the

end-points of the trajectory (i.e. the pose at T = 0 and T = 1) may lie inside the workspace although one or

more points of the trajectory may be outside this workspace.

Mechanical limits on the passive joint located at Ai, Bi may also lead to an infeasible trajectory. Consider for

example that the ball-and-socket joint at A1 has a rotation limit of α degree with respect to its main direction

defined by the unit vector n1. This imply that we must have

A1B1.n1

||A1B1||
> cosα

Using equations (1,2) we may transform this inequality into a time-dependent inequality G(T) such that for a

4

valid trajectory G(T) > 0 must be verified for all T in [0,1]. Another interesting validity criteria may be that

there is no interference between the legs. If the legs are cylinders it was shown in [10] that leg interference is

avoided if a set of time-dependent inequalities are verified.

3 Dexterity constraint

It is well known that the accuracy ∆X on the positioning of the platform is linearly related to the resolution

on the length measurement ∆ρ by:

∆ρ = J−1∆X (4)

∆X = J∆ρ (5)

where J is the jacobian matrix of the robot If we assume that the resolution is identical for all the leg sensors,

the leg length measurement errors lie inside an hyper-sphere. This hyper-sphere is mapped through equation

(5) into an hyper-ellipsoid. To quantify the shape of the hyper-ellipsoid it is necessary to use a dexterity index

which may be, for example, the manipulability which is
√

|J−1|[16] or the inverse of the condition number κ

of J−1 which is defined as the ratio between the smallest singular value and the largest one. If κ is 1 the

hyper-ellipsoid is a sphere. Both dexterity indices will be 0 at a singularity of the robot which is defined by

|J−1| = 0. Singularities has to be avoided as motion around a singularity will be inaccurate and may lead to

very large forces in the legs.

To avoid singularity on the trajectory we will thus impose a minimal threshold ǫ on the dexterity index D,

i.e. D > ǫ. We will assume that we are able to calculate an analytical form of D and using equation (2) we may

transform D into a time-dependent function D(T) and a valid trajectory will verify D(T) > ǫ for all T in [0,1].

5

4 The motion verifier

Our purpose is to design an algorithm which enable to verify if a given trajectory is fully inside the workspace

and if the dexterity criteria at any point on the trajectory is not lower than a fixed threshold ǫ. Additionally

we will assume that a set of n validity criterion Gi(T) has been defined. Therefore a trajectory will be valid if:

ρmin ≤ ρi(T) ≤ ρmax∀i ∈ [1, 6] (6)

Gi(T) > 0 for i ∈ [1, . . . , n] (7)

D(T) > ǫ (8)

for all T in [0,1].

4.1 Calculation of the analytical form of the constraints

Our algorithm will make an extensive use of the analytical form of the constraints. We will first consider that the

description of the geometry of the robot, i.e. the location of the Ai, Bi points, and the minimum and maximum

leg lengths, are available in a file, called the robot file. Then, we will use MAPLE to get the analytical form of

the constraints (in the following sections we will assume that the reader is familiar with MAPLE). The user will

define its trajectory in a trajectory file using MAPLE syntax and some notation conventions. For example the

pose parameters xC , yC , zC will be represented by the MAPLE symbols x, y, z, while the orientation angles

ψ, θ, φ are represented by the symbols p,t,h. Hence, for example, the following MAPLE file:

x:=3*sin(2*Pi*T): y:=3*cos(2*Pi*T): z:=56: p:=0: t:=5*Pi/180: h:=0:

will describe that the trajectory is an horizontal circle centered at point (0,0,56) with radius 3 while we have

ψ = 0, θ = 5 and φ = 0 degree.

Another example is the gear trajectory shown in figure 1 for which the trajectory file is:

p:=0:t:=0:h:=0: z:=56: x:=(3+0.5*sin(40*Pi*T))*sin(2*Pi*T):

y:=(3+0.5*sin(40*Pi*T))*cos(2*Pi*T):

6

As soon as the robot file has been specified our program will read the coordinates of the Ai, Bi points and create

a temporary MAPLE file data that describes the coordinates. The user may also include MAPLE programs,

called the constraint file which will enable to calculate the analytical form of the constraints Gi. As soon as

the data file, the trajectory file trajectory and the constraint file have been defined the program will run the

following specific MAPLE program, called main:

read("data"):

read("trajectory"):

#compute rhoi as a time function

#compute Gi as a time function

#compute D as a time function

The purpose of this program is to obtain the analytical form of the validity criteria. These analytical expression

will be written in specific files for later use. For example if the trajectory is the horizontal circular trajectory

presented above and the robot has the geometry defined in the Annex the analytical form of RO1 is:

3311+784*sin(Pi/36)-126*cos(Pi/36)+(42*cos(Pi/36)-54)*cos(2*Pi*T)+36*sin(2*Pi*T)

4.2 Interval analysis

Our algorithm will require to compute lower and upper bounds of all the quantities defined in the previous

section for a given range for T . For example, being given a range on T we must be able to compute two reals

a, b with a < b such that a ≤ D(T) ≤ b for any value of T in its range. Note that it will not be necessary to get

sharp bounds on the quantities.

A convenient method for completing this task is to use a mathematical tool called interval analysis [11].

Basically interval arithmetics is similar to real arithmetics except that the number we are dealing with are

intervals. Consequently all the basic operators must be re-defined. For example the addition operator ”+” on

7

two intervals X1 = [x1, x1], X2 = [x2, x2] is defined as the interval

X1 +X2 = [x1 + x2, x1 + x2]

A nice property of interval arithmetics is that interval operator may be defined for almost any mathematical

functions. Furthermore if we apply interval analysis on a function it enable to compute guaranteed lower and

upper bounds for the function (that is called an interval evaluation of the function), including even rounding

errors in the computation. Interval analysis may therefore be used to determine bounds on the quantities defined

in the previous section. To perform the interval evaluation we will use the parser of the ALIAS library1 that

take as input a file with an analytical description of a function and the ranges for each variable appearing in

the function, and returns the interval evaluation of the function. The interval evaluation of a quantity Q will

be denoted B(Q), the lower bound of this interval evaluation B(Q) and its upper bound B(Q). We will also use

a bisection process for the range T̂ = [T1, T2]: the result of the bisection process applied on this range is the 2

new ranges [T1, (T1 + T2)/2], [(T1 + T2)/2, T2].

4.3 The algorithm

4.3.1 Principle

We may now describe the principle of our algorithm on an example where we have constraint on the leg lengths,

a threshold on the value of the determinant of the inverse jacobian matrix and a constraint G on a passive joint

of the robot.

We will use a list S of ranges for T with n ranges. This list will be initialized with the range S1 = [0, 1] and

hence n = 1. During the algorithm we will consider the i-th element Si of the list S. We start with i = 1 and

the algorithm proceeds along the following steps:

1. if i > n return VALID TRAJECTORY

1
ALIAS is a package developed in the SAGA project which enable to analyze and solve system of equations, based on the interval

arithmetics package BIAS/Profil

8

2. compute B(ρi(Si)):

(a) if it exists i such that B(ρi) > ρmax or B(ρi) < ρmin, then return INFEASIBLE TRAJECTORY (LEG

LENGTHS)

(b) if it exists i such that B(ρi) < ρmin or B(ρi) > ρmax, then bisect Si and add the resulting ranges at

the end of S. Then i = i+ 1, n = n+ 2 and go to step 1

3. compute B(G)(Si):

(a) if B(G) < 0 then return INFEASIBLE TRAJECTORY (JOINT LIMIT)

(b) if B(G) < 0, then bisect Si and add the resulting ranges at the end of S. Then i = i+ 1, n = n+ 2

and go to step 1

4. compute B(D)(Si)

(a) if B(D)(Si) < ǫ, then return INFEASIBLE TRAJECTORY (DEXTERITY)

(b) if B(D)(Si) < ǫ and B(D)(Si) > ǫ, then bisect Si and add the resulting ranges at the end of S. Then

i = i+ 1, n = n+ 2 and go to step 1

5. i = i+ 1 and go to step 1

Consider what will happen with the range S1. At step 2 we will compute the interval evaluation of the 6 leg

lengths. At step 2(a) we have found that one of the leg lengths is always lower than ρmin or greater than ρmax

i.e. the trajectory is outside the workspace. At step 2(b) we have found that the interval evaluation of one

of the leg length include the range [ρmin, ρmax]. But this does not mean that the leg length are outside their

allowed ranges as interval evaluation may lead to an over-estimation of the bounds. Thus we will bisect the

range S1 = [0, 1] and start again with the range S2 = [0, 0.5] and S3 = [0.5, 1]. Now assume that the current

range Si has successfully completed the test 2(a), 2(b) i.e. the leg lengths are all valid. At step 3 we compute

the interval evaluation of G. If the upper bound of this evaluation is negative, then G will be always negative

9

for any T in Si: the trajectory is not feasible (step 3(a)). If the upper bound is positive and the lower bound

negative, then we cannot ensure that the trajectory is feasible, so we bisect Si and start again (step 3(b)). If

the current range Si has successfully completed the test 3(a) and 3(b) we are sure that the trajectory is feasible

from the view point of the joint limits. Thus we compute an interval evaluation of the dexterity index D (step

4). If the upper bound of this evaluation is lower than ǫ, then the dexterity for any T in Si will always be lower

than ǫ i.e. the trajectory is not valid (step 4(a)). If the upper bound is greater than ǫ and the lower bound

lower than ǫ, then we cannot ensure that the dexterity constraint is satisfied, so we bisect the box and start

again (step 4(b)). If the current time range Si has successfully completed the test at step 4, then the part of the

trajectory corresponding to Si is valid and we proceed with the next range in the list S (step 5). The algorithm

will stop if a part of the trajectory is infeasible (steps 2(a), 3(a), 4(a)) or when all the ranges in S have been

processed successfully, which imply that the trajectory is valid (step 1).

4.3.2 Improvement of the algorithm

The practical implementation of the previous algorithm includes in fact numerous tricks to improve the com-

putation time. The first trick is to memorize information when bisecting. Assume for example that the range

S99 and S100 result from the bisection of the range S10 for which the leg lengths ρ1 satisfy the constraint

ρmin ≤ ρ1 ≤ ρmax. Consequently there is no need to calculate the interval evaluation of ρ1 for S99 and S100 as

we are sure that it will satisfy the constraint.

A second trick is to manage more cleverly the list S. When bisecting the range Si instead of adding the two

new ranges at the end of S we may substitute the current range Si by one of the two ranges resulting from the

bisection, while storing the other range at the end of the list (which imply that we do not increment i). Now

we have to determine which of the two ranges will be chosen to replace Si. Assume for example that the two

ranges S1,S2 resulting from the bisection of Si must be stored because their lower bounds s1, s2 on D are lower

than ǫ. A good choice will be to substitute Si by the range having the largest ratio |sk − ǫ|/ǫ. Indeed if the

corresponding range includes a range for which D is lower than ǫ it is probable that by using this method the

10

range will be on top of the list quite quickly.

A third trick is to use the monotonicity of the constraint. As we have used MAPLE to compute the analytical

form of the constraint we may also calculate the derivative DT , ρTi ,G
T of the constraint equations D, ρi,G with

respect to T . These derivatives may be evaluated using interval analysis and if a derivative has a constant sign,

then we will get sharp bounds on the constraint. For example if DT > 0 we will have D = D(0) and if D(0) < ǫ,

then we are sure that the current range Si includes a range for which D < ǫ and the trajectory is not valid.

4.4 Examples and computation time

In this section we consider the robot described in the Annex. In a first example we want to verify a circular

trajectory in the plane z = 56, the center of the circle being (0,0) an its radius 3, with ψ = φ = 0 and θ = 5◦.

On a SUN Ultra1 workstation the computation time is 4.50s: 4.47s is devoted to the MAPLE calculation and

0.03s to the trajectory verification itself.

Assume now that the platform has to describe still a circular trajectory of center Q(0,0,56) but with the

normal of the platform in the plane (QC, z) while maintaining a 5 degree angle with the axis z (this correspond

to a conic motion for the tool). Such trajectory may be defined by:

p:=2*Pi*T: t:=5*Pi/180: h:=0: x:=3*sin(2*Pi*T): y:=-3*cos(2*Pi*T): z:=56:

After pre-processing the MAPLE file, the algorithm detect in 20ms that a singularity occur on the trajectory

at some T in the time range [0.25,0.375]. With some minor changes in the algorithm we are then able to detect

that a singularity occur at T = 0.250796. Clearly in that case choosing to maintain the φ angle to 0 is a bad

choice. If we change the trajectory file to impose φ = −ψ (this is done by writing h:=-p: in the trajectory

file), the algorithm now find that the trajectory is valid.

Very complex trajectories can easily be checked: consider for example the gear trajectory shown in figure 1.

The corresponding trajectory file is:

p:=0:t:=0:h:=0: z:=56: x:=(3+0.5*sin(40*Pi*T))*sin(2*Pi*T):

11

y:=(3+0.5*sin(40*Pi*T))*cos(2*Pi*T):

and the computation time for verifying that this trajectory is valid is 8.24s.

5 Parametric trajectories and uncertainties

5.1 Parametric trajectories

In the previous examples we have seen that most of the computation time of the algorithm is devoted to the

MAPLE computation. But we have a way to decrease the computation time: we will define in the MAPLE

trajectory file a parametric trajectory. For example the circular trajectory may be defined as:

x:=x1*sin(2*Pi*T):y:=x2*cos(2*Pi*T): z:=x3: p:=x4: h:=x5: t:=x6:

The value of the parameters x1, x2, x3, x4, x5, x6 will be defined in an independent file, called the pa-

rameter file. Then we will run our program once: the analytical forms necessary for our algorithm will include

these parameters. After this first run we will indicate to the program that it may re-use the analytical forms

established at the first run. We have then only to change the values in the parameter file in order to test any

horizontal elliptic or circular trajectory at any orientation. Thus after an initial computation, the previous

calculation on the circular trajectory for a radius of 13.549 is completed in 180ms (the trajectory is still valid),

while for a radius of 13.55 the algorithm determines that for T in [0.304688,0.3125] the trajectory is outside the

workspace in a computation time of 60 ms.

5.2 Uncertainties in the trajectories

Up to now we have assumed that the robot will follow exactly the specified trajectory. But in practice control

and model errors may induce that the real trajectory is a little bit different from the specified one. To deal with

this uncertainty we may assume that each pose parameter r has an error which may be described by a range

[−ǫr, ǫr]. This range are described in an interval file as follow:

12

x1 -0.01 0.01

x2 -0.002 0.002

We may then introduce these ranges in the trajectory file. For example the circular trajectory file may be

written as:

x:=3*sin(2*Pi*T)+x1: y:=3*cos(2*Pi*T)+x1:

z:=56+x1: p:=x2: t:=5*Pi/180+x2: h:=x2:

The computation of the analytical form is slightly larger (about 1mn40s) but the algorithm determine that the

trajectory is still valid.

6 Set of trajectories

Our program is also able to check a set of trajectories. Assume, for example that you want to check a horizontal

square with corners at (-1,-1,56) and (1,1,56). Thus you have to test a set of segment trajectory. The trajectory

file may be defined as:

p:=0:t:=0:h:=0:x:=x1+T*(x2-x1):y:=y1+T*(y2-y1):z:=56:

which describe a segment trajectory starting at x1, y1 and going to x2, y2. Then you give in the parameter

file the four sets of possible values for these parameters:

x1 -1 x2 -1 y1 -1 y2 1

x1 -1 x2 1 y1 1 y2 1

x1 1 x2 -1 y1 1 y2 1

x1 -1 x2 -1 y1 1 y2 -1

and the program will examine in sequence the four segment trajectories in a computation time of 120ms.

13

Such method is quite useful to check trajectories which have not an analytical form. Consider for example

the clotoid equation:

x =

∫ t

0

15 cos(a2)da y =

∫ t

0

15 sin(a2)da

for t in [0,3] (figure 3). The clotoid has been approximated by 250 segments and it takes about 2.9s to determine

0 2 4 6 8 10 12 14

-0

2

4

6

8

10

12

14

Figure 3: A clotoid

that part of the segment from [14.5582,7.119] to [14.5743,7.21] is outside the workspace.

7 Specific motion verifier

Although quite efficient in term of computation time the generic motion verifier rely on the parser to compute

the interval evaluation of the validity criterion. Clearly a better efficiency will be obtained if these evaluations

were done by a devoted C++ module. For a specific parametric trajectory we have developed a MAPLE

program based on the main program that is able to produce automatically the C++ code for all the constraint

equations. We are thus able to derive a specific motion verifier for a specific type of trajectory. As an example

we have developed such verifier for planar motions of the platform constituted of line segment. Using this

specific motion verifier the computation time for the verification of the clotoid trajectory is 150ms. Thus, a

specific motion verifier is at least 10 time faster than the generic verifier.

14

8 Surface verification

Up to now we have considered only 1D trajectory but we may easily extend our algorithm to deal with surface

verification. A surface is a 2D variety: for example if the platform has to perform a motion such that C lie

on sphere centered at xa, ya, za and radius r while its normal is along the normal of the sphere at C the

trajectory file may be written as:

x:=xa-r*sin(p)*sin(t):y:=ya+r*cos(p)*sin(t):z:=za-r*cos(t):h:=-p:

Note that the value of h is arbitrary. Therefore using this model for a sphere we have to deal with two parameters

ψ, θ while in the previous section the only parameter was T . But basically the same algorithm may be used

except that the bisection process will lead to 4 new sets of ranges. Otherwise the algorithm remains the same.

As an example we have checked a surface which is a part of a sphere centered at (0,0,59) with radius 2, for the

range [0, 2π] for ψ and [-0.4,0.4] for θ. The motion verifier find in 130ms that the trajectory for ψ in [0,0.0982]

and θ in [-0.4,-0.3875] is not valid.

9 Extension to other mechanical architectures

The previous algorithm may be divided into two parts:

• the MAPLE part in which we compute the analytical form of the criteria we want to check

• the analysis, based on these analytical forms

The analysis part is not really affected by the mechanical architecture of the robot, while on the other hand the

MAPLE part is really architecture-dependent. But this part is composed of a MAPLE program, main, which is

external to the main program. Thus, just by modifying main to adapt it to a mechanical architecture different

from the one of the Gough platform we may easily modify our program to deal with almost any mechanical

architecture.

15

10 Conclusion

We have described here a very efficient and user-friendly method for trajectory verification of the motion of

parallel structure machine. It enable to check for almost any type of trajectories if the trajectory is in the

workspace, is singularity-free and exhibit a good dexterity index, while it can also deal with any other validity

criteria as soon as an analytical form is known for the criteria. Similarly, although it has been described for the

Gough platform it can be easily adapted to any other mechanical architecture.

Prospective work is now to study the problem of the motion planning of parallel robot i.e. to propose an

algorithm to check if a trajectory is feasible, and if not, to propose correction on the specified trajectory so that

the corrected trajectory is feasible.

11 Annex

In the examples we have considered the robot having planar base and platform (hence zA = zB = 0), described

by the following coordinates of the A,B points:

A1 A2 A3 A4 A5 A6

x -9 9 12 3 -3 -12

y 9 9 -3 -13 -13 -3

B1 B2 B3 B4 B5 B6

x -3 3 7 4 -4 -7

y 7 7 -1 -6 -6 -1

References

[1] Boudreau R. and Gosselin C.M. La synthèse d’une plate-forme de Gough-Stewart pour un espace at-

teignable prescrit. In 10th World Congress on the Theory of Machines and Mechanisms, pages 449–454,

Oulu, June, 20-24, 1999.

16

[2] Chablat D. and Wenger P. Moveability and collision analysis for fully-parallel manipulators. In 12th

RoManSy, pages 61–68, Paris, July, 6-9, 1998.

[3] Dasgupta B. and Mruthyunjaya T.S. Singularity-free path planning for the Stewart platform manipulator.

Mechanism and Machine Theory, 33(6):711–725, August 1998.

[4] Gosselin C., Perreault L., and Vaillancourt C. Simulation and computer-aided kinematic design of three-

degree-of-freedom spherical parallel manipulators. J. of Robotic Systems, 12(12):857–869, 1995.

[5] Gough V.E. and Whitehall S.G. Universal tire test machine. In Proceedings 9th Int. Technical Congress

F.I.S.I.T.A., volume 117, pages 117–135, May 1962.

[6] Ji Z. Analysis of design parameters in platform manipulators. ASME J. of Mechanical Design, 118:526–531,

December 1996.

[7] Ma O. and Angeles J. Optimum architecture design of platform manipulator. In ICAR, pages 1131–1135,

Pise, June, 19-22, 1991.

[8] Merlet J-P. Democrat: A DEsign Methodology for the Conception of robots with parallel ArchiTecture.

Robotica, 15(4):367–373, July - August , 1997.

[9] Merlet J-P. Determination of the presence of singularities in 6D workspace of a Gough parallel manipulator.

In ARK, pages 39–48, Strobl, June 29- July 4, 1998.

[10] Merlet J-P. Trajectory verification in the workspace for parallel manipulators. Int. J. of Robotics Research,

13(4):326–333, August 1994.

[11] Moore R.E. Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics, 1979.

[12] Murray A.P., Pierrot F., Dauchez P., and McCarthy J.M. On the design of parallel manipulators for a

prescribed workspace: a planar quaternion approach. In J. Lenarc̆ic̆ V. Parenti-Castelli, editor, Recent

Advances in Robot Kinematics, pages 349–357. Kluwer, 1996.

17

[13] Nenchev D.N. and Uchiyama M. Singularity-consistent path planning and control of parallel robot motion

through instantaneous-self-motion type. In IEEE Int. Conf. on Robotics and Automation, pages 1864–1870,

Minneapolis, April, 24-26, 1996.

[14] Nguyen C.C. and others . Trajectory planning and control of a Stewart platform-based end-effector with

passive compliance for part assembly. J. of Intelligent and Robotics Systems, 6(2-3):263–281, December

1992.

[15] Wenger P. and Chablat D. Workspace and assembly modes in fully parallel manipulators: a descriptive

study. In ARK, pages 117–126, Strobl, June 29- July 4, 1998.

[16] Yoshikawa T. Manipulability of robotic mechanisms. The Int. J. of Robotics Research, 1(1), 1982.

18

