
Solving the forward kinematics of Gough-type parallel

manipulator with interval analysis

J-P. Merlet

INRIA Sophia-Antipolis, France

Abstract: We consider in this paper a Gough-type parallel robot and present an ef-
ficient algorithm based on interval analysis that allows to solve the forward kinematics
i.e. to determine all the possible poses of the platform for given joint coordinates. This
algorithm is numerically robust as numerical roundoff errors are taken into account: the
provided solutions are either exact in the sense that it will be possible to refine them
up to an arbitrary accuracy or they are flagged only as ”possible” solution as either the
numerical accuracy of the computation does not allow to guarantee them or the robot
is in a singular configuration. It allows to take into account physical and technologi-
cal constraints on the robot (for example limited motion of the passive joints). Another
advantage is that, assuming realistic constraints on the velocity of the robot, it is compet-
itive in term of computation time with real-time algorithm such as the Newton scheme,
while being safer.

1 Introduction

1.1 Robot geometry

In this paper we consider a 6 d.o.f. parallel manipulator (figure 1) constituted of a fixed
base plate and a mobile plate connected by 6 extensible links. Leg i is attached to the

Figure 1: Gough platform

base with a ball-and-socket joint whose center is Ai while it is attached to the moving
platform with a universal joint whose center is Bi. The length of the legs (the distance
between Ai and Bi) will be denoted by ρi. A reference frame (A1, x, y, z) is attached to
the base and a mobile frame (B1, xr, yr, zr) is attached to the moving platform.

1.2 The forward kinematics problem

The forward kinematics problem (FK problem) may be stated as: being given the 6 leg
lengths find the current pose Sc of the platform i.e. the pose of the robot when the leg

lengths have been measured.
Although it may seem that this problem has been addressed in numerous works it has

never been fully solved. Indeed, as we will see, all authors have addressed a somewhat
different (although related) problem P: being given the 6 leg lengths find all the n possible

poses S = {S1, . . . , Sn} of the platform. It may be accepted that solving P is the first step

for solving the forward kinematics problem as soon as some method allows to determine
which solution Sj in the solution set of P is the current pose Sc of the robot. Unfortunately
no such method is known to date, even for planar parallel robots. This paper will also
address the P problem although we will be able to take into account during the calculation

realistic constraints on the robot motion that may reduce the number of solutions.
Problem P is now considered as a classical problem in kinematics and is also used

in other communities as a difficult benchmark. Raghavan [23] and Ronga [26] were the
first to establish that there may be up to 40 complex and real solutions to P while Husty
succeeded in providing an univariate polynomial of degree 40 that allows one to determine
all the solutions [11]. Dietmaier exhibited configurations for which there was 40 real

solution poses [7].

1.3 Solving method for the forward kinematics

The methods used to solve P may be classified as:

• elimination method

• continuation method

• Gröebner basis method

all these methods assume an algebraic formulation of the problem with n unknowns
x1, . . . , xn. These methods will be described intuitively without trying to be rigorous.

In the elimination method [15, 12] each equation of the system is expressed as a linear
equation in term of monomials

∏

xi1
1 . . . xin

n (including the constant monomial 1) in which
one of the unknown, xk, is supposed to be constant (i.e. the coefficient of the equations are
functions of xk). Additional equations are obtained by multiplying the initial equations
by a monomial until we get a square system of linear equations that can be expressed in
matrix form as:

A(xk)X = 0 (1)

where X is a set of monomials including the constant monomial 1. Due to this constant
monomial the above system has a solution only if |A(xk)| = 0, which is an univariate poly-
nomial Pe in xk. After solving this polynomial a backtrack mechanism allows to determine
all the other unknowns for each root of the polynomial Pe. The main weakness of this
method is the calculation of |A|: usually A is a rather large matrix and its determinant
cannot be calculated in closed form. Most authors propose to use a numerical method to
evaluate the coefficients of the polynomial |A|: the determinant (of order n), which is a
linear function of the polynomial coefficients, is calculated numerically for n + 1 values
of xk and therefore the coefficients can be obtained by solving a system of n + 1 linear
equations. But such procedure is numerically unstable and hence there is no guarantee
on the rightness of the solutions.

An elimination method has been used by Husty [11] to obtain a 40th order polynomial
but using only symbolic computation and a careful elimination process that guarantee to

obtain the exact polynomial coefficients: unfortunately this procedure seems to be difficult
to automate.

To solve a system of equations F(X) = 0 the continuation method [17, 23, 28, 33] uses
an auxiliary system G(X) = F + (1− λ)(F1 −F) = 0, where F1 is a system ”similar” to
F, in the sense that it has at least the same number of solution than F, of which all the
solutions are known and λ is a scalar. When λ is equal to 0 G = F1 and consequently
the solution of G are known. These solutions are used as initial guess to solve, using a
Newton scheme, a new version of G obtained for λ = ǫ where ǫ has a small value. This
process is repeated for λ = 2ǫ using the solutions of the previous run as initial guess and
so on until λ = 1 for which G = F. In other words starting from a system with known
solutions we follow the solution branches of a system that slowly evolves toward F. The
main weakness of this approach is that it is necessary to follow a large number of branches
to find all the solutions of F: in our case F1 has to have at least 40 solutions and hence
40 branches will be followed, some of which will vanish if the FK problem has less than
40 solutions. Furthermore numerical robustness is difficult to ensure if a singularity is
encountered when following the branches.

In the Gröebner basis approach is used the property that the solutions of any alge-
braic system F are also solutions of others various systems of equations in some other
unknowns yi. Among all these systems one of them has the property of being triangular
i.e. the system has a first equation in one unknown y1, the second equation has only
y1, y2 as unknowns and so on until the last equation with unknowns y1, . . . , yn. Hence
all the solutions of this system can be obtained by solving in sequence the first equa-
tion, then the second and so on. Such triangular system can be obtained by using the
Buchberger algorithm [8, 14]. Although this method is currently the fastest to solve the
forward kinematics problem (using the FgB and the RealSolving algorithms of Faugère
and Rouillier [27]) this approach can only be used when the coefficients of the equations
are rational (in which case the results are certified) and its implementation involves the
use of large integers.

2 Solving with interval analysis

2.1 Interval analysis

Interval analysis is an alternate numerical method that can be used to determine all the
solutions to a system of equations and inequalities systems within a given search space.

An interval X is defined as the set of real numbers x verifying x ≤ x ≤ x. The width

w(X) of an interval X is the quantity x − x while the mid-point M(X) of the interval is
(x + x)/2. The mignitude (magnitude) of an interval X is the smallest (highest) value of
|x|, |x|. A point interval X is obtained if x = x. A box is a tuple of intervals and its width
is defined as the largest width of its interval members, while its center is defined as the
point whose coordinates are the mid-point of the ranges.

Let f be a real-valued function of n unknowns X = {x1, . . . , xn}. An interval eval-

uation F of f for given ranges {X1, . . . , Xn} for the unknowns is an interval Y such

that
∀X = {x1, . . . , xn} ∈ X = {X1, . . . , Xn} Y ≤ f(X) ≤ Y (2)

In other words Y , Y are lower and upper bounds for the values of f when the unknowns
are restricted to lie within the box X .

There are numerous ways to calculate an interval evaluation of a function [10, 20].
The simplest is the natural evaluation in which all the mathematical operators in f are
substituted by their interval equivalent to obtain F . For example the classical addition is
substituted by an interval addition defined as:

X1 + X2 = [x1 + x2, x1 + x2]

Interval equivalents exist for all the classical mathematical operators and hence interval
arithmetics allows one to calculate an interval evaluation for most of non-linear expres-
sions, whether algebraic or not. For example if f(x) = x + sin(x), then the interval
evaluation of f for x ∈ [1.1, 2] can be calculated as

F ([1.1, 2]) = [1.1, 2] + sin([1.1, 2]) = [1.1, 2] + [0.8912, 1] = [1.9912, 3]

Interval evaluation exhibits interesting properties:

1. if 0 6∈ F (X), then there is no value of the unknowns in the box X such that f(X) = 0.
In other words the equation f(X) has no root in the box X

2. the bounds of the interval evaluation F usually overestimate the minimum and max-
imum of the function over the box X . But the bounds of F are exactly the minimum
and maximum if there is only one occurrence of each unknown in f (property 2-2)

3. interval arithmetic can be implemented taking into account round-off errors. For
example the interval evaluation of f = x/3. when X is the point interval [1,1] will be
the interval [α1, α2] where α1, α2 are the closest floating point numbers respectively
lower and greater than 0.3333 There are numerous interval arithmetic packages
implementing this property: one of the most well known is BIAS/Profil1 using the
C double for interval representation but a promising new package is MPFI [25],
based on the multi-precision software MPFR developed by the SPACES project2,
in which interval are represented by number with an arbitrary number of digits

2.2 Basic solving algorithm

Interval analysis based algorithms have been used in robotics for solving the inverse kine-
matic of serial robot [13, 30] and parallel robot FK [3, 6], workspace analysis [4, 18], sin-
gularity detection [19], evaluating the reliability of parallel robot [2], optimal placement of
robot [29], mobile robot localization [1] and trajectory planning [22]. But interval analysis

1http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
2http://www.mpfr.org

is a more complex method than may be thought at a first glance and we will present in
this paper various improvements that have a drastic influence on the efficiency.

We start with the most basic solving algorithm that may be derived from the properties
of interval arithmetics. Let B0 = {X1, . . . , Xn} be a box and f = {f1(X), . . . , fn(X)} a
set of equations to be solved within B0. A list L will contain a set of boxes and initially
L = {B0}. An index i, initialized to 0, will indicate which box Bi in L is currently being
processed, while n will denote the number of boxes in the list. The interval evaluation of
the function fj for the box Bi will be denoted Fj(Bi). A threshold ǫ will be used and if
the width of the interval evaluation of all the functions for a box Bi is lower than ǫ and
include 0, then Bi will be considered as a solution of the system. The algorithm proceed
along the following steps:

1. if i > n, then return the solution list

2. if it exists at least one Fj(Bi) such that 0 6∈ Fj(Bi), then i = i + 1 and go to 1

3. if ∀ j ∈ [1, n] 0 ∈ Fj(Bi) and w(Fj(Bi)) ≤ ǫ, then store Bi in the solution list,
i = i + 1 and go to 1

4. select the unknown k whose interval has the largest width in Bi. Bisect its interval
in the middle point and create 2 new boxes from Bi as {X1, . . . , Xk−1, [Xk, (Xk +
Xk)/2], . . . , Xn]} and {X1, . . . , Xk−1, [(Xk + Xk)/2, Xk], . . . , Xn]}. Store these 2
boxes as Bn+1, Bn+2, n = n + 2, i = i + 1 and go to 1.

Note that the storage method used here for the boxes is not very efficient as far as
memory management is concerned. A first improvement is to substitute the box Bi by
one of the 2 boxes that are created when bisecting it. A second improvement, denoted a
depth first storage mode, is to store the second box at position i + 1 after a shift of the
existing boxes. This ensures that the width of Bi is always decreasing until either the
box is eliminated or a solution is found. In this mode for a system of n equations in n
unknowns the width of Bi is at least divided by 2 after n bisection. If the width of the
initial box B0 is w0 the number N of boxes that are needed is such that 2(K/n) = w0/ǫ
and hence N = n log(w0/ǫ)/log(2). For example if n = 9, w0 = 10 and ǫ = 10−6 we get
that the number of boxes of L should be 210 (to which we must add the memory to store
the solutions). Hence even with a high accuracy for the solution and a large initial search
space the needed memory storage is small.

As a matter of fact the described algorithm will usually not be very efficient. But
there are numerous ways to improve it as will be shown later on. But note that there
is an easy way to improve the computation time of the basic algorithm: indeed we may
notice that each box in L is submitted to a processing that does not depend upon the
other boxes. Hence it is possible to implement the algorithm in a distributed manner:
a master computer will send to n slave computers the first n boxes in the list. These
slave computers will individually perform a few iterations of the basic algorithm and will
send back to the master the remaining boxes in its L list (if any) and the solutions it has
found (if any). The master will manage a global list L and perform a few iterations of the

basic algorithm if all the slaves are busy. We will discuss the efficiency of the distributed
implementation in the Example sections.

3 Equations for the forward kinematics

Let Ai, Bi be the attachment points of the leg i respectively on the base and on the
platform. The coordinates of Ai in the reference frame will be denoted xai, yai, zai while
the coordinates of Bi in the same frame are xi, yi, zi. Without lack of generality we may
choose xa1 = ya1 = za1 = 0 and ya2 = za2 = 0. Note that for a given robot and given
leg lengths it is always possible to change the numbering of the leg lengths and we will
see that this has an influence on the computation time of our algorithm.

There are numerous ways to write the equations of the inverse kinematics (that consti-
tute the system of equations to be solved for the FK problem) according to the parameters
that are used to represent the pose of the platform. In this paper a pose of the platform
will be defined either by the coordinates of the 3 points B1, B2, B3 (assumed to be not
collinear: such a triplet can always be found otherwise the robot is always singular) if the
platform is planar or by the coordinates of the 4 points B1, B2, B3, B4 in the general case.
The chosen points will be denoted the reference points of the system and the associated
legs the reference legs. If m points are used for defining the pose of the platform then for
any j in [m + 1, 6] we have:

OBj =
k=m
∑

k=1

αk
j OBk (3)

where the αk
j are known constants such that

∑k=m
k=1 αk

j = 1. A first set of equations is
obtained by expressing the leg lengths for the m chosen reference legs:

(xj − xaj)
2 + (yj − yaj)

2 + (zj − zaj)
2 = ρ2

j j ∈ [1, m] (4)

where ρj is the known leg length.
A second set of equations is obtained by writing the leg lengths for the legs m + 1 to

6, using the coordinates of the Bj points defined in (3):

(
i=m
∑

i=1

αi
jxi − xaj)

2 + (
i=m
∑

i=1

αi
jyi − yaj)

2 + (
i=m
∑

i=1

αi
jzi − zaj)

2 = ρ2
j j ∈ [m + 1, 6] (5)

The third set of equations is obtained by writing that the distance between any couple of
reference points B1, . . . , Bm is a known quantity:

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 = d2

ij i, j ∈ [1, m], i 6= j (6)

where dij is the distance between the points Bi, Bj. It may be noted that equations (4,5,6)
is a set of distance equations that describes distance between either points in the 3D space
or virtual points, i.e. points whose coordinates are linear combination of reference points
(here points Bm+1, . . . , B6 are the virtual points).

We end up with a system of n = 3m equations in the 3m unknowns (xi, yi, zi). It
appears that for each equation in the system (4,5,6) there is only one occurrence of each
unknown: consequently according to property 2-2 the interval evaluation of each equation
gives the exact minimum and maximum values of the equations and this motivates the
use of such representation of the pose of the platform.

It must be noted however that if m = 4 we have not a minimal parameterization of
the system as only 3 points are needed to define the pose of the platform. Indeed for
point Bk with k in [4,6] we have

B1Bk = µk
1B1B2 + µk

2B1B3 + µk
3B1B2 ×B1B3 (7)

where the µk
i are known constants. Hence we are dealing with a system with 12 unknowns

while the same problem may be stated in terms of only 9 unknowns. Equations 7 may have
been used for the FK problem in the general case to obtain the coordinates of B4, B5, B6

as functions of the coordinates of B1, B2, B3, thereby leading to a system of 9 equations in
9 unknowns. But equations (7) have the drawback in term of interval analysis that there
are multiple occurrence of the same variable in the equation. Hence for the general case
it is better to have more unknowns but no overestimation of the values of the equations:
this is a general trend for interval analysis based method in which it is often interesting
to consider simple expression even at a price of a larger number of unknowns.

For m = 4 the system (4,5,6) may have spurious solutions but equations (7) will be
used but to filter them as will be explained in the following section.

4 Improving the basic solving algorithm

We have presented in section 2.2 a basic solving algorithm: the purpose of the following
sections is to propose various methods that can be used to improve the efficiency of this
algorithm.

4.1 Filtering the boxes

A first possible way to improve the basic algorithm is to try to decrease the width of the
current box ”in place”, a method which is called filtering in the constraints programming
community. There are numerous filters that can be used but we will only present the
methods that may be of interest for the FK problem.

4.1.1 The k-B approach

A first filtering method is the 2B approach, a derivation of the k-B method introduced
in [5]. Let us consider, for example, equations (4):

(xj − xaj)
2 + (yj − yaj)

2 + (zj − zaj)
2 = ρ2

j (8)

We may rewrite this equation as:

(xj − xaj)
2 = ρ2

j − (yj − yaj)
2 − (zj − zaj)

2

Let U1, U2 be the interval evaluation of the left and right terms of this equation. The
lower bound of the interval evaluation U1 is obtained as:

U1 =

0 if xj − xaj ≤ 0 and xj − xaj ≥ 0

(xj − xaj)
2 if xj − xaj ≤ 0

(xj − xaj)
2 if xj − xaj ≥ 0

while the upper bound is:

U1 = Max((xj − xaj)
2, (xj − xaj)

2)

Clearly if equation (8) has a solution for the current box, then the left term value at
the solution will be included in U3 = U1 ∩ U2. Three cases may occur:

1. U1 ∩ U2 = ∅

2. (U1 ∩ U2) ⊂ U1

3. U1 ⊂ (U1 ∩ U2)

If U1 ∩ U2 = ∅, then the equation has no solution and the current box can be rejected. If
(U1 ∩U2) ⊂ U1 we may have either U3 < U1 and/or U3 > U1. Assume that U3 < U1. This
implies that:

(xj − xaj)
2 ≤ U3

or

−
√

U3 + xaj ≤ xj ≤
√

U3 + xaj

Hence the lower or upper bound for xj may be updated. Assume now that U3 > U1 and
U3 > 0. This imply:

xj ≤ xaj −
√

U3 or xj ≥ xaj +
√

U3

which may allow the range for xj to be narrowed.
As a simple example consider the equation

x2
1 + y2

1 + z2
1 = 100

with x1 in [0,10] and y1, z1 in the range [4,6]. Applying the 2B method on the variable x1

we get:

U1 = x2
1 = [0, 100]

U2 = 100 − y2
1 − z2

1 = 100 − [16, 36] − [16, 36] = [28, 68]

The intersection of U1, U2 is [28,68] and hence x2
1 must lie in this range. Hence we get that

x1 must lie in the range [
√

28,
√

68], i.e. approximatively [4.24,8.24]. Hence the new width

of the range for x1 is 4 while the width of its initial range was 10: a simple arithmetic
operation has allowed to reduce the search space for x1 by 60%.

This process may be repeated for each unknown in the equation and a similar process
may be used for equations of type (5,6). Note also that as soon as the range for a variable
has been changed it may interesting to restart the process from the beginning as new
variables may be updated: there is however a limit to this process as the convergence of
this method is asymptotically slow. In our method the process is repeated only if the
change of the width of the range for one unknown is greater than a fixed threshold and
the 2B method is used only on the equations that include an updated unknown. If we are
using 4 reference points the 2B method based on equation (7) will be used to filter boxes
and avoid spurious solutions.

A second filtering method is the 3B method. In this approach the range [xj , xj] for
one variable xj in a given box B is replaced by [xj , xj + ǫ], where ǫ is an arbitrary small
number, while the ranges for the other unknowns are unchanged. We then test if for
this new set of ranges the system may have some solution either by using the 2B method
and/or by evaluating the equations. If the answer is negative the range for xj in the box
B may be changed to [xj + ǫ, xj]. The process is then repeated on the new range but the
change in the range will be doubled i.e. we will test the range [xj , xj + 2ǫ]. The process
is then repeated until the no-solution test is no more satisfied. At this point we were
testing the range [xj , xj + kǫ], where k is a positive even integer. If k > 1 we may either
repeat the process with a change ǫ or stop the procedure. Note however that as soon as
the range for one variable has been modified it may be interesting to use the 2B method
to eventually update the range for all the unknowns.

Up to now we have tried to decrease the width of the range for xj by increasing
its lower bound. Clearly the process may be repeated on the ”right” side by trying to
decrease the upper bound of the range for xj (i.e. we will test the range xj − ǫ, xj]). In
the same manner the process will be repeated in turn for each unknown.

4.1.2 Global filtering methods

A drawback of the previously mentioned methods is that they are local i.e. they are
working in turn only on one equation of the system but are not considering the whole set
of equations.

Global filtering methods that consider at least 2 equations may be designed and we
will present now two such methods. The first global filtering method is inspired from [34].
Let us consider again the equation

(xj − xaj)
2 + (yj − yaj)

2 + (zj − zaj)
2 = ρ2

j (9)

We will use the change of variable:

aj = xj − xj bj = yj − yj cj = zj − zj

Hence the ranges for these new variables are:

[0, xj − xj], [0, yj − yj], [0, zj − zj]

Equation (9) may be written as:

(aj − xaj + xj)
2 + (bj − yaj + yj)

2 + (cj − zaj + zj)
2 = ρ2

j (10)

Expanding this equation we get:

a2
j + b2

j + c2
j + U1aj + U2bj + U3cj + U4 = 0 (11)

where, for a given box, the U terms are constant. Let define αj as a2
j + b2

j + c2
j : using

interval arithmetics it is possible to determine an interval for αj=[αj, αj]. Introducing αj

in equation (11) it become a linear equation in term of the unknowns αj, aj , bj, cj while
the unknown αj is submitted to the linear inequalities

αj ≤ αj ≤ αj (12)

This process is repeated for each of the n equations (4,5,6) and we end up with a linear
system of n equations in term of the n unknowns aj, bj , cj, j ∈ [1, 3] and n additional
unknowns αk which represent the non linear part of each equation. Furthermore this n
additional unknowns are submitted to the 2n linear inequalities (12). A direct consequence
of this linearization is that one may think to use the first step of the simplex algorithm
to determine if these linear system admits a feasible region: if this is not the case the non
linear equation (4,5,6) have no solution and the box is rejected. But if a feasible region
is detected we can still use the second step of the simplex method that allow to minimize
or maximize a linear cost function. Here we will in turn determine the minimum and
maximum of each variable aj , bj, cj . If the minimum (maximum) is larger (lower) than
the current bound for the variable, then this bound is updated as is updated the αj ,
leading to a new linear system. This process is repeated until the change obtained for the
bounds is lower than a pre-defined threshold. Note that we use an interval-variant of the
simplex method in order to ensure that round-off errors do not have an impact on the
result.

The second global filtering method is the classical Newton interval method. Let a
system of n equations in n unknowns:

F = {Fi(x1, . . . , xn) = 0, i ∈ [1, n]}
and consider the following iterative scheme:

Xk+1 = (M(Xk) − A F (M(Xk))) ∩ Xk = Uk ∩ Xk (13)

where A is an interval matrix that contains all the inverse of the Jacobian matrix of the
system F (we will not explain in detail how to compute such matrix). It is possible to
show the following properties of this scheme:

• if Uk ∩ Xk = ∅, then the system F has no solution in Xk

• if Uk ∩ Xk ⊂ Xk, then solutions of F in Xk are also in Xk+1

We use in fact the Hansen-Sengupta version of the interval Newton method, which
uses a pre-conditioning of the jacobian matrix by its inverse at the middle point of the
box, to improve the interval inputs (see [24]).

4.2 Unicity operators

The purpose of these operators is to determine eventually a box, called a unicity box, that
contains a unique solution of the system, that furthermore can be numerically computed
in a certified manner. Two such methods are used in our algorithm.

4.2.1 Kantorovitch theorem

Let a system of n equations in n unknowns:

F = {Fi(x1, . . . , xn) = 0, i ∈ [1, n]}

Let x0 be a point and U = {x/||x − x0|| ≤ 2B0}, the norm being ||A|| = Maxi

∑

j |aij |.
Assume that x0 is such that:

1. the Jacobian matrix of the system has an inverse Γ0 at x0 such that ||Γ0|| ≤ A0

2. ||Γ0F (x0)|| ≤ 2B0

3.
∑n

k=1 | ∂2Fi(x
∂xj∂xk

| ≤ C for i, j = 1, . . . , n and x ∈ U

4. the constants A0, B0, C satisfy 2nA0B0C ≤ 1

Then there is an unique solution of F = 0 in U and Newton method used with x0 as
estimate of the solution will converge toward this solution [31].

Conversely let compute B1 as 1/(2nA0C) and assume that B1 ≤ B0. Then there
is a unique solution in the box [x0 − 2B1, x0 + 2B1]. This is the general version of the
Kantorovitch theorem but the system we are dealing which is specific. Indeed the Hessian
matrix is constant as we are dealing with quadratic equations: a direct consequence is
that the C term can be pre-computed. A further consequence is that we have been able
to show that the factor n in B1 may be substituted by the dimension of the space in which
are written the distance equations (i.e. 3 for the current problem), thereby enlarging the
box in which a unique solution is found. In our algorithm the Kantorovitch theorem is
used for each box having a width lower than a given threshold with x0 being the center of
the box and may allow one to find a ball centered at x0 that contains a unique solution.

4.2.2 Inflation operator

The second unicity operator is based on the use of the Newton scheme. For each box we
run a few iterations of the Newton method with as initial guess the center of the box.
If after a few iterations the scheme has converged to a point X for which the absolute
values of all the equations are lower than a small threshold κ we will first verify that
there is a ball BK centered at X that contains a solution of the FK problem by using the
Kantorovitch theorem applied at X. But the diameter of this box will usually be very
small as its maximum is the norm of ||Γ0F (X)|| with all elements of F (X) being lower
than κ in absolute value. We will now explain how to calculate a box centered at X, that

contains only one solution of the system but which will have, in general, a much larger
diameter than BK .

Let assume that X0 is a solution of a system F and that X1 is another solution close
to X0, hence F (X0) = F (X1) = 0. Using the mean value theorem we get F (X1) =
F (X0) + J(X)(X1 − X0) where J is the Jacobian matrix of the system and X lies in
the box [X0, X1]. Hence we get that J(X)(X1 − X0) = 0 which admit a solution only if
J(X) is singular. The principle is now to obtain a box centered at X0 such that J(X)
is regular for any point in the box. To obtain such box we use the H-matrix theory of
Neumaier [21]. We will explain first an implementation of this scheme that will work
whatever is the system of n equations in n unknowns we are considering.

Let consider a box B [X0−ǫ, X0 +ǫ] centered at X0 and compute the interval Jacobian
matrix for this box that we multiply by the inverse of the Jacobian matrix computed at
X0 to get an interval matrix S = ((Sij)). Consider the diagonal element Sii having the
lowest mignitude sii and let define mj as the sum of the magnitude of the intervals in the
j-th row of S, excluding the diagonal element of the line, while MS will be the maximum
of the mj over the rows of S. If sii > MS, then J is regular over the whole B.

If the regularity test is satisfied for B, then we expand it to [X0 − 2ǫ, X0 + 2ǫ] until
the regularity test is not satisfied for the box [X0 − nǫ, X0 + nǫ]. If the regularity test is
not satisfied for n = 1, then we will use the box BK as unicity box.

We may however specialize this scheme in the particular case of distance equations.
Indeed in that case each component of the Jacobian matrix is linear in terms of the
unknowns. Let {x0

i } be the elements of X0, J−1
0 the inverse of the Jacobian matrix

computed at X0 and let X1 be defined as {x0
i + κ}, where κ is the interval [−ǫ, ǫ]. Each

component Jij of the Jacobian at X1 can be calculated as αij + βijκ, where αij , βij are
constants which depend only upon X0. If we multiply J by J−1

0 we get a matrix U =
J−1

0 J = In + A, where In is the identity matrix of dimension n and A is a matrix such
that Aij = ζijκ where the ζij can be calculated as a function of the β coefficients and
of the components of J−1

0 . For a given line i of the matrix U the diagonal element has
a mignitude 1 − |ζii|ǫ while the sum of the magnitude of the non diagonal element is
ǫ

∑j=n
j=1 |ζij|, j 6= i. The matrix U will be guaranteed to be regular if for all i:

ǫ
j=n
∑

j=1

|ζij| (i ∈ [1, n], j 6= i) ≤ 1 − |ζii|ǫ

which leads to

ǫ ≤ 1

|ζii| + Max(
∑j=n

j=1 |ζkj|), k ∈ [1, n], j 6= k

Hence the minimal value ǫm of the right term of this inequality over the lines of U allows
to define a box [X0 − ǫm, X0 + ǫm] which contains an unique solution of the system. In
general this box will be larger than the box computed with the Kantorovitch theorem.

Ultimately the Kantorovitch scheme may fail if 2 (or more) solutions are very close
and the round-off error does not allow to separate them. In that case the algorithm will
still stop as we give a minimum threshold on the width of the box: if the width of a box

is lower than this threshold and the interval evaluations of the equations for this box all
include 0, then this box is considered a solution. But if a solution is returned as a box and
not as a point interval it indicates that a further analysis has to be performed around this
interval solution: either we are close to a singularity (this can be detected safely using
the scheme proposed in [19]) or we have a cluster of solutions that can only be calculated
by using an extended arithmetics such as MPFI.

4.3 Filtering with the unicity box

Let assume that a unicity box Bu has been found by one of the methods proposed in the
previous section. We will propagate this knowledge in the boxes still to be processed to
avoid finding again the same solution. Indeed if there is an intersection between a box
Bk and Bu, then new solutions can only be found in Bk − (Bk ∩Bu). For a box Bk in the
list two cases may occur:

1. Bk ⊂ Bu: the box Bk is eliminated from the list

2. Bu ⊂ Bk or Bu 6⊂ Bk but Bu∩Bk 6= ∅: Bk−(Bk∩Bu) is calculated. This calculation
may lead to at most 2m new boxes but this should be avoided. So we first filter the
new boxes using the algorithms proposed in section 4.1 and we impose a limit on
the number of new boxes (typically no more than 4 new boxes may be created)

4.4 The improved algorithm

The basic solving algorithm is hence improved by using the various methods described in
the previous sections. The added steps are presented in italic font, followed by the section
number that describes the step. By convention a step that allows to eliminate a box will
return -1, while a step that determine a solution will return 1:

1. if i > n, then return the solution list

2. if solutions have been found filter Bi with the unicity box filter (4.3)

3. if local filter=-1, then i = i + 1 and go to 1 (4.1)

4. if global filter=-1, then i = i + 1 and go to 1 (4.1.2)

5. if unicity method=1 (4.2), then

(a) test if the solution has not already been found

(b) if not add the solution to the solution list

(c) use the unicity box filter on Bi (4.3)

6. if it exists at least one Fj(Bi) such that 0 6∈ Fj(Bi), then i = i + 1 and go to 1

7. if 0 ∈ Fj(Bi) ∀ j ∈ [1, n] and w(Fj(Bi)) ≤ ǫ, then store Bi in the solution list,
i = i + 1 and go to 1

8. select the unknown k which has the largest width in Bi. Bisect its interval in the mid-
dle point and create 2 new boxes from Bi as X1, . . . , Xk−1, [Xk, (Xk+Xk)/2], . . . , Xn]
and X1, . . . , Xk−1, [(Xk + Xk)/2, Xk], . . . , Xn]. Store these boxes as Bn+1, Bn+2,
n = n + 2 and go to 1.

A further refinement may be added: indeed it is interesting to determine as soon as
possible all the solutions of the system as the filtering with the unicity box described in
the previous section will decrease the search space. A pure depth first storage mode is not
very efficient in this view. As the filtering described in section 4.2 may allow to determine
solution of the system even for boxes with a large width we will change the ordering of
the boxes in the list L: after a fixed number of iterations of the algorithm the current box
Bi will be substituted by the box having the largest width among the boxes that have to
be processed.

5 Determining the search space

Interval analysis is, in general, used for problems where ranges for the solution may be
specified. Furthermore the efficiency of these methods is usually very sensitive to the size
of the search space.

Fortunately the forward kinematics problem belong to the category of problems for
which bounds for the solutions are easily found. We will described here simple methods
that allows to determine an initial search space.

5.1 Bounds when considering one leg

Obtaining bounds for the n unknowns is straightforward when considering the constraint
on one leg. Let dij be the known distance between Bi and Bj and define for i, j in [1, m]:

pij = xaj + ρj + dij

qij = yaj + ρj + dij

rij = zaj + ρj + dij

Clearly for a given j the x, y, z coordinates of Bi cannot exceed pij, qij , rij and be lower
than −pij ,−qij ,−rij . Hence an initial search space for the coordinates of Bi is the box
defined as:

[Max(−pij), Min(pij)], [Max(−qij), Min(qij)], [Max(−rij), Min(rij)]

where i, j ∈ [1, m].

5.2 Bounds when considering two legs

Let us consider two legs with extreme points Bi, Bj and denote Dij the distance between
Ai, Aj . Point Bi is constrained to lie on a sphere S1 centered at Ai with radius ρi. At the
same time this point is constrained to lie inside a sphere S2 centered at Aj with radius
ρj + dij and, if ρj ≥ dij , to lie outside a sphere S3 centered at Aj with radius ρj − dij.
Hence four different cases may occur for Bi (figure 2):

1. if ρj + dij > ρi + Dij and ρj − dij ≤ Dij : point Bi will lie on the sphere S1

2. if ρj + dij > ρi + Dij and ρj − dij ≥ Dij: point Bi will lie on the part of the sphere
S1 bordered by the intersection between S1, S3 which is the farthest from Aj

3. if ρj + dij < ρi + Dij and ρj − dij ≤ Dij: point Bi will lie on the part of the sphere
S1 bordered by the intersection between S1, S2 and which is the closest to Aj

4. if ρj + dij < ρi + Dij and ρj − dij ≥ Dij : point Bi will lie between the part of the
sphere S1 the closest to Aj delimited by the intersection between S1, S2 and the part
of the sphere S1 the closest to Aj delimited by the intersection between S1, S3

In the first case no further information on the bound for the coordinate of Bi compared
to the bound found in the previous section will be obtained. For the three other cases we

Figure 2: The 4 different cases for the possible location of Bi related to the location of
Aj , the leg length ρj and the distance between Bi, Bj: the allowed zone for Bi on the
sphere centered at Ai with radius ρi is presented in grey

assume first that the direction Ai, Aj is the direction of the x axis of the reference frame.
For the second case assume that C3 is the circle projection of S3 in the x, z plane and
let N1, N2 be the intersection points between C1, C3, both having the same x coordinate
xN : then xN is an upper bound for the x coordinate of Bi. For the third case let C1, C2

be the circles projection of the sphere S1, S2 in the x, z plane and let M1, M2 be the two
intersection points of C1, C2 (which have the same x coordinate xM). Clearly xM is a
lower bound for the x coordinate of Bi which is a better lower bound than −pij found in
the previous section. Furthermore if ρj +dij < Dij then zM , the z coordinate of M is and
upper bound for the z coordinate of Bi while −zM is a lower bound. As there is a circular
symmetry in the problem −zM , zM are also lower and upper bound for the y coordinate
of Bi. As in the second case xN is an upper bound for the x coordinate of Bi.

Using this procedure a new bounding box B is obtained for Bi. Now if Ai, Aj are not
on the x axis of the reference frame there is a rotation matrix R that allow to convert
a vector in our bounding box frame to a vector in the reference frame. Applying this
rotation matrix on B will allow one to obtain a bounding box in the reference frame and
update accordingly the bounds for the n unknowns. This process has to be repeated for
each pair of legs.

5.3 Numbering the legs

It must be noted that the numbering of the legs may be changed arbitrarily. A change in
this numbering has first an effect on the size of the search space. For example if we are
using the two previous algorithms it is interesting to re-order the numbering of the legs so
that the selected leg 1 will have the lowest leg length while the legs 2, 3 will be the ones
presenting the lowest absolute value for ρi + di1 among the 5 remaining legs. This allows
to reduce the size of the search space with a minimal amount of computation time. But it
must also be noted that the coefficients αi

j appearing in the forward kinematics equations
play an important role as they increase or decrease the range for the coordinates of the
virtual points. We will see in the section devoted to the results that the choice of the
numbering has a drastic effect on the computation time.

6 Extensions to the improved algorithm

The algorithm presented in the previous sections have two nice features:

• any additional constraints that may limit the number of realistic solutions to the
FK problem may be taken into account with a direct impact on the computation
time

• uncertainties on the robot can be taken into account

We will exemplify these features in the next two sections.

6.1 Range of motion for the passive joints

An advantage of the proposed algorithm is that it can easily be modified to take into ac-
count technological constraints that will limit the number of solutions that can effectively
be reached by the robot. For example the passive joints at Ai, Bi may have a limited
range of motion: each joint is such that the angle θ between the leg connected to the joint
and a known direction (defined by a unit vector ui, the reference axis of the joint) must
be less than a given value θmax.

For the joint at Ai this may be written as:

AiBi

ρi

.ui ≥ cos θmax (14)

In this equation the components of the vector AiBi can be expressed as a linear function
of our unknowns while ρi,ui are known quantities. Hence we are able to evaluate for each
box the left term Ui of the previous inequalities. An additional filter will then be used in
our algorithm:

• for the box evaluate Ui and if Ui < cos θmax, then eliminate the box as it cannot
contain a solution that will respect the joint constraints

• the left term of the inequality can be expressed as
∑k=r

k=1 µkXk where Xk are un-
knowns of the FK problem. The inequality can be written as µ1X1 ≥ cos θmax −
∑k=r

k=2 µkXk. Let W1 the interval evaluation of the right term of this inequality and
assume that µ1 is positive: we get that X1 must be greater or equal to W1/mu1, that
may allow to update the range for X1. A similar process may be used to improve
the ranges of the other variables

• eliminate the solutions found in section 4.2 that do not satisfy the joint constraints

For the joint at Bi the reference axis ui is no more fixed in the reference frame. Hence
its components have to be established as functions of the unknowns. There are constants
βk

i such that:

ui = β1
i B1B2 + β2

i B1B3 + β3
i (B1B2 × B1B3)

as we have assumed that B1, B2, B3 were not collinear. A similar filter for the limited
motion of the joints at Bi can thus be designed using equation 14.

Note that taking into account the joint motion limitation within the calculation allows
to reduce the computation time and is better than computing all the solutions and then
sorting them.

6.2 Modeling uncertainties

Assume now that some parameters in the model of the robot are not perfectly known:
for example the location of the joints at Ai, Bi, the leg lengths, . . . may be known only
up to a given accuracy, usually relatively small. Up to now we have assumed that these
N parameters Qj have a fixed value while in fact they lie in known ranges Ij

Q. Note that

very often the real values of a parameter will indeed cover the full range Ij
Q: for example

if we have clearance in the joints at Ai, Bi the location of the Ai, Bi will depend upon the
static equilibrium of the robot.

Under this assumption the forward kinematics problem has not a finite number of
solutions but is a variety of solutions as the coefficients of the FK equations are now
intervals. However we will still be able to determine an approximation of this variety i.e.
find all the poses that can be reached by the robot.

We will introduce as additional unknowns the N variables Qj (for example ∆xai, ∆yai, ∆zai

for the location of the Ai points). The forward kinematics equation becomes a system
of n equations in the N + n variables. But the algorithm can still be used to solve this
system provided that:

• the unicity filter (section 4.2) is no more used as usually it will not be possible to
extract a square system in the n equations

• a solution is supposed to be found as soon as the width of a box is lower than ǫ while
the interval evaluation of the equations still contain 0. These boxes are written in
a file and their total volume is Vs

• boxes with a width lower than α, a value provided by the user, are eliminated from
the list of boxes: they are called the neglected boxes and their total volume is Vn

Using this method we will be able to calculate an approximation of the set of all

solutions of the FK problem whatever are the values of the physical parameters of the
real robot.

The total volume of the region that can be reached by the robot will not exceed Vs+Vn

and the ratio Vs/Vn is a good index to determine the quality of the approximation. Note
also that this quality index can be improved incrementally. Indeed we may store the
neglected boxes obtained for a given value α1 of α in a file (that has led to a solution volume
V 1

s) and then process only the boxes in this file if a value α2 < α1 of α is selected: indeed
there is no need to process again the whole search domain as we already have determined
the solution volume V 1

s . For j run of the algorithm with value αj < αj−1 < . . . < α1 for
α the solution volume will be V 1

s + V 2
s + . . . + V j

s while the neglected volume V j
n will be

such that V j
n ≤ V j−1

n ≤ . . . ≤ V 1
n .

7 Implementation

The test have been performed using the software ALIAS 3 which is a C++ library, available
for SUN, PC’s using Unix/Linux, that implement most the interval analysis methods
described in the previous sections. Basic interval arithmetics operations are performed
with the BIAS/Profil library (with a precision of double). An innovation of this package
is that it is partially interfaced with Maple:

• the equations which are to be solved are defined in a Maple session

• by using a specific Maple library the C++ code based on ALIAS which is necessary
to solve the system is automatically produced and then is executed. Furthermore
the C++ code that is equation dependent (such as the code for the 2B filtering
method that is used when dealing with equation 7) is also produced

• the result of the solving algorithm is made available in the Maple session

• using the multi-precision ability of Maple the accuracy of the obtained solutions
(related to the accuracy of the C++ code) can be improved (solutions may be
determined up to an arbitrary number of digits)

Note that it is possible to use this Maple interface to produce a generic C++ program
that may be used for a given robot but for any leg lengths. Hence the computation time
given in the following section will be the execution time of the generic program.

ALIAS also allows one to use the distributed implementation of the solving algorithm
within the Maple session. Basically only the names of slave computers have to be given
and a distributed implementation will be created using the message passing mechanisms
of PVM (Parallel virtual machine) [9].

3http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++.html,ALIAS-Maple.html

8 Example 1

We will use here the forward kinematic problem presented in [16]. The coordinates of the
Ai points are:

A1 [0, 0, 0] A2 [62, 0, 0] A3 [7, 13, 0]

A4 [42, 38, 0] A5 [32, 39, 0] A6 [62, 11, 0]

while the coordinates of the Bi are:

B1 [0, 0, 0] B2 [14, 0, 0] B3 [16, 42, 0]

B4 [46, 27, 0] B5 [23, 45, 0] B6 [47, 13, 0]

The length of the legs are:

ρ1 = 99.44345126 ρ2 = 122.3824766 ρ3 = 119.2390086

ρ4 = 153.9499536 ρ5 = 136.2700605 ρ6 = 156.0149565

Here the platform is planar and hence we have 9 unknowns. Note that due to the
symmetry with respect to the base we will always obtain an even number of solutions (for
each solution with B1 over the base we will get another solution which is the mirror of
the first one with B1 under the base).

8.1 Numbering the legs and computation time

We may select arbitrarily the numbering of the legs by choosing 3 legs that will be
numbered from 1 to 3 among the 6 possible legs: hence there is a total of 20 possible
numbering. Two factors may be modified when changing the numbering: the search space
and the values of the αi

j coefficients. As the amount of time for computing the search
space and the αi

j coefficients is very low all combinations can be considered. The following
elements can be calculated: mean value Ms of the search space diameter ranges, minimal
diameter Imin for the range of the search space, mean value Mα of the absolute value of the
9 αi

j coefficients, mean value M6 of the diameter of the ranges for the 6 attachment points
Bi. For the current example we get data provided in table 1. The values of M6 allows
to distinguish 3 main groups: the one having a value M6 less than 200, the one having a
value between 200 and 300 and the remaining having a value larger than 400. It seems
reasonable to keep only as possible numbering the elements of the first group as a large
M6 will impose a large number of bisection to satisfy equations (5). A second criterion is
that Ms should be minimal as the bisection will be applied on the intervals that are used
to compute this mean value. Using both criterion the most promising combinations are
(2,3,6), (2,3,5), (1,3,5), (1,3,6), (1,4,6), (1,4,5) in this order.

The test have been performed using the standard Maple interface of the ALIAS library
on a single PC laptop EVO 410 C, 2GHz. The problem admit a total of 4 solutions and
hence a total of 2 solutions in our search space. The solving time for finding all 4 solutions

Combination Ms Mα M6 Imin

1,2,3 125.92 5.526 1064.08 44.9
1,2,4 146.32 2.346 554.717 44.9
1,2,5 138.77 1.324 331.64 44.9
1,2,6 137.05 1.443 352.63 44.9
1,3,4 148.57 1.37 392.4 89.16
1,3,5 150.92 0.4229 172.538 89.16
1,3,6 150.82 0.444 177.229 89.16
1,4,5 150.06 0.5319 194.78 67.71
1,4,6 150.15 0.517 191.79 73.86
1,5,6 151.074 3.85 970.05 69.97
2,3,4 139.89 1.67 435.78 44.9
2,3,5 139.99 0.531 180.44 44.9
2,3,6 139.16 0.543 181.83 44.9
2,4,5 196.75 0.591 273.57 108.87
2,4,6 153.96 0.55 204.04 108.87
2,5,6 156.59 2.76 721 87.219
3,4,5 142.07 2.87 683.59 91.58
3,4,6 143.9 2.15 536.42 96.2
3,5,6 149.07 2.908 719.349 54.08
4,5,6 200.87 3.974 1269.98 150.69

Table 1: Evaluation of the search space size according to the numbering of the legs: the
combination indicates which legs are chosen as reference legs 1, 2, 3 among the 6 possible
legs.

of the FK problem on the PC laptop for the 6 selected combinations are respectively 15,
17, 17, 17, 20 and 23 seconds.

Among all the combinations the worst computation time is 420s for the combination
(1,5,6) which has the fourth largest Ms and the third largest M6. If we have selected
the combination having the lowest Ms (1,2,3) we get a computation time of 238s (but
this combination has the second largest M6). If we rank the combination according to
their value for Ms and M6 and average the 2 ranks we get again that (2,3,6) is the best
while (1,2,3) is among the worst. If we extend that to the 9 best combinations the worst
computation time is 179s for (2,3,4).

We have also tested the distributed implementation of our algorithm which is also
available directly within the Maple interface. To average the performances we have tested
combination (1,2,6) which has the second best Ms but the twelfth M6 and for which the
computation time on the laptop is 50s.

The parallel implementation has been tested on a heterogeneous cluster of 16 low level
SUN and PC’s that are shared by our team: the computation time vary between 5 and 15
seconds according to the load of the slave computers. Then the same program has been
tested on a cluster of 16 high-performance 2Ghz PC’s with a computation time of about
3-4s.

Note that the distributed implementation allows a gain in computation time which
may be larger than the number of machines despite the overhead time due to the message
passing scheme. Indeed in that case solutions may be found earlier in the process and the
filtering process described in section 4.3 allows to eliminate the solution parts within the
box that contain solutions, leaving only boxes that contain no solution and are quickly
dismissed as such.

9 Example 2

In this section we will study the example provided in [7] which has 40 solutions. The
coordinates of the Ai points are:

A1 [0, 0, 0] A2 [1.107915, 0, 0] A3 [0.549094, 0.756063, 0]

A4 [0.735077,−0.223935, 0.525991] A5 [0.514188,−0.526063,−0.368418]

A6 [0.590473, 0.094733,−0.205018]

while the coordinates of the Bi are:

B1 [0, 0, 0] B2 [0.542805, 0, 0] B3 [0.956919,−0.528915, 0]

B4 [0.665885,−0.353482, 1.402538] B5 [0.478359, 1.158742, 0.107672]

B6 [−0.137087,−0.235121, 0.353913]

The leg lengths are:

ρ1 = 1 ρ2 = 0.645275 ρ3 = 1.086284

ρ4 = 1.503439 ρ5 = 1.281933 ρ6 = 0.771071

As the platform is not planar we use the formulation of the problem with 12 unknowns.
Note that the solving parameters are exactly the same as in the previous example although
the scale of this robot is quite different.

9.1 Numbering the legs and computation time

As in the previous case the numbering of the legs has a large influence on the size of the
search space and on the computation time. Here the mean value of the ranges of the
search space is more significant as the number of unknowns is larger than in the previous
case.

An analysis similar to the one performed in the previous section leads to eliminate the
combinations (2,3,5,6), (1,2,4,6), (1,2,3,5) that have by far the largest M6 (see Table 2).
If we select the 6 combinations that have the best Ms i.e. (1,2,3,6), (1,2,5,6), (1,2,3,4),

Combination Ms M6

1,2,3,4 1.872567 4.084438
1,2,3,5 1.758934 41.559028
1,2,3,6 1.500378 6.901214
1,2,4,5 2.045049 2.752602
1,2,4,6 1.787842 11.106032
1,2,5,6 1.664384 4.693668
1,3,4,5 2.190959 2.380921
1,3,4,6 1.987354 5.58962
1,3,5,6 1.893959 4.303475
1,4,5,6 2.147044 6.74884
2,3,4,5 2.151589 4.654878
2,3,4,6 1.923324 3.567641
2,3,5,6 1.772669 8.321244
2,4,5,6 2.074924 2.622965
3,4,5,6 2.225193 2.35483

Table 2: Evaluation of the search space size according to the numbering of the legs:
the combination indicates which legs are chosen as reference legs 1, 2, 3, 4 among the 6
possible legs.

(1,3,5,6), (2,3,4,6), (1,3,4,6) we get respectively the following computation time: 22, 23,
51, 51, 40 and 46 seconds. If we have eliminated only the combination having the worst
M6 (1,2,3,5) the worst computation time will have been 329 seconds for combination
(3,4,5,6) (which has the worst Ms), then 275 seconds for combination (1,3,4,5) (which has
the second worst Ms) and finally 117 seconds for combination (2,4,5,6).

10 Example 3

In this section we consider the INRIA ”left hand” parallel robot that has been presented
in numerous papers. Our algorithm has been tested for all 64 combinations of leg lengths
obtained when each leg length is either the minimal or maximal possible joint limits
52.249, 55.749. For 14 combinations among the 64 combinations there is no solution for
the FK problem. On a single computer the average computation time for solving the FK
problem is about 20 seconds with a minimum of 2 seconds and a maximum of 50 seconds.

Note that this algorithm is very efficient: we have submitted this problem to NUMERICA[32]
a classical constraints-based solver without getting any solution after hours of computa-
tion. We have also used a general solver implemented in ALIAS which was able to find
the solutions in about one hour.

11 Real-time operator

As mentioned previously our algorithm is not intended to be used in a real-time context.
However in this case we may assume safely that the determination of the pose of the
platform at time tk may rely first on a similar calculation performed at time tk−1 having
given a pose Pk−1 = {Bk−1

1 , . . . , Bk−1
n }. Furthermore we may assume that upper bounds

Vmax, Ωmax on the velocities and angular velocities of the robot are known. It is then easy
to deduce from Pk−1 a bounding box for Pk. For each coordinate of Bk

j the box will be

centered at Bk−1
j and its edge will have length 2(tk − tk−1)(Vmax + Ωmax||BjB1||).

The bounding box will usually be much smaller than the bounding box used to deter-
mine all the solutions and our experiment with the INRIA ”left hand” robot has shown
that in that case the computation time is approximatively similar to the usually used
Newton scheme. But at the same time our algorithm is safer:

• if only one solution is found we guarantee that the solution is the current pose of the
platform, while the Newton scheme may converge toward a solution of the forward
kinematics that is not the current pose

• if more than one solution is found (for example if the robot is close to a singularity)
then it will be safer to stop immediately the robot as we cannot know for sure what
is the current pose: the Newton scheme in that case may either fail to converge or
provide a solution that is not the current pose, with severe consequences

12 Conclusion

Interval analysis provides an interesting alternative for numerically solving the forward
kinematics of parallel robots with the following advantages:

• certified result: all solutions will be provided so that they can be computed with an
arbitrary accuracy and singular configurations are detected

• the method can be adapted to take into account physical constraints with the ad-
vantage that the computation time will be reduced

• it offers an alternative to real-time computation that is as competitive in terms of
computation time but is safer than the Newton scheme

• it allows one to take into account uncertainties in the model of the robot or in the
measurements of the leg lengths

Although the principle of interval analysis is quite straightforward we have shown that
efficiency relies heavily on a set of filtering methods. Some of these methods are well known
but they have been improved to take into account the structure of the FK equations and
such combination of methods has not been used in the past. The distance equation solver
that has been presented here has also been used for the determination of conformation of
molecules where the distance between the atoms are known (a molecule with 100 atoms
has been successfully identified).

References

[1] Bouvet D. and Garcia G. Guaranteed 3-d mobile robot localization using an odome-
ter, an automatic theodolite and indistinguishable landmarks. In IEEE Int. Conf.

on Robotics and Automation, pages 3612–3617, Seoul, May, 23-25, 2001.

[2] Carreras C. and others . Robot reliability estimation using interval methods. In
Workshop on Applications of Interval Analysis to Systems and Control, pages 371–
385, February 1999.

[3] Castellet A. Solving inverse kinematics problems using an interval method. Ph.D.
Thesis, Universitat Politechnica de Catalunya, Barcelone, June 1998.

[4] Chablat D., Wenger J., and Merlet J-P. Workspace analysis of the Orthoglide using
interval analysis. In ARK, pages 397–406, Calle de Malavada, June 29- July 2, 2002.

[5] Collavizza M., F. Deloble, and Rueher M. Comparing partial consistencies. Reliable

Computing, 5:1–16, 1999.

[6] Didrit O., Petitot M., and Walter E. Guaranteed solution of direct kinematic prob-
lems for general configurations of parallel manipulator. IEEE Trans. on Robotics and

Automation, 14(2):259–266, April 1998.

[7] Dietmaier P. The Stewart-Gough platform of general geometry can have 40 real
postures. In ARK, pages 7–16, Strobl, June 29- July 4, 1998.

[8] Faugère J.C. and Lazard D. The combinatorial classes of parallel manipulators.
Mechanism and Machine Theory, 30(6):765–776, August 1995.

[9] Geist A. and others . PVM: Parallel Virtual Machine. MIT Press, 1994.

[10] Hansen E. Global optimization using interval analysis. Marcel Dekker, 1992.

[11] Husty M.L. An algorithm for solving the direct kinematic of Stewart-Gough-type
platforms. Mechanism and Machine Theory, 31(4):365–380, 1996.

[12] Innocenti C. Forward kinematics in polynomial form of the general Stewart platform.
ASME J. of Mechanical Design, 123:254–260, June 2001.

[13] Kiyoharu T., Ohara F., and Hiromasa H. Fast interval bisection method for finding all
solutions of nonlinear equations and its application to inverse kinematics for general
manipulators. Transactions of the Institute of Electrical Engineers of Japan, Part C,
120-C(4):590–596, 2001.

[14] Lazard D. Stewart platform and Gröbner basis. In ARK, pages 136–142, Ferrare,
September, 7-9, 1992.

[15] Lee T-Y and Shim J-K. Forward kinematics of the general 6-6 Stewart platform
using algebraic elimination. Mechanism and Machine Theory, 36:1073–1085, 2001.

[16] Lee T-Y and Shim J-K. Elimination-based solution method for the forward kine-
matics of the general Stewart-Gough platform. In F.C. Park C.C. Iurascu, editor,
Computational Kinematics, pages 259–267. May, 20-22, 2001.

[17] Liu A-X. and Yang T-L. Configuration analysis of a class of parallel structures
using improved continuation. In 9th World Congress on the Theory of Machines and

Mechanisms, pages 155–158, Milan, August 30- September 2, 1995.

[18] Merlet J-P. Determination of 6d workspaces of Gough-type parallel manipulator and
comparison between different geometries. Int. J. of Robotics Research, 18(9):902–916,
October 1999.

[19] Merlet J-P. and Daney D. A formal-numerical approach to determine the presence
of singularity within the workspace of a parallel robot. In F.C. Park C.C. Iurascu,
editor, Computational Kinematics, pages 167–176. Seoul, May, 20-22, 2001.

[20] Moore R.E. Methods and Applications of Interval Analysis. SIAM Studies in Applied
Mathematics, 1979.

[21] Neumaier A. Introduction to Numerical Analysis. Cambridge Univ. Press, 2001.

[22] Piazzi A. and Visioli A. A global optimization approach to trajectory planning for
industrial robots. In IROS, pages 1553–1559, New-York, 1997.

[23] Raghavan M. The Stewart platform of general geometry has 40 configurations. In
ASME Design and Automation Conf., volume 32-2, pages 397–402, Chicago, Septem-
ber, 22-25, 1991.

[24] Ratscheck H. and Rokne J. Interval methods. In Horst R. and Pardalos P.M., editors,
Handbook of global optimization, pages 751–819. Kluwer, 1995.

[25] Revol N. and Rouillier F. Motivations for an arbitrary precision interval arithmetics
and the MPFI library. In Validated Computing Conference, Toronto, May, 23-25,
2002.

[26] Ronga F. and Vust T. Stewart platforms without computer? In Conf. Real Analytic

and Algebraic Geometry, pages 197–212, Trento, 1992.

[27] Rouillier F. Real roots counting for some robotics problems. In J-P. Merlet B. Ravani,
editor, Computational Kinematics, pages 73–82. Kluwer, 1995.

[28] Sreenivasan S.V. and Nanua P. Solution of the direct position kinematics problem
of the general Stewart platform using advanced polynomial continuation. In 22nd

Biennial Mechanisms Conf., pages 99–106, Scottsdale, September, 13-16, 1992.

[29] Tagawa K. and others . Optimal configuration problem of redundant arms considering
endpoint compliance and its solution using interval analysis. Transactions of the

Society of Instrument and Control Engineers, 37(10), 2001.

[30] Tagawa K., Ohara F., Ohta Y., and Haneda H. Direct inverse kinematics using fast
interval bisection method and its automatic programming. In ICAR, pages 497–502,
Tokyo, 1999.

[31] Tapia R.A. The Kantorovitch theorem for Newton’s method. American Mathematic

Monthly, 78(1.ea):389–392, 1971.

[32] Van Hentenryck P., Michel L., and Deville Y. Numerica: A Modeling Language for

Global Optimization. The MIT Press, 1997.

[33] Wampler C.W. Forward displacement analysis of general six-in-parallel SPS (Stew-
art) platform manipulators using soma coordinates. Mechanism and Machine Theory,
31(3):331–337, April 1996.

[34] Yamamura K., Kawata H., and Tokue A. Interval solution of nonlinear equations
using linear programming. BIT, 38(1):186–199, 1998.

