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Abstract Robots are controlled with a discrete-time controller that includes a high-

level loop for motion control and a faster internal loop that controls the actuators. We

intend to simulate the behavior of the whole chain for a cable-driven parallel robot

(CDPR) with linear elastic cables and we will show that such a simulation cannot

be performed using classical simulation tools. We exhibit a simulation algorithm

which computes exactly the pose and cable tensions on a given trajectory. As an

example we consider a redundantly actuated robot with 8 cables. We show that the

discrete-time control has a moderate influence on the accuracy of the positioning

but a very large influence on the cable tensions.
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1 Introduction

The study of CDPR has started about 30 years ago with the pioneering work of

Albus [2] and Landsberger [13] but there has been recently a renewed interest in

such a robot, both from a theoretical and application viewpoint. For example kine-

matics analysis of CDPR is much more complex than the one of parallel robot with

rigid legs as static equilibrium has to be taken into account [5, 11, 21] and is still

an open issue especially as not all cables of a robot with m cables may be under

tension [1, 3, 6, 8, 16] and that only stable solutions have to be determined [7]. This

analysis is even more complex if we consider that the cables may be elastic and/or

deformable [9, 10, 12, 18].

Numerous applications of CDPRs have been mentioned e.g. large scale main-

tenance studied in the European project Cablebot [17], rescue robot [15, 19] and

transfer robot for elderly people [14] to name a few.
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However a problem has never been addressed when simulating CDPRs: the influ-

ence of the use of discrete-time control on the kinematic and static behavior of the

robot. Only Borgstrom [4] has presented a motion planning algorithm for CDPRs

that takes into account the discrete-time nature of the controller. The purpose of this

paper is to study the controller influence on the kinematic and static behavior of a

CDPR with linear elastic cables when performing a given trajectory.

2 Discrete-time control

A robot controller is basically constituted of two discrete-time control loops:

• a high-level loop with a sampling frequency ∆ t1: at time k∆ t1, k being an inte-

ger, this loop get sensory information from the robot, process it and send a new

command for the actuators at time (k+1)∆ t1
• an inner loop with a sampling frequency ∆ t2 < ∆ t1: at time l∆ t2, l being an

integer, this loop get sensory information from the actuators and process it for

sending new voltages or currents to the actuators at time (l+1)∆ t2. For the sake

of simplicity we will assume that ∆ t1 is a multiple of ∆ t2.

A consequence of this scheme is that during the time interval [l∆ t2,(l + 1)∆ t2] the

actuators are submitted to a constant voltage/current V and the CDPR state evolves

according to only the actuator state. We will assume that a time-model of the actu-

ator is available i.e. the output θ of the motor at any time T in the range [t, t +∆ t2]
may be obtained as θ(T ) = H(T,θ(t),V ).

3 Cable configurations and kinematico-static equations

We consider a CDPR with m elastic cables, numbered from 1 to m, whose extremi-

ties are located on the robot base at point Ai and attached to the platform at point Bi.

If ρ is the cable real length and l0 its length at rest, then the tension τ in the cable

is τ = K(ρ − l0), where K is the stiffness constant, provided that l0 is larger than

the distance ||AiBi||, otherwise the cable is slack and τ = 0. As a cable may become

slack we introduce the concept of cable configuration (CC): a cable configuration

Mi at a pose is a set of i ≤ m integers which are the numbers of the cables that

are currently under tension, all other cables being slack. Note that at a given pose

several CC may be possible, the current one depending on the history of the system.

We may now investigate the equations that are involved in the forward kinematics

(FK) problem for a given CC M j. The unknowns are the 6 parameters X that describe

the pose of the platform and the i tensions τ or, equivalently, the i cable lengths ρ ,

for a total of 6+ i unknowns. The equations are the i inverse kinematic equations

and the 6 equation from the mechanical equilibrium:
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ρ = G(X) F = J−Tτ (1)

where F is the external force applied on the platform. In this paper we will assume

that the only external force is gravity that is applied at the center of mass C of the

platform. The matrix J−T is the 6× i transpose of the inverse kinematic jacobian.

The j-th row J j of J−T is given by

J j = ((
AjBj

ρ j

CBj ×
AjBj

ρ j

))

Hence we end up with a square system of 6+ i equations that may be written as

F(X,ρ , l0) = 0 (2)

4 Kinematico-static simulation on a trajectory

We are interested in determining the kinematic and static behavior of a CDPR under

a discrete-time controller when it has to move along a given trajectory. We will

assume that when the CDPR starts its task the current CC Ml is known. We will also

assume that the pose at the start point is known.

4.1 Finding a certified end-pose

We consider a time interval T = [l∆ t2, l∆ t2 +∆ t], with ∆ t ≤ ∆ t2, and we assume

that at time t the CC M j is known, together with the pose Xt. Our objective is to

determine what is the pose at time l∆ t2 + ∆ t, under the assumption that the CC

does not change on the whole time interval. If such result can be obtained the time

interval T will be called valid. For checking the validity of T we consider the

system of equations (1) at time T , i.e. for fixed values of the l0. This system may

admit several solutions i.e. the pose X may lie on different kinematic branches Si

and our objectives are to show 1) that for any time T the pose lies on the same branch

St than Xt and 2) to calculate the pose at time l∆ t2+∆ t. Assume that we are able to

show that for any time T system (1) admits a single solution in a ball centered at Xt:

this implies that during the time interval the kinematic branch on which lies Xt does

not cross any other branch and that the pose always lies on the branch St , hence

fulfilling 1). For showing the unicity of the solution in a ball centered at Xt we will

use Kantorovitch theorem [20], that is presented now. Let an arbitrary system of n

equations in n unknowns F = {Fi(x1, . . . ,xn) = 0, i ∈ [1,n]} and x0 be a point and U

a ball centered at x0 with radius B0. Assume that x0 is such that:

1. the Jacobian matrix J0 of the system has an inverse Γ0 at x0 such that ||Γ0|| ≤ A0

2. ||Γ0F(x0)|| ≤ 2B0
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3. ∑n
k=1 |

∂ 2Fi(x)
∂x j∂xk

| ≤C for i, j = 1, . . . ,n and x ∈U

4. the constants A0,B0,C satisfy 2nA0B0C ≤ 1 (A)

Then there is an unique solution of F = 0 in U and Newton iterative scheme used

with x0 as estimate of the solution will converge toward this solution.

In our case however as we consider any time in the time interval, equations (1)

is not a single system but a family of systems because l0 vary over time. We may

however assume that the time model of the actuator allow us to determine an interval

I i = [li
min, l

i
max] such that for all cables we have li

0 ∈ I i. Note that the width of I i

will decrease with ∆ t. Assuming that the reader is familiar with interval analysis

(IA) we may now apply Kantorovitch theorem to the system (2) using Xt as x0 with

the following modifications:

• F(x0) has now an interval value

• the matrix J0 is an interval matrix. Classical method allows to obtain its inverse

but may fail if the width of the intervals in J0 is too large

• the Hessian matrix appearing in item 3 of the theorem is also an interval matrix

but its norm can be calculated with IA methods

We start by setting ∆ t =∆ t2. If the interval matrix J0 cannot be inverted or condition

(A) of the theorem is not satisfied, then we set ∆ t = ∆ t/2, update the ranges I i and

starts again until a valid ∆ t is determined. This approach may fail only in two cases:

(a) system (2) is close to a singularity (in which case we cannot predict the behavior

of the robot) or (b) in case of insufficient computer accuracy (this issue will be

addressed in a later section). If a valid ∆ t is found we are able to calculate the pose

at time l∆ t2 +∆ t unless a CC change occurs in the time interval.

4.2 Finding cable configuration changes

Assume that a valid interval [l∆ t2, l∆ t2 +∆ t] has been determined in the previous

step. If no CC change occur in this time interval, then we are able to calculate the

pose at time l∆ t2 +∆ t. Necessary conditions for a CC change are

1. there is a time T in the time interval at which the tension of a cable i ∈ M j is

exactly equal to 0, i.e. ρi = li
0 = ||AiBi||

2. there is a time T in the time interval at which the length li
0 a cable i 6∈ M j is such

that li
0 = ||AiBi||.

In both cases equations (2) for the CC M j are still valid but we have an additional

unknown, T , while one of the unknown, ρi, has now a known value. Hence this new

version of (2), denoted Fmod
i, is still a square system. As we have to consider that all

the m cable may possibly satisfy in turn ρi = li
0, we have therefore m system Fmod

i.

Note that we have bounds on all unknowns of the new system: X and the ρi have to

lie in the ball provided by the Kantorovitvh theorem. Hence it is quite natural to use

IA to determine all possible solutions of all m systems Fmod. All the n solutions are



Kinematico-static analysis of CDPR with elastic cables 5

then ordered by increasing value T
k1

1 ,T k2
2 , . . . ,T kn

n where the superscript ki denotes

the cable number for which ρki
= l

ki
0 . In the time interval [l∆ t2, l∆ t2 +T

k1
1 ] we are

sure that the platform lie on the kinematic branch St . A possible CC change may

occur at time T
k1

1 , where we have ρk1
= l

k1
0 , but is not certain. Indeed if k1 ∈ M j the

tension may decrease before T
k1

1 , cancel at T
k1

1 but may then increase. In the same

manner if k1 6∈ M j the distance ||Ak1
Bk1

|| may increase before T
k1

1 , reach l
k1
0 at T

k1
1

but may then decrease so that cable k1 remains slack. To determine if such case

occurs we consider a new CC M j+1 obtained by adding k1 to the CC M j. We then

apply the Kantorovitch theorem on the equations (2 valid for this new CC, using as

x0 the pose obtained for the time T
k1

1 . We then calculate times T ′
1 ,T

′
2 , . . . ,T

′
u at which

a CC change may occur. We then solve the system obtained for time (T k1
1 +T ′

1)/2. If

at this time we have both k1 ∈ M j and ||Ak1
Bk1

||< l
k1
0 or both k1 6∈ M j and ρk1

> l
k1
0 ,

then a CC change occurs at T
k1

1 , cable k1 becoming slack in the first case and under

tension in the second one. If this not the case we repeat the procedure for time T
k2

2 ,

. . . , T kn
n until either a CC change occur or there is no CC change at T kn

n , which

implies that at time l∆ t2 +∆ t the platform still lies on the branch St .

4.3 Trajectory checking

The two previous sections allow us to determine the pose, cable configuration and

cable tensions at any time when the CDPR performs a trajectory. As soon as the high

level loop has sent an order to the inner one we will determine the pose and tension

during the time intervals [k∆ t1 + l∆ t2,k∆ t1 +(l + 1)∆ t2] until k∆ t1 +(l + 1)∆ t2 =
(k+ 1)∆ t1. We store the CDPR status at times k∆ t1 + l∆ t2,k∆ t1 +(l + 1)∆ t2 and

possible at intermediate times. Note that uncertainties may be taken into account:

for example we may use in the simulation a different value of the cable stiffness Ki

than the one used in the high level loop or we may introduce arbitrary random errors

in the measurements of the l0 that is used by the inner loop.

5 Implementation and example

The previous algorithm has been implemented assuming a first order time model for

the velocity of the actuator. Let Vc be the desired velocity of the actuator and V (t0)
the known velocity at time t0. Then the actuator velocity V (t) at time t ≥ t0 is

V (t) =Vc +(V (t0)−Vc)e
−

t−t0
U

where U is a known constant. The inner loop is a simple P controller that send to

the actuator at time (l + 1)∆ t2 a velocity order V l = Vc + kp(Vc −Vm), where Vm is
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the measured velocity at time l∆ t2, Vc the velocity sent by the high level loop and

kp a constant gain.

The IA part of the algorithm has been implemented using our IA library ALIAS,

that takes into account round-off errors. But even with this library we have encoun-

tered numerical problems, especially with the convergence of the Newton scheme.

The satisfaction of Kantorovitch theorem requires that the pose computed for a given

time T is accurate enough. Indeed a minimum condition for the theorem to provide

a positive answer is that it is satisfied at time T . Roughly this means that the abso-

lute value of the components of F at this time have a value less than 1/(2kA2
0C0),

where k is the number of equations in F. In some cases we have noticed that this

value is very low and well below the accuracy of floating-point calculation. Hence

the floating-point version of the Newton scheme oscillates around the solution with-

out ever producing a value of F which is small enough. Fortunately we have a mean

to solve this issue: ALIAS has a Maple interface that includes a multi-precision

Newton scheme, allowing to calculate a solution with an arbitrary accuracy. Conse-

quently when Kantorovitch theorem is satisfied but the floating-point Newton does

not converge, then we use the Maple version.

As a complex example we consider the 8-cables large scale robot developed by

LIRMM and Tecnalia as part of the ANR project Cogiro and the FP7 project CA-

BLEBOT. This robot is a suspended CDPR whose dimensions have been given in

several papers [10]. The platform is assumed to have a mass of 1/9.81 kg. We con-

sider a planar circular trajectory centered at (0,0,2) with radius 1. The sampling

times were fixed to ∆ t1 = 0.005s, ∆ t2 = 0.001s and the motor constant U to 0.1s.

The high level loop computes at time k∆ t1 what should be the pose at time (k+2)∆ t1
and calculates the lc

0 for this pose that minimize ∑τ2
j . The inner loop generates a ve-

locity order for the actuators as Kp(l
c
0 − lm

0 ) where Kp is a constant gain and lm
0 the

l0 measured at time k∆ t1. We have considered two simulation cases. In the first one

there is no error on the measurement of the l0 and the stiffness of the cables was set

to 1000 N/m (which correspond roughly to the stiffness of nylon). In the second case

we add a random error on the lm
0 in the range [−0.01,0.1] (the average value of the l0

on this trajectory is about 800), the high level loop assume a cable stiffness of 1000

but the real cable stiffness was set to 1050,900,950,1020,1010,1000,1040,980.

In the first case the maximal positioning error on the trajectory is 0.00002275

with a mean value of 0.36610−5. In the second case the maximal error is 0.00575

with a mean value of 0.00104 (figure 1). Hence it may be seen that the uncertainties

on the stiffness and length measurement has a relatively low influence on the posi-

tioning accuracy, The situation is quite different for the tensions in the cables. With-

out uncertainties the maximal difference between the cable tensions and the optimal

one over all cables is 0.000221N with a mean value of 0.0001 N. With uncertainties

the maximal difference is 0.4844 N with a mean value of 0.28097 N. In percentage

of the optimal tension the maximal difference is 140.13% and the mean value is

72.85%. Figure 2 presents tension of cable 1 together with its optimal tension dur-

ing the first 3 seconds of the trajectory. It may be seen that a perfect knowledge of

the cable stiffness allows to follow accurately the optimal tension. But as soon that

as the real stiffness differ by a small amount from the assumed one the cable tension
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Fig. 1 Positioning error without and with uncertainties (mm)

oscillates between slack state and under tension. This analysis confirms that the use
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Fig. 2 Tension of cable 1 without uncertainty and with uncertainty (optimal tension is the dashed

line)

of a discrete-time controller prohibits tension control in CDPRs.

6 Conclusion

To the best of our knowledge this paper has presented for the first time a simula-

tion of CDPRs that takes into account the discrete-time nature of current controller.

Implementing this simulation is a complex task because it involves solving the FK

but also because the necessary accuracy for obtaining this simulation may be lower

than the one obtained with floating point calculation. Results on an example shows

that positioning accuracy is not that much influenced by the controller but that on

the other hand cable tensions are drastically influenced. Our next objective will be

to take into account the dynamics of the robots in this simulation.

This research has received partial funding from the EC’s Seventh Framework

Program under grant agreement NMP2-SL-2011-285404 (CABLEBOT).
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