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Abstract

In this paper we will address the problems of parallel manipulator’s direct kinematics
(i.e. find the position and orientation of the mobile plate as a function of the articular
coordinates) and the determination of their singular configurations. We will show how
symbolic computation has been used to determine the minimal degree of a polynomial
formulation of the direct kinematic problem together with this polynomial and to calcu-
late all the necessary and sufficient conditions which are to be satisfied by the position
and orientation of the mobile plate to get a singular configuration.

We consider a 6 d.o.f. manipulator in the case where the mobile plate is a triangle
and the links lengths are time-varying. Using geometrical considerations and symbolic
computation we are able to show that an upper-bound of the maximum number of
assembly-modes and thus the maximum number of solutions of the direct kinematics
problem, is 16. We describe then how symbolic computation has been used to reduce the
direct kinematics problem as the solution of a sixteenth order polynomial in one variable.
Using a numerical procedure we show that this polynomial may have 16 real roots and
we exhibit one example for which the maximum number of assembly mode is reached.

Then we consider shortly the problem of singular configuration which can be reduced
to determine some special geometric conditions to be fulfilled by the link’s lines. We show
how a geometric package can be used to determine necessary and sufficient conditions for
the position and orientation of the mobile plate so that the manipulator is in a singular
configuration.

1 Introduction

The direct kinematics problem of a manipulator can be stated in the following manner :
the articular coordinates being known is it possible to find the generalized coordinates of
the effector? The inverse kinematics problem for parallel manipulator is easily solved : in
general each articular coordinate can be expressed as a non-linear function of the generalized
coordinates [1], [2]. Thus we have to solve a system of non-linear equations to determine the
solution of the direct kinematics problem.
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Solving a system of non-linear equations is a difficult task and a numerical resolution is
tedious. Furthermore we have no a-priori information about the uniqueness of the solution
(except in the case of singular configurations [3]).

Nanua and Waldron [4] have initiated a new approach to this problem. They reduce the
resolution of the system of non-linear equations to the one of a polynomial in one variable. The
number of assembly-modes of the manipulator (i.e. the number of way one can assemble the
manipulator with fixed articular coordinates) is clearly related to the degree of this polynomial:
it cannot be greater than this degree.

In the case of the manipulator called the TSSM [5], [6] (Triangular Symmetric Simplified
Manipulator, see figure 1) these authors show that the direct kinematics problem may be
expressed as solution of a polynomial in one variable, which degree is 24. Charentus and
Renaud [7][8] have studied the same manipulator, in the case where the mobile plate is an
equilateral triangle. They have shown that the degree of the polynomial can be reduced to 16.
Hunt [9] has proposed a conjecture for the same manipulator which states that the number
of assembly-modes cannot be greater than 16. In a first part we will prove the conjecture of
Hunt and calculate the polynomial for the TSSM in the general case. This is done by showing
that the TSSM is similar to another mechanism called the equivalent mechanism of the TSSM
for which we can establish a polynomial and an upper-bound of the maximum number of
assembly mode (called the UBAM for brief in the following sections). We will present then a
configuration for which there is 16 assembly-modes.

2 The TSSM

2.1 Equivalent mechanism
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Figure 1: The TSSM parallel manipulator (side and top view)

The TSSM (figure 1) is a 6 d.o.f. parallel manipulator in which a mobile plate is connected
to a fixed base through 6 articulated links, each link being connected both at the base and
the mobile plate through ball-and-socket and universal joints. By controlling the links lengths
we are able to control the position and orientation of the mobile plate [5], [10], [11], [12].
We define a reference frame (O, x, y, z) where O is located in the plane of the base, z is
perpendicular to the base, y is the symetry axis of the base and x is deduced from y, z. The
length of link i will be denoted by ρi, the coordinates of the articulation point on the base
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of segment i (denoted by Ai) in the reference frame are (xai, yai, 0). Others notations are
defined in figure 2.
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Figure 2: Notation (the TSSM is represented in top view)

For fixed links lengths the articulation points B1, B3, B5 of the mobile plate are able to
describe circles centered in O12, O34, O56 whose radius are r12, r34, r56. The coordinates of
the center Oij are denoted by (xOij

, (yOij
, 0). The characteristics of these circles can be

determined using only the knowledge of the links lengths. Thus the TSSM is equivalent to
a mechanism constituted of three links articulated on revolute joints and connected to the
mobile plate (figure 3) for which the articular coordinates are the angles p12, p34, p56. This
mechanism is called the equivalent mechanism of the TSSM.

2.2 Minimal degree of the TSSM polynomial

Hunt [9] has conjectured that an UBAM of the TSSM is 16 by using the following method: if we
dismantle one of the link of the equivalent mechanism of the TSSM we get a RSSR mechanism
(figure 4). It is known [13] that point B of this mechanism describes a sixteenth order surface,
the RSSR spin surface. In order to find the possible configurations of mobile plate we have
to intersect this surface with the circle described by the extremity of the dismantled link.
A sixteenth order surface is intersected by a circle in no more than 32 points. Working
on the conjecture that the RSSR spin-surface contains the imaginary spherical circle eight
times Hunt deduces that at least 16 points are imaginary, and therefore there is at most 16
assembly-modes for the TSSM.

Thus to demonstrate this conjecture we have to determine the circularity of the RSSR
spin-surface.

Let X,Y, Z denote the coordinates of B. The coordinates of the articulation points B1, B3

can be expressed as a function of the unknown angles p12, p34. Thus we are able to write
three equations relating the known distance between the articulation points to the unknowns
p12, p34, X, Y, Z. We have:

a12 =
ρ2
1
+a2

−ρ2
2

2a a = 2xa2 (1)
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Figure 3: Equivalent mechanism of the TSSM
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Figure 4: The RSSR mechanism obtained when one link of the equivalent mechanism of the
TSSM is dismantled
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xO12
= −xa2 + a12 =

ρ2
1
−ρ2

2

4xa2

yO12
= ya2 r212 = ρ2

1 − a2
12 (2)

If nij denote the unit vector between Oij and the corresponding articulation points we get :

n12 = − cos(p12)j + sin(p12)k (3)

In the same way:

a34 =
ρ2
3
+ap2−ρ2

4

2ap (4)

xO34
= xa3 − a34 cos(g) yO34

= ya3 − a34 sin(g) r234 = ρ2
3 − a2

34 (5)

n34 = − cos(p34) sin(g)i + cos(p34) cos(g)j + sin(p34)k (6)

We may write then
OB1 = OO12 + r12n12 (7)

OB3 = OO34 + r34n34 (8)

We are able to express the norm of the vectors B1B3, B1B, B3B i.e. the distances between
the articulation points of the mobile whose values are mp and m,m. This yields to the
following three equations :

||B1B3||
2 −mp2 = 0 ||B1B||2 −m2 = 0 ||B3B||2 −m2 = 0 (9)

From this point every further calculation have been done using Maple for the obvious reason
that doing them by hand will be rather tedious although the calculations are not really
complicated. The above equations can be written as :

E1 cos(p12) + E2 sin(p12) + E3 = 0 (10)

F1 cos(p34) + F2 sin(p34) + F3 = 0 (11)

K11 sin(p34) sin(p12) + (K21 cos(p34) +K22) cos(p12) +K32 cos(p34) +K33 = 0 (12)

where the Ei, Fj coefficients does not depend upon the angles but only upon the three coordi-
nates of B. In fact they are polynomials in X,Y, Z and Eij , Fij will denote some coefficient of
the corresponding polynomial, which definition can be found in [14]. As for the coefficientsKij

they are fully defined by the geometry of the mechanism. Equations 10,12 are linear in term of
sin(p12), cos(p12). We solve this linear system and write the equation cos(p12)

2 +sin(p12)
2 = 1

which yields:

(N1 −N2) cos(p34)
2 +N3 sin(p34) cos(p34) +N4 sin(p34) +N5 cos(p34) +N6 +N2 = 0 (13)

where the coefficients Ni are only function of the coefficients Ej ,Klm. These coefficients can
be further expanded by writing:

Ni =
∑

NijEk

where the coefficients Nij does not contain any term El. These coefficients are not presented
here but can be found in [14]. Then sin(p34) is determined using equation 11. If we put this
value in equation 13 and write sin(p34)

2 + cos(p34)
2 = 1 we get two equations:

I1 cos(p34)
2 + I2 cos(p34) + I3 = 0 (14)

H1 cos(p34)
2 +H2 cos(p34) +H3 = 0 (15)
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where the coefficients of Ii, Hj are function only of the coordinates of B. The orders of these
coefficients are 4, 4, 4, 2, 3, 4. The equations 14, 15 yield to :

∣

∣

∣

∣

|I1H2| |I1H3|
|I1H3| |I2H3|

∣

∣

∣

∣

= 0 (16)

where
|IiHj | = IiHj − IjHi (17)

Using this method we get a sixteenth order polynomial. Its higher degree term is:

F 4
21(Y

2 +X2 + Z2)8(N13 −N21)
2 (18)

Although the value of N13, N21, F21 have not been presented here it can be shown that if
(N13 − N21) is equal to zero the mobile plate is reduced to a line. As for F21 it cannot be
equal to zero. Therefore the circularity of the RSSR spin-surface is 8 and the conjecture of
Hunt is verified. Thus there is at most 16 assembly-modes for the TSSM.

2.3 Description of the symbolic computation of the algorithm

The previous calculations has been made with the use of the symbolic computation program
Maple. Although this program is quite powerful a direct implementation of this algorithm is
not possible due to the size of the various coefficients which appear during the computation.
Thus we use a decomposition method.

The first step of the method is to compute the coefficients E,F of equations 10, 11. In
a second step we compute the coefficients K of equation 12. From now on we use only the
abbreviated form of these equations. This form enables to calculate in the third step the
coefficients N of equation 13. In a fourth step we use the abbreviated form of equations 10,
11 and 13. From equation 11 we calculate the value of sin(p34) and write the equation
sin(p34)

2 + cos(p34)
2 = 1 which yield to equation 15. We put then the value of sin(p34) in

equation 13 to get equation 14. Then we consider the complete form of the coefficient E,F ,
resulting from the first step and write these coefficients as polynomial in X,Y, Z. This yield
to an abbreviated form of these coefficients. Then coefficients N are expressed as polynomial
in term of the coefficients E. From the abbreviated form of the coefficients E,F,N we are
able to compute the closed-form of the coefficients I,H which yield to the coefficients |IiHj |.
At this step we are able to determine which term of equation 16 will yield to the higher term
which is |I1H3|

2
. We compute then the higher coefficient which yield to equation 18.

2.4 Determination of the polynomial

The principle of the determination of the polynomial is similar to the one used for the deter-
mination of the circularity of the RSSR spin surface.

By introducing the unknown angle p56 we are able to express the norm of the vectors
B1B3, B1B5, B3B5 i.e. the distances between the articulation points of the mobile whose
values are mp,mp et m as a function of the angles p12, p34, p56. This yields to the following
three equations :

||B1B3||
2 −mp2 = 0 ||B1B5||

2 −mp2 = 0 ||B3B5||
2 −m2 = 0 (19)
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It is possible to show [14] that these equations may be written as :

K11 sin(p34) sin(p12) + (K21 cos(p34) +K22) cos(p12)+K32 cos(p34) +K33 = 0 (20)

L11 sin(p56) sin(p12) + (L21 cos(p56) + L22) cos(p12)+L32 cos(p56) + L33 = 0 (21)

M11 sin(p34) sin(p56) + (M21 cos(p34) +M22) cos(p56)+M32 cos(p34) +M33 = 0 (22)

where the coefficients K,L,M does not depend upon the angles p12, p34, p56. We may notice
that for a given set p12, p34, p56, solution of these equations, the set −p12,−p34,−p56 is also
a solution. This mean simply that for a given position of the mobile plate the symmetrical
position with respect to the base has the same links lengths.

Noticing that equations 20, 21 are linear in term of sin(p12), cos(p12) we solve this linear
system and write the equation cos(p12)

2 + sin(p12)
2 = 1 which has the following form:

(N1 −N2) cos(p56)
2 +N5 sin(p56) + (N3 sin(p56) +N4) cos(p56) +N2 +N6 = 0 (23)

From equation 22 we get the value of sin(p56):

sin(p56) = − (M21 cos(p34)+M22) cos(p56)+M32 cos(p34)+M33

M11 sin(p34) (24)

From now on the process is similar to the one proposed by Nanua and Waldron. Charentus
and Renaud [7][8] (in the case where the mobile plate is equilateral) have noticed that the
coefficients N3, N5 can be written as :

N3 = N ′

3 sin(p34) N5 = N ′

5 sin(p34)

The term sin(p34) being present in the denominator of sin(p56) we get a simplification
when we use the value of sin(p56) in equation 23.

Thus equation 23 is written as :

I1 cos(p56)
2 + I2 cos(p56) + I3 = 0 (25)

Using the equation sin(p56)
2 + cos(p56)

2 = 1 we get from equation 24:

H1 cos(p56)
2 +H2 cos(p56) +H3 = 0 (26)

The Ii, Hj coefficients are second order polynomial in cos(p34) only. We express then a similar
condition as in 16 and get a eighth order polynomial in cos(p34). If we define x = tan(p342 ) we

have cos(p34) = 1−x2

1+x2 , and we get from equation 16 a sixteenth order polynomial in x. These
terms are fourth order polynomials in cos(p34). Therefore equation 16 In fact the odd power
of x in this polynomial have zero as coefficient. Thus we have to solve only a eighth order
polynomial (this means that if p34 is solution of the polynomial −p34 is also a solution, as
known from the beginning). From the determination of p34 it is easy to determine the value
of p12, p56 by following the process described by Nanua. Similar methods have been designed
to compute a polynomial formulation of various parallel manipulators (see [14], [15]). The
symbolic computation program which calculate this polynomial uses the same decomposition
principle as the program designed to calculate the circularity of the RSSR spin-surface. This
program generate automaticaly a C-program to compute the value of the coefficients of the
polynomial.
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2.5 Example

We present here an example of a TSSM with 16 assembly-modes (i.e. the polynomial has 16
real roots). The nominal position of the mobile plate is: x0 = y0 = 0, z0 = 20, ψ = −10, θ =
−5, φ = 10 where ψ, θ, φ are the Euler’s angles in degree. The equivalent configurations
for which the mobile plate is over the base are given in Table 1. We show in figure 5 the
eight positions of the mobile plate for which the mobile plate is over the base (the 8 others
configurations are the symmetrics with respect to the base of the drawn configurations).

3 Singular configurations

Singular configurations of a TSSM are obtained when the rank of its inverse jacobian matrix
J−1 is less than 6. Although we have an analytic formulation of this matrix it is quite
impossible to determine the roots of its determinant. In order to solve this problem we have
first to notice that the lines of this matrix correspond to the Plücker coordinates of the lines
associated to each link. Thus the degeneracy of the matrix J−1 corresponds to a linear
dependence of the Plücker vectors or, in other term, to a linear dependence of lines in space.
Geometric conditions on the lines which yield to such a dependence are well known from
Grassmann geometry (see [15], [3]): for example 4 Plücker vectors are linearly dependent if
the associated line have a common point (therefore the variety spanned by these four lines
has a rank of 3). Therefore for a set of n lines (n ≤ 6) there is geometric constraints on the
lines such that the variety spanned by these lines is of rank n − 1. For the TSSM we have
only to consider the set of 4, 5 and 6 lines which can degenerate to variety of rank 3 (plane),
4 (congruence which can be degenerate or hyperbolic according to the geometric conditions
which are satisified) and 5 (complex which can be special or general).

These geometric constraints are mainly lines intersection conditions and coplanarity of
lines.

From the position and orientation of the mobile plate we are able to calculate the position
of one point of the link’s lines (the articulation point on the mobile). Another point of these
lines being known (the articulation point on the base) we are thus able to calculate the Plücker
vector of each link’s lines. The above geometric conditions are easily written if one knows the
Plücker vectors of the lines.

We have developed a Maple package with which we can calculate the Plücker vector of a
line from the coordinates of two points belonging to this line, find a condition on the Plücker
coordinates so that two lines intersect or are coplanar. With this package we have been able
to find all the conditions on the position and orientation of the mobile plate to get a singular
configuration. For more details see [15] or [3].

The table 2 summarizes the results deduced from the Maple program. (in this table
xai, yaj denote the position of the articulation point on the base, x0, y0, z0 the position of the
center of the mobile plate and ψ, θ, φ the Euler’s angle and A,B,C,D, F some function).

4 Conclusion

The direct kinematics problem is one of the most challenging problem of parallel manipulators.
In a first part we show that there can be at most sixteen different configurations of the
manipulator for a given set of links lengths. Then we have demonstrated that in the general
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case it will not be possible to find an analytical solution to this problem because it is equivalent
to solve a polynomial which order is 16. The interest of the polynomial formulation of the
direct kinematics problem is that it gives all the possible configurations of the manipulator. As
for the numerical efficiency the resolution using the polynomial is very slow compared to others
known methods based on an estimate of the solution [16] (we get at least a factor 10 on a Sun
workstation). Thus this method can be useful only during the initialization process, where
no estimate of the position of the mobile plate is known. Symbolic computation has been a
very useful tool to determine the polynomial because the calculation are rather tedious. Our
experience shows however that the programmer has to split its calculation to avoid memory
overflow.

Symbolic computation has been also used to determine the singular configurations of this
kind of closed-loop mechanism. There is evidently a lack of geometric packages in the existent
tools. Thus it has been necessary to design a package to deal with Plücker vector and some
basic geometrical properties such as intersection and coplanarity of lines.

Table 1: Position and orientation of the 16 assembly-modes of the TSSM

x0 y0 z0 ψ θ φ

0.1099 -6.8071 15.1572 178.79 104.2473 -179.39757
0.0 0.0 20.0 170.000 4.9999 -170.0

2.8029 -4.6660 12.7407 55.3895 89.1782 136.1996
1.3617 4.9038 17.3824 -106.3317 149.9318 58.9676
0.1606 5.3765 17.1868 -170.3808 164.0139 7.9545
-0.3525 -3.8663 11.9183 -12.5596 45.1107 -168.3013
-1.4134 4.8262 17.4299 102.6405 147.3844 -61.9768
-2.3355 -4.4679 12.5479 -50.8490 79.0396 -137.3533

plane tanψ = (ya3 − ya4)/(xa3 + xa4)
x0 = A(ψ, θ, φ), y0 = B(ψ, θ, φ), z0 = C(ψ, θ, φ)

degenerate congruence x0 = A(ψ, θ, φ), y0 = B(ψ, θ, φ), z0 = C(ψ, θ, φ)
hyperbolic congruence (first case) x0 = A(z0, ψ, θ, φ), y0 = B(z0, ψ, θ, φ)
hyperbolic congruence (second case) y0 = A(x0, z0, ψ, θ, φ) , F (x0, z0, ψ, θ, φ) = 0
general complex (first case) θ = φ = 0 ψ = ±π

2

general complex (second case) θ = ±π
2 or ψ = φ

A(x0, y0, ψ, θ, φ)z3
0 +B(x0, y0, ψ, θ, φ)z2

0+
C(x0, y0, ψ, θ, φ)z0 +D(x0, y0, ψ, θ, φ) = 0

special complex x0 = A(z0, ψ, θ, φ), y0 = B(z0, ψ, θ, φ)

Table 2: Relations between the position and orientation parameters to get a singular config-
uration
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Figure 5: 8 over-the-base assembly-modes of the TSSM ( perspective, top and side view)
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