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Abstract: Our purpose is to determine through
a geometrical method the workspace of a parallel manip-
ulator taking into account the limitations on the articular
coordinates, the mechanical limits of the joints and the
possible interference between the links. We show that we
can determine planar cross sections of this workspace when
the end-effector moves in a plane and its orientation is con-
stant.

1 Introduction

Let us consider the parallel manipulator described in fig-
ure 1. Two plates are connected through 6 articulated

SSM
C y

x

A1

A2
A3

A4

A5

A6

B1

B2

B3

B4

B5

B6

A2

A1

A4

A6

A3

A5

mobile

base

1

2

3
4

5

6

O

C

Figure 1: A parallel manipulator with 6 D.O.F.

links in which a linear actuator enables to change the links
lengths. By controlling these lengths we are able to con-
trol the position and orientation of the upper-plate with
respect to the base plate. Usually the joints linking the
links to the plates are universal joint for the base plate and
ball-and-socket joint for the mobile plate. One of the main
criteria for designing a parallel manipulator is clearly its
workspace. This workspace is limited by the range of the
linear actuators, the mechanical limits on the joints and



the possible interference between the links. Unfortunately
the cartesian coordinates are coupled for the workspace.
For example the translatory limits are dependent from the
orientation of the mobile plate. To overcome this diffi-
culty it is usual to represent this workspace for a constant
orientation and the resulting 3D workspace is determined
by calculating slices of the workspace obtained by assum-
ing that the center C, which coordinates in some reference
frame are (xc, yc, zc), of the mobile plate moves in a given
plane. The reference frame is chosen such that the position
of C in the plane is defined by xc, yc. For example the slices
are calculated when the end-effector moves in a horizontal
plane and a discretisation method enable to display the
non-empty slices for various altitudes of the end-effector.

2 Previous works

Many researcher have addressed the problem of determi-
nating the border of the workspace slices. We have de-
scribed a method for this problem [5] which uses a discreti-
sation procedure in the plane of the slice. A central point
is chosen and polar coordinates (r, θ) are used. For a given
θ the position of the border is determinated by increas-
ing the value of r, calculating the links lengths (it is easy
to calculate the lengths as soon as the cartesian coordi-
nates are known), until the constraints on the links lengths
are not satisfied. Then the value of θ is increased. Similar
methods have been developed [2], some of them taking into
account the mechanical limits on the joints [4], or every
constraints [1].

Unfortunately this kind of method is time-consuming
due to the large computation involved. Furthermore we
will see that the slice may have ”holes” and therefore one
has to deal very carefully with the discretisation on the



polar coordinates. Another drawback is that the result of
the method is a large list of points and is therefore not
really easy to store and manipulate.

A completely different approach has been proposed by
C. Gosselin [3] for determining the border of the workspace
due to the limited range of the linear actuators. If we
consider one mobile-plate joint center Bi the links lengths
constraints imply that Bi lie between two spheres Sii, Sei

whose center is the base-plate joint center Ai and whose
radii are the minimum and maximum links lengths (fig-
ure 2). As the end-effector center C moves in a plane and
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Figure 2: The links lengths constraints imply point Bi lie between
two spheres.

the orientation is constant, Bi moves also in a plane and
must therefore lie inside the intersection of this plane with
the spheres i.e. a region Cci

which is either a circle or the
region between two circles. As the orientation is constant
by translating Cci

by the constant vector BiC we get a re-
gion such that if C lie in this region the links length of link



i will be between its minimum and maximum value. By do-
ing that for the 6 links we get 6 regions and the workspace
is clearly the intersection of these regions. Therefore the
workspace border is constituted by a list of arc of circle.
Figure 3 shows an example (for clarity only three regions
have been used). This method is very fast, exact and en-
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Figure 3: In thick line the border of the workspace obtained by in-
tersecting three annular regions.

ables to calculate easily the area of the workspace. The
storage of the representation of the border is efficient as
few data are needed.

Unfortunately this method does not take into account
the mechanical limits on the joints. We propose now an
extension which will enable to consider these constraints.
For this purpose we suppose that the mechanical limits of a
joint can be described through the definition of a pyramid
which apex is the joint center and which faces are such
that if the joint constraints are satisfied the link will be in
the interior of the pyramid as shown in figure 4 a). This
pyramid may be defined by the normal to its faces.

Let us suppose we have defined such pyramids for the
base-plate joints. If the joint limits for link i are satisfied



then point Bi will lie inside the intersection of the pyramid
with the plane in which lie Bi, i.e. in a polygon Pbi

. We
may also define a pyramid P for the mobile-plate joint
which center is Bi and such that if the limits on the joints
are satisfied then point Ai will lie inside the pyramid. For
symmetry reason we may calculate from P an equivalent
pyramid P ′ which apex is Ai such that if Ai is inside P

then Bi is inside P ′ (figure 4 b)). If the mobile-plate joint
limits for link i are satisfied then point Bi will lie inside
the intersection of the equivalent pyramid with the plane in
which lie Bi, i.e. in a polygon Pmi

. Therefore if for link i the
length and joints limits are satisfied point Bi will lie inside
the intersection of Cci

, Pbi
, Pmi

, a region which border is
a generalized polygon i.e. a polygon whose edges may be
arc of circle and which may have forbidden regions whose
borders are also generalized polygons. We have designed an
algorithm to calculate the intersection of such geometrical
object [6] and the resulting region defines an allowable zone
for Bi. As previously we calculate the allowable zones for
the 6 Bi, translate them by the constant vector BiC and
obtain 6 allowable zones for C. The workspace is then the
intersection of these 6 regions and our algorithm can be
applied to find its border.

3 Dealing with links interference

Using the above method we have calculated the border of
the workspace W. Suppose now we want also to check the
link interference. For that purpose we introduce a safety
distance l and we try to find the zone in the workspace
such that the distance between two links is l. First we
write that the distance between the lines associated to the
links is equal to l which yield to a constraint equation on



A1

B1

xr

yr

zr

n1

n3

n4

A1

x
y

z
B1

P1

P ′

1

a)
b)

Figure 4: In a) the joint limits are defined through a pyramid which
apex is the center of the joint and which faces are such that if the
joints satisfy the limits the link will be in the interior of the pyramid.
In b) A pyramid for the mobile-plate joint and its equivalent pyramid.

the variable xc, yc which is:

a1x
2

c + a2y
2

c + a3xcyc + a4xc + a5yc + a6 = 0 (1)

where the ai are constant. Therefore if the distance be-
tween the lines is l then C moves along a conic C, called
the safety conic in its plane. If C does not intersect the
workspace W then the distance between the links is either
always smaller than l or always greater than l and any
point in the workspace can be used to verify in which case
we are. If the distance is greater then for any point in W

the distance between the links is always greater than l and
therefore there is no links interference. Then we have two
consider two cases:

• C does not intersect the workspace but the distance
between the lines is lower than l

• C intersects the workspace

Indeed the minimal distance between the link, which are
only a part of the line is always greater or equal to the dis-



tance between the lines. It can be shown that the minimal
distance between the links is either:

• the distance between the lines if the points of the com-
mon perpendicular to the lines lie on the link

• the minimal distance between the set of points defined
by an extremity of a link and its projection point on
the other link if the projection point lie on the link

If we write that the distance between an extremal point
of a link to its projection on the opposite line is l we get
also a constraint equation on xc, yc which states that C is
on a conic, the point conic. Therefore we have four point
conics (one for each of the A, B) and one safety conic. On
the safety conic and on on the point conics we have critical
points:

• on the safety conic the critical points are the position
of C such that at least one of the point of the common
perpendicular lying on the line is an extremal point of
the link.

• on the point conics the critical points are the position
of C such that the projection point is an extremal
point of the opposite link.

It is clear that for any points on the conics between two
critical points either the distance between the links is never
the distance associated to the conics or is this distance in
which case its value is l. Furthermore on these conics we
may have intersection points with the workspace border.
By a simple reasoning it can be shown that the critical
and intersection points enable to determine the part of the
workspace, if any, where there will be no link interference.
The vertices of these zones are either critical or intersec-
tion points or vertices of W and their edges either parts of



the edges of W or parts of the safety or point conics. An
example of such zone is shown in figure 5.

Figure 5: Zone without any links interference. W is shown in thin
line, the safety and points conics are displayed in thin dashed lines.
For each pairs of link we may calculate zones in W where there is
no links interference (the border of these zones is displayed in thick
dashed line). The intersection of these zones, (in thick line) is the
zone where there is no link interference.

We will now consider with more details a particular case
in which the safety distance is equal to zero: in that case
the safety conic is a line. Let us consider links 1 and 2 : if
the links intersect then the projection of A1B1 and A2B2 on
the base plane must intersect. As C moves along the safety
conic, i.e. a line DC , B1 and B2 moves along lines DB1

, DB2

parallel to DC . Let us introduce the half planes Pi defined
by the line DBi

and the point Ai: a first condition for the
intersection of A1B1, A2B2 is that the half planes P1, P2

have a non-empty intersection. Now we define four points
U1, U2, U3, U4 on line DB1

. U1 is the intersection of DB1



with the line going through A1 which vector is B1B2, U2

is the intersection of DB1
with the line going through A2

which vector is B1B2. U3 is the intersection of DB1
with

the line going through A1A2. Let U41 be the intersection of
the line going through A1A2 with DB2

: U4 is obtained by
translating U41 by vector B2B1. Among the set of points Ui

let us consider the two extremal points Uj, Uk. It is possible
to show that A1B1, A2B2 will intersect for any point B1 ly-
ing on the parts of DB1

starting from Uj and going through
infinity or starting from Uk and going through infinity. By
translating these parts by a vector B1C we obtain two
parts of DC for which A1B1, A2B2 will intersect (figure 6).
The intersections of these parts with the workspace, if any,
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Figure 6: Definition of the points U1, U2, U3, U4. Here the extremal
points are U1, U2 and from these points we deduce two componants
of DC (in thick line) for which A1B1, A2B2 will intersect.

define forbidden segment i.e. positions of C such that two



links will intersect. These segments can split the workspace
in two componants in which case it will not possible to go
with a constant orientation from one componants to the
other or the segment may define more simply a limit. In
that case it will be possible to go from any point in the
workspace to any other point but sometimes the direct line
will not be possible (figure 7). Note that the forbidden seg-
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Figure 7: The forbidden segment may split the workspace in two
componants (a) or define a limit (b). In the first case it will be
not possible to go from one componant to the other with a constant
orientation and in the second case it will not always be possible to go
from a point to another by the direct path but an alternative path
can be found (in dashed line).

ments does not modify the area of a slice. Therefore the
area of the slice can be easily calculated according to the
method described in [3] and the volume of the workspace
can be deduced from the area of the slices.



4 Examples

Let us consider the manipulator described in [1] which has
the following dimensions, maximum and minimum links
lengths ρmax, ρmin:

x y z

A1 112.5 -194.856 -25
A2 -225 0 -25
A3 112.5 194.856 -25
A4 67.5 -116.913 -25
A5 -135 0 -25
A6 67.5 116.913 -25

x y z ρmax ρmin

B1 95.263 55 -20 757 528
B2 0 -110 -20 757 528
B3 -95.263 55 -20 757 528
B4 -69.282 -40 -20 733 491
B5 0 80 -20 733 491
B6 69.282 -40 -20 733 491

Figure 8 shows a perspective view of the workspace ob-
tained by considering only the maximum and minimum
links lengths constraints.

Figure 9 shows the constraint regions for C and the re-
sulting slice of the workspace for the same links lengths
constraints and with base joint constraints such that the
link must lie inside a four-faced pyramid with an angle at
center equal to 30 degrees. The influence of the joints con-
straints are clearly visible. Figure 10 shows a perspective
view of the workspace with the same constraints.
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Figure 8: Perspective view of the workspace for orientation angles=0,
constraints= links lengths (all dimensions are in mm)
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Figure 9: The constraint regions for C and the resulting slice of the
workspace (in thick line) for the orientation angles=0, constraints=
links lengths and 6 four-faces, 30 degrees angle at center pyramids
for the base joints (all dimensions are in mm)
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ψ = 0,θ = 0,φ = 0
Workspace

Volume:5630334.546169
z first non empty slice:460.769231, last:706.923077

Constrained by: links lengths
and base articulation limits

Figure 10: Perspective view of the workspace for the orientation an-
gles=0, constraints= links lengths and 6 four-faces, 30 degrees angle
at center pyramids for the base joints (all dimensions are in mm)



5 Conclusion

We have presented a geometric approach for the calculation
of the workspace of parallel manipulators for which the
orientation is constant. This approach enables to take into
account every constraints on the manipulator: links lengths
range, mechanical limit of the joints, links interference. To
the best of our knowledge this problem was not solved yet
except by using a numerical grid method.

Our method is exact and fast and the size of the output
is in general small. Furthermore the area and volume of
the workspace can be easily calculated. An extension of
this method to represent the possible orientations of the
mobile plate when the position of its center is fixed is now
considered.
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