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Abstract

We consider a Stewart platform and show that it
forward kinematics has at most 12 solutions. A first
geometrical demonstration is provided which uses the
concept of circularity and in a second proof we show
that this problem is equivalent to find a system of two
planar parallel manipulators with each 6 solutions to
the forward kinematic problem. A geometrical con-
struction is provided to construct such a system and a
Stewart Platform with 12 configurations is exhibited.

1 Introduction
In 1965 Stewart [16] describes a mechanism in-

tended to be used as a flight simulator. This mech-
anism (figure 1) consists in a triangular mobile plate
connected to the ground through three identical mech-
anisms. This mechanism is composed of a fixed verti-
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Figure 1: The Stewart Platform

cal beam Fi on which two articulated beams are con-
nected. These beams are in turn linked to each other
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and one of the beam is connected to the mobile plate
by a ball-and-socket joint at the point Bi. In each
of these beams a linear actuator enables to change
the beam length. For a given posture of the mobile
plate there is a unique length for each of the 6 beams.
In the litterature most of the time the name ”Stew-
art Platform” refers to two rigid bodies connected by
6 variable length links but most of Stewart’s paper
deals with the presented mechanism (hence denoted
the ”true” Stewart platform).

The forward kinematic problem is to find the pos-
tures of the mobile plate for a fixed set of beam
lengths. This problem has recently been the sub-
ject of many papers especially for the manipulator
which is usually called the ”Stewart Platform” (two
bodies connected by 6 links with a variable length,
in fact it was first proposed by Gough as it can be
seen in Stewart paper). In that case it has been
shown that the problem has at most 16 solutions if
the mobile plate is a triangle as it can be reduced
to solving a sixteen order polynomial [1], which may
have effectively 16 real roots [11]. If the articula-
tion points have different location, there will be at
most 40 solutions when either the fixed or the mo-
bile plate is planar [9] and also for the most general
manipulator [8],[15]. The forward kinematic prob-
lem has been solved for many others parallel manip-
ulators [2],[4],[6],[7],[10],[13],[14],[17]. We have shown
in [12] that the analysis of Innocenti on the RRR-3S
mechanism [5] can be used to find an upper-bound
of the number of solutions and a polynomial for many
different architectures of parallel manipulators. It was
shown that for the Stewart Platform this upper-bound
was 16. We will show in this paper that the real upper-
bound is 12 except in the degenerate case where there
are an infinity of solutions.



2 Maximum number of solutions
2.1 First approach

Let denote B1, B2, B3 the three centers of the ball-
and-socket joints on the mobile plate and li1, l

i
2 the

lengths of the beams for the mechanism with Bi as
extremal point. As these lengths are fixed Bi must
lie on an horizontal circle Ci whose center belongs
to Fi. Therefore we may substitute the mechanism
by a single link which can rotate around the vertical
axis. From the forward kinematic viewpoint the Stew-
art Platform is therefore equivalent to the mechanism
presented in figure 2. Let Ai, Ci denote the articula-
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Figure 2: The equivalent mechanism of the Stewart
Platform

tion points of the beams on Fi, Zi the distance be-
tween these points, Di the connection point between
the beams, and ui the fixed distance between Di, Ci.
Let zAi

denotes the coordinates of Ai along the ver-
tical axis, zi the coordinate of the center of Ci along
this axis and ri the radius of Ci. We get:

zi = zAi
+ Zi + li1

(li2)
2 − Z2

i − u2
i

2Ziui

(1)

r2i = (li1)
2 (Zi + ui)

2 − (li2)
2

2Ziui

(2)

Now assume that we disconnect B1. This point will be
now the coupler point of a RR-2S mechanism. For any
valid solution of the forward kinematic B1 will there-
fore be an intersection point of the coupler surface of
the RR-2S mechanism and the circle C1.

We use now a theorem of Cayley [3]:

Two points C,D a fixed distance apart on a movable

line are constrained to lie respectively on two planar

algebraic curve of order nc, nd and circularity pc, pd

that lie on parallel planes. Then the line generates a

ruled surface of degree 2nc(nd − pd) + 2nd(nc − pc) −
2pcpd.

For our RR-2S mechanism we apply this theorem
on the line going through B2, B3. We have nc = nd =
2, pc = pd = 1 and therefore B2, B3 lie on a ruled sur-
face of order 6. Therefore B1 lie on a surface of order
12, circularity 6 which has at most 12 real intersection
points with a circle. Therefore the forward kinematic
problem has at most 12 solutions except in the degen-
erate case where there are an infinity of solutions.

2.2 Second approach

Let us denote Π1,Π2,Π3 the three planes contain-
ing the circles Ci. Let us consider U3 the projection of
B3 on Π1 and U2 the projection of B2 on Π1 (figure 3).
As B3 moves on C3 U3 will move on a similar circle in
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Figure 3: The planar parallel manipulator equivalent
to the Stewart Platform

Π1. Let us consider now the triangle B1B3U3: the
length of its edge B1B3 is constant and the length of
its edge U3B3 is also constant and equal to the distance
between the plane Π1,Π2. As the edges U3B3, B1U3

form a right angle we deduce that the length ||U3B1|| is
also fixed. In a similar manner for the triangleB2B1U2

the length ||U2B1|| is fixed and the length ||U2U3|| is
constant. Therefore we get in the plane Π1 a trian-
gle U3U2B1 whose edges have a constant length and
whose vertices are connected to fixed points through
three links of length r1, r2, r3 which can rotate around
the normal to the plane: we get a planar parallel ma-
nipulator. Consequently any solution of the forward
kinematic for this manipulator yield to a solution for
the forward kinematic of the Stewart Platform.

Let h1i denotes the distance the plane Πi and
the plane Π1, lij the length of the edge UiUj (with
U1 = B1) of the triangle U3U2U1 and dij the distance
between the points BiBj . We have:

l213 = d2
13 − h2

13 (3)



l212 = d2
12 − h2

12 (4)

l223 = d2
23 − (h12 + h13)

2 (5)

Let us notice now that we have shown that the
edges of the mobile plate of the planar parallel ma-
nipulator have a fixed length. But there exist two dif-
ferent triangles which fulfill this condition : the orig-
inal triangle and its mirror image. Therefore we get
two different planar mechanisms and for each forward
kinematic solution of one of the mechanism we get a
solution for the Stewart Platform. Each of this mech-
anism is a planar parallel manipulators and we will
call the manipulator whose mobile plate is the mir-
ror image of the initial one its mirror manipulator. A
system of planar parallel manipulators will denote a
planar parallel manipulator and its mirror manipula-
tor.

It is well known that the forward kinematic of a
planar parallel manipulator may have up to 6 solu-
tions [2]. Consequently there will be up to 12 solutions
for the forward kinematic of the Stewart Platform.

Corollary: A Stewart Platform with 12 solutions
will be obtained if and only if we exhibit a system of
planar parallel manipulators with 12 solutions. Each
of the manipulator in the system will have therefore
a maximum of solutions except in the degenerate case
where there are an infinity of solutions.

3 Computing the solution
Innocenti has shown that the direct kinematic prob-

lem of any RRR-3S mechanism can be reduced to
the analysis of a sixteen order polynomial [5]. As
the equivalent mechanism of a Stewart Platform is an
RRR-3S mechanism its analysis can be applied here.
This approach has been implemented and an intensive
numerical investigation has enabled us to find Stewart
Platforms with a maximum of 8 solutions (therefore
not the expected maximum number).

In fact using the planar correspondence developed
in the previous section it is possible to determine a
12th order polynomial. Let us consider a planar par-
allel manipulator (figure 4). The coordinates of the
fixed articulation points A,C, F are:

A : (0, 0) C : (c2, 0) F : (c3, d3)

The inverse kinematic equations are:

ρ2
1 = x2 + y2 (6)

ρ2
2 = (x + l2 cosΦ − c2)

2 + (y + l2 sin Φ)2 (7)

ρ2
3 = (x + l3 cos(Φ + θ) − c3)

2 +

(y + l3 sin(Φ + θ) − d3)
2 (8)
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Figure 4: A planar parallel manipulator and its nota-
tion

These equations can be written as:

ρ2
1 = x2 + y2 (9)

ρ2
2 − ρ2

1 = Rx+ Sy +Q (10)

ρ2
3 − ρ2

1 = Ux+ V y +W (11)

Equations (10-11) are linear in x, y. By solving
this linear system and using the value of x, y in
equation (9) we get an equation in the unknown
cosΦ, sinΦ. We use then the classical change of vari-
able :

T = tan(
Φ

2
) cos(Φ) =

1 − T 2

1 + T 2
sin(Φ) =

2T

1 + T 2

to transform this equation into a sixth order polyno-
mial P in T . In our problem only the lengths of the
edges of the mobile plate are fixed. We have:

cos(θ) =
l22 + l23 − l21

2l2l3
(12)

Using this equation P can be written as:

P = a sin(θ) + b = 0 (13)

where a, b are sixth order polynomials in T which does
not contain any term in θ. Therefore the polynomial
for the mirror parallel manipulator can be written as:

Pm = −a sin(θ) + b = 0 (14)

and the polynomial Ps for the Stewart platform is de-
fined by the product of P, Pm:

Ps = b2 − a2 sin2(θ) = 0 (15)

which is a 12th order polynomial in T , obtained as the
product of two sixth order polynomials whose coeffi-
cients are rational functions of the parameters. The



roots of this polynomial define the solutions of the
forward kinematic of the planar parallel manipulator
and its mirror manipulator and therefore the solution
of the forward kinematic of the corresponding Stewart
Platform. Consequently there will be at most 12 solu-
tions for the direct kinematic of the Stewart Platform.

4 A system of planar manipulators
with 12 solutions

Various numerical investigation on the polynomial
Ps has failed to produce more than 8 real solutions.
To determine if a Stewart Platform may have 12 real
different postures we have then decided to investigate
the system of planar parallel manipulators. We have
shown that the coupler curve described by E for the
four-bar mechanism ABDC is symmetric with respect
to the line AC to the coupler curve described by E for
the mirror four-bar mechanism. We have then be able
to discover a geometrical construction which yield to
systems of manipulators which admit 12 real solutions
(this is confirmed by the fact that for this manipula-
tors the polynomial Ps has 12 real solutions).

We consider the planar manipulator such that:

A = (−a, 0) C = (a, 0)

The mobile plate is an isoscele triangle with:

|BE| = |DE| = u |BD| = 2a

with the value of its height h small. The length of the
links will be such that:

|AB| = |CD| = r

The coupler curve described by point E for the four
bar mechanism and the mirror mechanism is com-
posed of a circle of radius r whose center is located
at Cs

1 = (0,±h) and a fourth degree curve C4. Indeed
the coupler curve equation can be written as:

(

y2 + h2 − r2 ∓ 2hy + x2
)

(h4 + 3h4C2 ∓ 8h3yC2

+6y2h2C2 − h2r2 − 2h2y2 + r2h2C2 + 2x2C2h2

−2x2h2 ∓ 2r2hyC2 ± 2r2hy + y4 − x4C2 − y4C2

+2x2y2 − r2y2 − 2x2C2y2 + x4 + r2y2C2

−x2r2 + x2C2r2) = 0 (16)

with C = cos(γ). If E is located at (0,±h), there
are two positions for the bar BD, showing that the
center Dd of C1 is a double point of C4, the only one
if h is small enough. Furthermore C4 passes through
the points A1 = (−r,±h), A2 = (r,±h) which are
the points of C1 which have extremal coordinates on

the x axis. Therefore C4 looks like an ∞ sign. Now
consider a circle Ci centered at F = (0, c) (c ≥ 0,
by symmetry) and of radius r3. If r3 > c + h and
r23 < r2 + (h − c)2 (this implies hc < r2/4), then
Ci contains Dd and does not contains A1 and A2. It
follows that Ci has four intersection points with C4 and
two with C1 if r3 > r − |c − h|. A similar reasoning
for the coupler curve of the mirror mechanism can be
made. Therefore we have discovered a system with
12 intersection points, from which we may deduce a
Stewart Platform with 12 configurations.

Let us give an example. We have chosen:

a = 10 r = 8 u = 12 cos(γ) = 0.92128466

r3 = 9 c = 0.5

This system is presented in figure 5 where the coupler
curves of the four-bar mechanisms are shown together
with the circle whose center is F and the radius r3.
It may be seen that we get effectively 12 intersection
points. We are able to deduce from this system a Stew-
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Figure 5: A system of planar parallel manipulators
with 12 solutions. The intersection points of the cou-
pler curves with the circle Ci are the small black circles.

art Platform with 12 configurations. First we define
the circles Ci by the coordinates of their centers Cc

i

and their radii ri:

Cc
1 = (−10, 0, 2) Cc

2 = (10, 0, 2.5) Cc
3 = (0, 0.5, 3)



from which we get z1 = 2, z2 = 2.5, z3 = 3.

r1 = r2 = 8 r3 = 9

The coordinates of Ai, Ci are:

A1 = (−10, 0, 0) A2 = (10, 0, 0) A3 = (0, 0.5, 0)

C1 = (−10, 0, 2) C2 = (10, 0, 2) C3 = (0, 0.5, 2)

from which we may deduce the Zi’s. The values of ui

are u1 = u2 = u3 = 2. From equations (1)(2) we are
able to deduce li1, l

i
2 for which we will get 12 solutions:

l11 = 8 l12 = 2.236068 l21 = 8.015610

l22 = 2.291182 l31 = 9.055385 l32 = 2.332751

The distances between the points Bi are:

d12 = 20.006249 d13 = 12.041595 d23 = 12.093387

Among the two solutions for the locations of the Bi

we have used:

B1 = (−10,−2.25, 0) B2 = (10.013,−2.25, 0)

B3 = (−0.0208, 4.45, 0)

The corresponding Stewart Platform is shown in fig-
ure 6.
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Figure 6: A Stewart Platform with 12 solutions

Using the polynomial (15) we have been able to find
the 12 postures defined in Table 1. The position of
the Stewart Platform is defined by the location of the
barycenter of the Bi’s and its orientation is defined by
the three Euler’s angles ψ, θ, φ. The various postures
are shown in figures 7,8.
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Figure 7: 6 solutions for the direct kinematic of the
Stewart Platform (perspective and top view).
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Figure 8: 6 solutions for the direct kinematic of the
Stewart Platform (perspective and top view).

x y z ψ θ φ

-8.0959 3.2199 2.558 -26.5534 7.247 12.875

-8.8645 0.5703 2.558 -12.7200 7.247 12.875

-7.2081 -3.6272 2.558 34.5548 172.753 12.875

-8.7042 0.1256 2.558 12.7368 172.753 12.875

-6.2860 0.2857 2.558 -30.7496 172.753 12.875

-6.6882 -0.3071 2.558 28.6821 7.247 12.875

6.7438 -0.2812 2.558 -53.7772 7.247 12.875

6.3237 0.2640 2.558 55.9921 172.753 12.875

7.2918 -3.5705 2.558 -8.0739 172.753 12.875

8.1625 3.1372 2.558 -0.0932 7.247 12.875

8.8553 0.7365 2.558 -12.7702 7.247 12.875

8.7024 -0.0124 2.558 12.7716 172.753 12.875

Table 1: The 12 postures for the Stewart Platform

5 Conclusion
We have presented in this paper various methods

to show that the forward kinematics of the Stewart
Platform have a maximum of 12 solutions. A polyno-
mial of order 12 enabling to compute the solutions has
been exhibited. We have demonstrated that the study
of the forward kinematics can be reduced to the study
of the forward kinematics of a system of two planar
parallel manipulators and have presented an example
with 12 solutions.
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