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Abstract: Interval analysis is a relatively new mathematical tools that
allows one to deal with problems that may have to be solved numerically
with a computer. Examples of such problems are system solving and global
optimization but numerous other problems may be addressed as well. This
approach has the following general advantages:

• it allows to find solutions of a problem only within some finite domain

• numerical computer round-off errors are taken into account so that
the solutions are guaranteed

A further inherent property that is of interest for robotics problems is that
this approach allows one to deal with the uncertainties that are unavoidable
in robotics. Although the basic principles of interval analysis are easy to un-
derstand and to implement, this approach will be efficient only if additional
methods are used and if the problem at hand is formulated appropriately.
In this paper we will emphasize various robotics problems that have been
solved with interval analysis, many of which are currently beyond the reach
of other mathematical approaches.

1 Introduction

Interval analysis [6, 8, 12] is a powerful numerical method that allows one to
solve a broad range of problems (going from system solving to global opti-
mization). It has been early used for solving the inverse kinematics problem
for serial 6R robot [14] but recent advances in this method has motivated
recent works: clearance effect on robot [18], robot reliability [2], localiza-
tion and navigation [1, 4, 17], motion planning [13], collision detection [15],
calibration [5] to name a few. From the numerical view point the main
advantages of this approach are flexibility (many different problems may be
considered) and guaranteed results (no solution may be lost) as numerical
round-off errors are taken into account. We will also see that this method
allows one to deal with uncertainties in the robot modeling and control, that
cannot be avoided in practice. The drawback of the method are its worst
case exponential complexity and the necessary high level of expertise to im-
plement efficient algorithms. A key element of interval analysis is interval
arithmetic that will be presented in the next section.

1.1 Interval arithmetic

The purpose of interval arithmetic is to determine guaranteed bounds for the
minimum and maximum of a given function f over ranges for the unknowns.
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This determination is called an interval evaluation of the function and leads
to a range [F , F ] that varies according to the ranges for the unknowns. If
X denotes the ranges for the unknowns and X0 is a particular instance of
the values of the unknowns within X, then we have:

F ≤ f(X0) ≤ F (1)

An interval evaluation may be calculated in different ways. The simplest
is called the natural evaluation, which consists in using specific interval
versions of all mathematical operators used in the function (interval version
exists for all classical operators). For example the addition of two intervals
a = [a, a], b = [b, b] is defined as a + b = [a + b, a + b]. Natural evaluation
may be simply illustrated with f = x2 − 2x when x lie in the range [3,5].
In that case we can safely state that for any instance of x in [3,5], then x2

lie in [9,25], 2x in [6,10] and consequently −2x in [-10,-6]. Summing the
interval for x2 and −2x leads to [9,25]+[-10,-6]= [-1,19] which constitutes
the interval evaluation of f over the range [3,5]. Interval evaluation may
also be obtained using other methods (Taylor expansion, centered form)
and is sensitive to the analytical form used for the function. For example f
may also be written as f = (x − 1)2 − 1 whose evaluation is [3,15].

This example shows that simple operations are required by interval arith-
metic, but also one of the drawbacks of the method. Indeed clearly for any
x in [3,5] the value of f lie in [3,15]: hence interval arithmetic may overesti-
mate the values of the minimum and maximum of the function. This occurs
because we have multiple occurrence of the same variable in f which are
considered as independent during the calculation. But this overestimation
has the following properties:

• it does not always occur: for example if f was defined as x2 +2x, then
there will be no overestimation of the function for the range [3,5]

• let us define an interval evaluation as [a, a], fm, fM the real minimum
and maximum of the function over a given range and the size of the
overestimation as Max(fm − a, a − fM ): in our example the size of
the overestimation is 4. But this size decreases with the width of the
input range.

Furthermore there are ways to decrease the size of the overestimation such
as using the interval evaluation of the derivatives to determine if the function
is monotonous over the considered ranges.

An interesting property of interval arithmetic is that it can be imple-
mented to take into account round-off errors. For example if a calculation
involves the number 1/3, then there is clearly no computer floating point
number able to represent this number. There are two successive floating
point numbers f1, f2 such that f1 < 1/3 and f2 > 1/3 and for any calcu-
lation involving this number the computer will round it to the fi that is
the closest to 1/3 (for instance on a Pentium the calculation of 3*(1/3.)-1
in C leads to −0.5510−16 instead of 0). In interval arithmetic the number
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1/3 will be represented by the range [f1, f2] so that any interval evaluation
involving this number will always include the exact value of the calculation.
Numerous packages of interval arithmetic are available and our implemen-
tations are based on BIAS/PROFIL1.

Notation:

The width of a range [a, b] is defined as b − a while the mid-point of the
range is (a + b)/2. A box is a set of ranges and the width of the box is
defined as the largest width of its ranges.

1.2 Interval analysis

A key-point for solving a problem with interval analysis is to establish a
property P(X), where X represents the unknowns of the problem. This
property will be true at a point X0 if X0 is solution of the problem and
will be wrong otherwise. Furthermore we will attach an algorithm A to the
property so that when X lie in a given box B the algorithm will allow to
determine if either P is true (or wrong) for all points in the box or may fail
to decide.

Let us give a simple example of such algorithms in the case where the
property to satisfy is to find roughly the solutions of a system of equations
F(X) = {F1(X = 0, . . . , Fn(X) = 0}. The first step of the algorithm will
be to compute the interval evaluation of each Fi for the given box. If the
resulting interval for a given Fi does not include 0, then the algorithm will
return wrong as no point in X will satisfy equation Fi. Now if the width
of X is small and the interval evaluations of all the Fi is also small and
includes 0, then the algorithm will return true: we will then obtain a set of
small intervals such that if the system admits solutions, then they will be
included into the set (as will be seen later on we are able to design more
sophisticated algorithm that returns true only rightly).

For a given problem there are many different properties that have to be
satisfied at the solutions. Although equivalent in mathematical terms they
may not be so in term of interval analysis. Hence choosing the right property
and designing the best associated algorithm is a key point for getting the
best efficiency and requires some understanding of interval analysis.

A second step in any interval analysis method is the filtering algorithms.
A filter takes as input a box B and returns either B or a smaller box Bf

included in B, the difference between B and Bf being guaranteed not include
points for which C is true. A simple (but often efficient) filter for solving
equations is the 2B method. Assume that we have to find the solution(s) of
f(x) = x2 + 3x + 1 = 0 lying in the range [-10,10]. The interval evaluation
of f for this range is [-29, 131] and therefore we cannot decide if this range
includes a solution. But we may write f as x2 = −3x − 1 and to have
a solution of the equation there must be an intersection of the interval
evaluation of the left and right hand-side terms. Hence the range for x2

1http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
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must be [0, 100] ∩ [−31, 29] = [0, 29] from which we deduce that x must be
in [−

√
29,

√
29]. We may also use x = (−x2 − 1)/3 from which we will have

deduced that x must lie in [−33, 1/3]. Note that a filter may determine that
the property is not satisfied for a given box.

A third (optional) step is the existence operator that takes as input a box
B and may determine that a single point in a box Bu satisfies the property
C and also provide a method to compute this point. A typical existence
operator for a system of equations may be derived from the Kantorovitch
theorem. Provided that the theorem is satisfied we may compute a box in
which there is a single solution of the system and furthermore provide an
initial guess of the solution so that the Newton-Raphson scheme is guaran-
teed to converge toward this solution. The algorithm A may thus include
filtering methods and existence operators.

A key element in interval analysis is the bisection process of a box B.
In this process a variable xi will be chosen, with range [a, b] and two new
boxes will be derived from B with ranges identical for all variables except
for xi whose range will be respectively [a, (a + b)/2], [(a + b)/2, b].

With the above tools we may describe the structure of an interval anal-
ysis algorithm that belong to the branch-and-bound family. The algorithm
will process a list L of boxes B = {B1, . . .BN}. The i − th element of the
list will be Bi, while the total number of boxes at each iteration will be
denoted rk . When starting the algorithm there is a single box B1 in L but
new boxes will be added during the process.

The iterative scheme is defined as follows:

1. i = 1, k = 1, rk=1

2. while (k ≤ rk) do

3. if (A(Bk)=wrong) then

4. rk+1 = rk

5. k = k + 1

6. else

7. if (A(Bk)=true) then

8. store B as solution

9. else

10. bisect Bk into B1
k, B2

k

11. store B1
k as Brk+1, B2

k as Brk+2

12. rk+1 = rk + 2

13. k = k + 1

14. end if

15. end if

16. end do

This algorithm stops when all the boxes in L have been processed. However
it may happen that even at a point algorithmA cannot decide if the property
is true or wrong (e.g. because of round-off errors). A flag allows to manage
such case.
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As any branch-and-bound algorithm the worst case complexity is expo-
nential because of the bisection. However the practical complexity may be
good as will be shown in the following examples.

2 Robotics examples

2.1 Kinematics

Solving inverse and direct kinematics problems were among the first to be
addressed with interval analysis [14], however with mixed results as the
methods were not as advanced as today. Nowadays interval analysis has
proved to be valuable even for the most complex kinematics problem. Here
the problem amounts to solve a system of equations that is derived either
from the inverse or direct kinematics. The first problem to address is to
determine which set of equations are the most appropriate. We will consider
here the direct kinematics problem of parallel robots, which is among the
most challenging (figure 1).
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Figure 1: A parallel robot

Here being given the leg lengths we have to determine what can be the
poses of the platform. The most simple inverse kinematic relations give the
square of the 6 leg lengths ρi as function of pose parameters which are the
coordinates of the center C of the platform and three angles that define
its orientation. The drawback of such equations is that there are multiple
occurrences of the variables in the equations, which is a major disadvantage
for interval analysis. Assume now that the platform pose is defined by the
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three coordinates of the anchor points B1, B2, B3. Being given these coor-
dinates and the geometry of the platform we may derive the coordinates
of B4, B5, B6 as OBi = λiOB1 + αiOB2 + βiOB3 in which λi, αi, βi are
known constants. We then derive 6 constraint equations as ||AiBi||2 = ρ2

i

for i in [1,6] and 3 additional constraints ||BiBj||2 = d2
ij for i, j in [1,3], i 6= j

in which dij are known distances. This set of 9 equations in 9 unknowns
has the advantage that the variables appear only once in each equation and
consequently there will be no overestimation during the interval evalua-
tion. Furthermore the geometry of the problem imposes natural bounds for
the variables The algorithm to solve these equations uses filtering methods
such as the 2B, 3B, interval Newton and existence operators based on Kan-
torovitch theorem and Neumaier exclusion test and is fully described in [9].
This algorithm provides exact solutions in the sense that no solution can
be lost and a solution can be calculated with an arbitrary accuracy. This
feature is shared only with the solving method based on Groebner basis [16]
as other approaches such as elimination or continuation cannot guarantee
both properties.

In terms of computation time the algorithm will find all solutions in
a time that ranges from a few seconds to one minute which makes it the
second most efficient solving approach (the best Groebner basis implemen-
tation requires between one second to 30 seconds). But, opposite to the
Groebner basis approach, the computation time will decrease with the size
of the search space. Especially it will become competitive with the Newton-
Raphson scheme for real-time use, while still guaranteeing to find the correct
solution (or detecting that the robot is close to a singularity) which is not
the case of the usual iterative scheme.

2.2 Workspace analysis and motion planning

A classical robotics problem is to determine various types of workspace of
a given robot. Usually the workspace is defined as the set of poses that
satisfy inequality constraints C(X) ≤ 0 and finding a description as a set
of boxes of the workspace up to a pre-defined accuracy ε is based on the
interval evaluation of the constraints. If for a ball B all upper bounds of
the evaluations are negative, then B belongs to the workspace. If one of
the evaluation has a positive lower bound, then B does not belong to the
workspace. Otherwise the box is bisected until either one of the above two
properties is verified or the width of the box is lower than ε, in which case
the box is discarded [10].

By using the same algorithm it is easy to check if a given volume is
included in the workspace if the volume can be described by explicit func-
tions involving bounded parameters (for example points of a sphere will be
defined by the distance between the center and the point and two angles).
Here uncertainties in the modeling parameters P (for example the coordi-
nates of the anchor points Ai, Bi) may be managed if they are restricted to
lie within ranges that are defined by the manufacturing tolerances. These
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intervals may be directly introduced in the constraints inequalities, still al-
lowing their interval evaluations. Hence even at a given pose the constraint
interval evaluation will be an interval, that may be overestimated because
we may have multiple occurrence of P. It may thus occur that at a pose
we cannot verify if one constraint is satisfied in which case we will have to
add P to the variable used in the interval analysis algorithm.

We may also design algorithm that calculates more complex workspace.
For example we may have to compute the region of the workspace of the
robot in which the eigenvalues of K = J

T
J, where J is the Jacobian matrix,

are all included in a given range [a,b]. Let us assume that the characteristic

polynomial Pc =
∑i=n

i=0
ai(X)λi of K is available (but this is not a necessary

condition). We have thus to find the poses in which C(X) ≤ 0 (C-1) and
such that all the roots in λ of Pc are in the range [a, b] (C-2). We will first
design an algorithm A1 that checks if (C-2) is satisfied for a set of poses
defined by a box. In that case the coefficients of Pc are intervals (i.e. Pc

is is fact a family of polynomials) but we may still apply classical algebraic
geometry theorems that will provide an interval [u1, u2] including all the
bounds for all polynomials in Pc. If [u1, u2] is included in [a, b], then all
poses in the box satisfies (C-2) while if the intersection of [u1, u2], [a, b] is
empty all poses in the box violate (C-2). Assume now that the relative
complement I of [a, b] in [u1, u2] (i.e. the numbers that are in [u1, u2] but
not in [a, b]) is not empty: I is constituted of either of one interval (if u1

or u2 belongs to [a, b]) or of two intervals. We design the interval analysis
algorithm A1 whose unknown is λ and input is I and is based on the interval
evaluation of Pc for discarding boxes included in I that cannot cancel Pc.
If A1 completes, then all the roots of Pc lie in [a, b] and (C-2) is satisfied
for the box. Clearly as Pc has interval coefficients it may happen that A1

cannot decide if a box satisfies (C-2).
Hence we will embed A1 in another interval analysis algorithm A whose

variables are X. This algorithm is basically the same than for computing the
workspace except that if a box satisfies the workspace constraints C(X) ≤ 0,
then it is sent to the A1 algorithm that is allowed to perform only a limited
number of bisection that increases with the inverse of the width of the
box (for large X boxes A1 will probably not be able to decide). If A1

finishes (detect that C-2 is not satisfied), then the box is stored as a solution
(discarded), otherwise the box is bisected if its width is sufficient. This
algorithm has been able to manage rather complicated problems [3].

2.3 Singularity analysis

Singularity analysis is an important problem especially for closed-loop robot
that will become uncontrollable at the singular poses. If J

−1 denotes the
inverse kinematic Jacobian of the robot, singular poses are defined as the
poses for which |J−1| = 0.

Major practical problems to consider are to be able to detect if a sin-
gularity occurs within a given single-component workspace or trajectory.
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Solving those problems is critical for the safety of the robot as being close
to a singularity may lead to very large forces in the legs of the robot. But
finding the singularities is complex as if usually we have a closed-form for
J
−1, it may however be extremely difficult to obtain a closed-form of the

determinant. Furthermore as safety is a critical issue we have to consider
uncertainties in the location of the Ai, Bi. For solving this problem we will
use the continuity of the determinant with respect to X. Assume that at
some arbitrary pose X1 of the workspace we are able to show that |J−1| as
a constant sign (say positive). Then if we are able to demonstrate that at
some other pose X2 the determinant is negative any path connecting X1

to X2 must cross a singularity and consequently the workspace is singu-
lar. On the other hand if no pose X2 can be found, then the workspace is
singularity-free.

Hence detecting a X2 pose is the property we will investigate with inter-
val analysis. To begin with we will assume that there are no uncertainties
in the robot modeling. Assume that X belongs to a box: using interval
arithmetic we are able to calculate an interval evaluation of each element
of J

−1, i.e. this matrix is now an interval matrix. Classical algorithm for
calculating the determinant of a matrix such as row expansion or Gaussian
elimination may be extended to interval matrix, thereby allowing to get an
interval evaluation of |J−1| for the box. We will calculate this interval eval-
uation for a pose Xt chosen arbitrary in the workspace. If at this pose the
interval evaluation does not allow to show that the determinant is of con-
stant sign (i.e. the lower and upper bound of the evaluation have not same
sign), then we will not be able to show that the workspace is singularity-free
(but the following algorithm will still be able to detect that the workspace
includes a singularity). We will now assume that a pose X1 has been found.

Having the possibility of computing an interval evaluation of the de-
terminant is already sufficient to design an algorithm A. But additional
filters will allow to drastically reduce the computation time. For a given
box B we will first calculate the interval evaluation of the determinant U
of the pre-conditioned matrix KJ

−1(B) where K is a scalar matrix chosen
as the inverse of J

−1 computed for the mid-point of B (if it exists). As
U = |KJ

−1| = |K||J−1| if U, |K| have a constant sign, then we may de-
duce that the sign of |J−1(B)| is constant. If this sign is negative, then the
workspace includes a singularity (all poses in B are X2 poses), otherwise
B does not include X2 pose and may discarded. Note that to reduce the
overestimation of U it is necessary to compute a closed-form of KJ

−1 and
to re-arrange the elements of this matrix to reduce the number of multiple
occurrence of the elements of X. A second filter involves a theorem provided
by Rohn [7]: consider the set E of extremal matrices derived from the inter-
val matrix J

−1(B), i.e. all the scalar matrices whose elements are either the
lower or upper bound of the corresponding interval element in J

−1(B). If all
matrices in E have a determinant of the same sign, then there is no singular
matrix in J

−1(B). If the determinant of J
−1 at an arbitrary pose included

in B is positive, then B does not include X2 pose and can be discarded.
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Note that for a n× n J
−1 matrix E has 2n2

matrices but Rohn proves that
it is sufficient to consider only a subset of E that has 22n−1 elements. Using
both filters algorithm A is very efficient: checking the regularity of J

−1 over
a large workspace requires less than one second [11].

Having uncertainties in the robot modeling will not change the structure
of the A algorithm. If the interval describing this uncertainties have a small
width we will just take them into account for computing the interval eval-
uation of the elements of J

−1. However it may occur that a given pose we
will not be able to determine the sign of |J−1| because of these uncertain-
ties, in which case we will add them as unknowns in the A algorithm: this
significantly increase the computation time (a few hours may be required)
but allows to obtain the largest level of safety: if the algorithm proves that
the workspace is singularity-free, then so it is for the real robot.

3 Conclusion

As shown by the examples (which are not exhaustive: for example we may
have also presented results on optimal design or performance analysis of
robots) interval analysis is an approach that may solve efficiently very dif-
ficult robotics problems and provide a guaranteed result even, as it is the
case in practice, if they are uncertain elements in the robot. An impor-
tant point is that it allows one to consider round-off errors that are not so
seldom and of which only few roboticists are aware. But there is no such
thing as a free lunch and interval analysis requires an in-depth analysis of
the problem at hand and a large expertise in this field for designing efficient
algorithms. Fortunately there are many teams involved in interval analysis
that are eager to help solving difficult problems !
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