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Abstract

The robustness of robot calibration with respect to sensor noise is
sensitive to the manipulator poses used to collect measurement data.
In this paper we propose an algorithm based on a constrained op-
timization method, which allows us to choose a set of measurement
configurations. It works by selecting iteratively one pose after an-
other inside the workspace. After a few steps, a set of configurations
is obtained, which maximizes an index of observability associated
with the identification Jacobian. This algorithm has been shown, in a
former work, to be sensitive to local minima. This is why we propose
here meta-heuristic methods to decrease this sensibility of our algo-
rithm. Finally, a validation through the simulation of a calibration
experience shows that using selected configurations significantly im-
prove the kinematic parameter identification by dividing by 10–15
the noise associated with the results. Also, we present an application
to the calibration of a parallel robot with a vision-based measure-
ment device.

KEY WORDS—robust design, experimentation, calibration,
parallel robot, local convergence, Tabu search

1. Introduction

The Gough/Stewart platform offers high accuracy for the ma-
nipulation of heavy objects, even at large velocities. This ex-
plains its use in a wide range of industrial applications, from
flight simulation to the more recent high-speed machine tools.

As a result of defects in manufacturing or assembly, it is
well known that the geometry of robotic manipulators does
not exactly match the design goals. As a direct consequence,
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the accuracy of the manipulator is reduced, because robot
control heavily relies on a precise description of the kine-
matic model. One way to tackle this problem is to improve
the theoretical kinematic model by means of kinematic cali-
bration. This procedure allows an identification of kinematic
parameters through redundant information on the state of the
robot provided by measurement, viewed as constraints on the
kinematic parameters. The noise associated with sensors im-
plies an error on the calibration results which has to be mini-
mized. To improve the robustness of the calibration methods,
there are several known solutions: to increase the number of
constraint equations, to take into account knowledge of the
noise distribution associated with sensors, and/or to act on the
numerical quality of measurements. As shown in Driels and
Pathre (1990), the best results are obtained through a judicious
choice of the robot configurations used for the measurements.

Several works in robotics have been presented to produce
an optimal experimentation plan. The first step is to define
different observability indices, associated with a set of poses,
and to check their effects on robustness calibration results.
Driels and Pathre (1990), Borm and Menq (1991), Khalil,
Gautier, and Enguehard (1991), and Nahvi and Hollerbach
(1996) propose to observe the identification Jacobian JP (the
derivatives of the constraint equation matrix with respect to
the kinematic parameters P) through its singular values (see
Section 2). Then an algorithm is used to maximize the ob-
servability index as a function of some parameters defining a
measurement pose. This leads to the selection of an optimal
set of configurations. Many solutions have been proposed.
Khalil, Gautier, and Enguehard (1991) use a conjugate-type
optimization method. Zhuang, Wang, and Roth (1994) try
to avoid local minima by using a simulated annealing ap-
proach or a genetic algorithm (Zhuang, Wu, and Huang 1996).
Born and Menq (1991) study the determinant of J T

PJP to
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determine how one should modify pose parameters to maxi-
mize their index. Linttot and Dunlop (1996) use this algorithm
for calibration of a Delta robot. More recently, author seem
to be more interested in selecting the best poses inside a large
set of measurement configurations (Chiu and Perng 2004).
Takeda, Shen, and Funabashi (2004) describe an algorithm
for this purpose.

After a brief presentation of the search calibration pose
problem (Section 2), the state of the art of optimization meth-
ods is shown in Section 3. Then, in Section 4, we propose an al-
gorithm called the iterative one-by-one pose search (IOOPS).
This is derivated from DETMAX (Mitchell 1974), widely
used in the numerical community for the design of experi-
ments. This algorithm is used to maximize the determinant of
J T
PJP . However, we outline a general version of this algorithm

and the reader can adapt it to various observability indices.
Additionally, we propose two main improvement of this al-
gorithm. The first is to use a randomization of several indices
of observability that permits a multicriteria optimization. The
second improvement is to use a Tabu search method to pre-
vent a premature convergence of the algorithm to local min-
ima. Then, in Section 5 we describe its implementation for the
specific case of the Gough platform calibration by an implicit
method. Finally, a set of optimal configurations is proposed
(Section 6) and validated by a realistic calibration simulation
(Section 7). In Section 8 we present two applications: a real
experimentation of calibration, which demonstrates the bene-
fit of choosing the measurement configurations. A discussion
(Section 9) concludes this paper.

2. Calibration and Observability Index

The aim of calibration is to improve the position accuracy of
a robot. Hence, it is necessary to obtain redundant informa-
tion on the state of the robot. For this purpose, we may use
measurements provided by internal sensors placed along vari-
ous joints of the robot, external information obtained by mea-
surement machinery, and/or additional constraints on the end-
effector or joints. These measurements M are related to the
kinematic parameters P via constraint equations F(P,M).
The first problem is to obtain a number of constraints Nc

greater than or equal to the number of kinematic parameters
NP to be identified. Note that for a given pose ζ of the robot,
the dimension of F , which measures the amount of redundant
information on the state of the robot, is generally less than the
number of unknowns NP . Therefore, to obtain the minimal
number of constraints necessary to identify the kinematic pa-
rameters, it is necessary to collect information from the robot
in a variety of different poses. We thereby obtain a system of
constraint equations of the following form:

S =






F1(P,M1[ζ1])
. . .

FN(P,MN [ζN ])
(1)

where Nc = N × dim(Fj ) ≥ NP , [ζ1, . . . , ζj , . . . , ζN ] de-
note the poses in which the robot is observed, and Mj [ζj ] is
the data set corresponding to the pose ζj . For the actual kine-
matic parameters P̂ of the robot, the equations F1,...,N should
be approximately zero. By solving the equations S we may
identify the kinematic parameters P = P̂ . Because of sensor
noise and instability introduced by physical constraints, how-
ever, the measurements M1,...,N are inexact. Measurement er-
rors are propagated in the resolution machinery and affect the
resulting values obtained for the parameters P . One strategy
for improving the robustness of the calibration with respect to
measurement noise is to obtain an overconstrained system of
equations by increasing N . In practice, this technique yields
improved robustness only while the number N of configura-
tions remains less than a certain threshold value (see Nahvi,
Hollerbach, and Hayward 1994). We may use the identifica-
tion Jacobian JP to ensure that our calibration is robust with
respect to measurement noise. This matrix is defined as the
derivative of the constraining equations Fj with respect to
the kinematic parameters P . To the identification Jacobian, in
turn, we may associate an index of observability O to char-
acterize the sensitivity of constraint equations to variation in
the kinematic parameters. The matrix JP is a function of the
given measurement configuration; by choosing a pose inside
the workspace for which the observability index O(JP) is
optimized, we may improve the robustness of the calibration
method.

Many indices of observability have been proposed. Born
and Menq (1991) use the determinant of J T

PJP , while Driels
and Pathre (1990) and Khalil, Gautier, and Enguehard (1991)
use the condition number of the identification Jacobian. More
generally, Nahvi and Hollerbach (1996) define the following
indices and others in terms of singular values (denoted by
σL ≤ . . . ≤ σ1) obtained from a singular value decomposition
of JP .

• O1 = L
√
σL . . . σ1/

√
m where m is the number of mea-

surement poses and L is the number of singular values.
This index corresponds to the determinant of J T

PJP ;
here,

√
det(J T

PJP) = σL . . . σ1. The sensitivity of F

with respect to variations of the P is increased when
O1 is maximal.

• O2 = σL/σ1, the inverse of condition number of J (see
Driels and Pathre 1990). This index has a maximal value
equal to 1. Maximizing this index permits us to ensure
that no singular value is favored over another or, in
physical terms, that the errors incurred in determining
the kinematic parameters are “homogenized”.

• O3 = σL and O4 = σ 2
L/σ1 are slight modifications of

O1 and O2 introduced in Nahvi and Hollerbach (1996).
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3. Formulation of the Problem

In this section, we define the optimal calibration pose prob-
lem as an optimization problem under constraints. Then, an
overview of the possible solving method is given.

3.1. Aim

As shown in Section 2, many observability indices permit us to
evaluate the numerical quality of an identification Jacobian.
Then, the problem is to determine an algorithm to improve
(maximize in our case) these indices.

Two set of parameters define the identification Jacobian
matrix JP = ∂F(P,M)/∂P: the kinematic parameters P
and the measurement parameters M.

The kinematic parameters P are given whatever the state
of the robot. In robotic calibration problems, their values are
not exactly known. However, it is realistic to hypothesize that
the initial estimations of P given by the constructor are well
done. Then, to improve the numerical quality of the identifi-
cation Jacobian for actual kinematic parameters is very close
to solving the problem of the calibration optimal pose search
with a good estimation of their values.

Only the chosen measurement configurations of the robot
may be changed experimentally to improve the indices asso-
ciated with the identification Jacobian matrix. Let ζi be the
minimal vector, which defines one measurement configura-
tion i = 1, . . . , N . It is possible to select this subset ζi from
the set of measurement parameters Mi to define the robot
pose.

The choice of the vector ζi inside Mi is important, be-
cause the other parameters (called ηi) modeling the measure-
ment vector Mi = {ζi , ηi} have to be determinated as a func-
tion of the kinematic parameters and ζi : ηi = h(ζi ,P). Then,
this choice has to be motivated and adapted to the calibration
method.

The problem formulation is now to determine ζ =
{ζ1, . . . , ζN} such that the objective function O(JP(ζ, η,P))

with ηi = h(ζi ,P) is maximal. Then, the experiment design
consists of putting the robot in (or near) i = 1, . . . , N config-
urations ζi and collecting the measurement information (Mi).

The difficulty of this problem is that the number of pa-
rameters ζ is large compared to only one objective func-
tion O(JP). However, we can decrease the search area of
ζ by adding some constraints. Hence, many natural physi-
cal equations or inequalities (called gj (P, ζ ), j = 1, . . . , M)
may be introduced. In robotics calibration, these constraints
may be the workspace, the assembly mode of the robot or
the mechanical constraints used by a self-calibration method
(for example, the fixation of the end-effector or the segments
mobility).

The formulation is given as

Max
ζ

C(ζ,P)

with C(ζ,P) = O(JP(ζ, η,P)){
ζ = {ζ1, . . . , ζN},
ηi = h(ζi ,P),

for 1 ≤ i ≤ N

subject to
gj (P, ζ ) = 0 for 1 ≤ j ≤ m

gj(P, ζ ) ≤ 0 for m + 1 ≤ j ≤ M.

(2)

3.2. Deterministic Local Methods

The classical algorithm to solve the problem given by eq. (2)
is to use an optimization method as a sequential quadratic
programming (SQP) method (see Lemarchal et al. 2003).

If the objective functionC and the constraints are linear, it is
possible to use many well-known algorithms, such as the Sim-
plex or the Interior-point algorithms. If the objective function
is quadratic and the constraints are linear, the quadratic prob-
lem (QP) consists of transforming that problem into the solv-
ing of an equivalent system of equations, called the Karush–
Kuhn–Tucker (KKT) equations, using Lagrange multipliers.
This system is then solved by a Newton-like approach. The
SQP algorithm used to solve the problem (2), when the ob-
jective function and the constraints are non-linear, consists of
linearizing the equations and processing iteratively the simpli-
fied subproblems by a QP algorithm. In our case, the Jacobian
and the Hessian are given by a numerical approximation.

These methods have the major disadvantage that they are
sensible to the local minimum. Additionally, the huge number
of parameters (ζ ) that we want to identify does not permit a
good convergence of this type of algorithm. In the next sub-
section, many solutions are proposed to tackle this problem.

3.3. Reformulation of the Problem: the Iterative One-by-one
Pose Search

When using an optimal configuration search, it is difficult in
general to find all the parameters defining theN configurations
of measurement in a single step. This is due to the number of
parameters, which is equal to N × Dim(ζi ) with N being
the number of poses and Dim(ζi ) the number of components
defining one measurement configuration.

One solution is to subdivide the problem. The principle is to
search one-by-one each pose ζi . Then this process is executed
iteratively to improve the interaction between each pose and
then to maximize the numerical quality of the identification
Jacobian matrix.

We propose to adapt the standard DETMAX algorithm
(Mitchell 1974) for experimental design (Walter and Pron-
zato 1997). The frame of this algorithm consists of selecting
one additional line (or block-line) of the identification matrix
JP(ζ, η,P) corresponding to one additional pose ζN+1.
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Then, this will improve the determinant of the matrix by
searching ζN+1 by an optimization method under constraints
(or inside a finite set). Furthermore, it discards the configura-
tion (ζi , i = 1, . . . , N +1) such that the resulting determinant
is maximal. The process is iterated until the same configura-
tion is consecutively added and removed.

The DETMAX algorithm is dedicated to improve the de-
terminant of a matrix. The operations of addition and removal
of a block-line yield reduced complexity and runtime.1 How-
ever, it is also well adapted for any observability index de-
fined in Section 2. To avoid confusion, we prefer to rename
the frame of the DETMAX algorithm the IOOPS. Details of
the algorithm are given in Section 4.1.

This algorithm simplifies the search calibration pose prob-
lem but does not avoid the following two problems:

• the local convergence problem due to the use of an
optimization method under constraints;

• the difficulty of processing with a multicriterion opti-
mization (see Sections 4.1.8 and 4.2).

The meta-heuristic methods may help us to circumvent
these problems.

3.4. Meta-heuristic Methods

In combinatorial optimization, we can find different types of
methods. The first types are called deterministic methods.
These use tree search methods and eventually branch and
bound. The second types are usually used when the search
space is too wide. These are incomplete and gather local
search (simulated annealing, Tabu search, MinConflict, etc.)
and population-based search (genetic algorithms, Go With
The Winner, etc.). All these incomplete methods are also
called meta-heuristics.

Meta-heuristics are not systematic; they cannot guarantee
finding a solution if it exists, nor show that there is no solution,
if necessary. They generally use stochastic processes, i.e. they
use random processes during the search in order to introduce
diversification into the exploration of the search space. These
methods appear generally effective, and make it possible to
deal with problems too large to be treated effectively by con-
structive methods (i.e. tree search methods). The interested
reader should refer to Hao, Galinier, and Habib (1999). The
local search methods do not proceed by construction of a so-
lution but by successive improvements of an initial solution.
Several tools are necessary. First, a neighborhood function
will make it possible to move in the search space starting
from the initial solution. Then an evaluation function will al-
low us to choose among the neighbors. One can model the
general procedure of most local methods, as follows.

1. Choose an initial solution s.
1. The reader should consult Walter and Pronzato (1997) for more
information.

2. Choose among the neighbors of s a solution s̄.

3. Check if the termination condition is true.

4. Decide if s̄ must replace s; return to 2.

According to the method, the last three points will follow
different strategies. For the presented local search methods,
we call s the current solution, s̄ the new solution taken in
the neighborhood N(s), and finally E(s) the function that
computes the cost of the solution s.

3.4.1. Genetic Algorithm

The genetic algorithms introduced by Holland (1975) belong
to the class of the algorithms known as stochastic algorithms.
Indeed, most of their operations are based on chance. How-
ever, this chance is directed by the evaluation function, which
makes it possible to introduce into the genetic operators a use-
ful quantity of determinism in order to obtain a solution. The
total diagram of a genetic algorithm consists of six principal
elements:

1. a set of initial configurations called the population;

2. a function for chromosomes coding/decoding;

3. genetic operators (mutation, crossing-over, etc.);

4. an evaluation function;

5. a selection algorithm (Tournament, Roulette, etc.);

6. parameters.

The formal algorithm is described as follows:

t=0 Initialization of the population P(t)
Evaluation of the individuals of P(t)
while (Termination Condition) do

t ← t+1
Selection, copy of parents of P(t-1) into P(t)
Application of the genetic operators on P(t)
Evaluation of the individuals of P(t)

end
Decode the best solution and return it.

Zhuang,Wu, and Huang (1996) have already used a genetic
algorithm to optimize robot calibration poses.

The interested reader can usefully consult Baeck, Fogel,
and Michalewicz (1997).

3.4.2. Simulated Annealing

Simulated annealing is a local method inspired by thermal an-
nealing used in the metallurgical industry to obtain a perfect
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crystal. The industrial technique used consists of gradually
lowering the temperature of metal in fusion, so that by cool-
ing the molecules slowly a stable configuration is reached.
The algorithm that takes as a starting point this method was
introduced by Kirkpatrick, Gelatt, and Vecchi (1983). The
principle of simulated annealing is as follows. A solution by
chance is chosen s, and the temperature is fixed. Then we
enter the loop of the algorithm.

• Choose randomly a neighbor s̄.

• Calculate the difference between the evaluation of s and
s̄: δ=E(s) − E(s̄).2

• s ← s̄ with a probability e&/T if δ is negative, 1 if not.

• Decrease the temperature.

Different criteria from stop can be considered: when the re-
ductions in temperature prove to be ineffective, when a cer-
tain number of movements are carried out, etc. Generally, one
starts by using a very high temperature, which it will be neces-
sary to decrease by successive steps during the execution. The
difficulty is to find a decreasing temperature function that is ef-
fective. This algorithm keeps the new solution systematically
if it improves the current solution; if not, the new solution,
which degrades the current solution, is selected with a proba-
bility that decreases over the course of time. Therefore, at the
beginning of the execution, one tends to choose any neigh-
bor, then focusing itself gradually on a subspace of the search
space by accepting the solution that degrades less and less the
current solution. The advantage of this method compared to
the method of descent is that it can leave the local optimum
(as long as the temperature is sufficiently high). However, the
choice of the initial temperature and the function of decrease
associated with this temperature remain parameters that are
rather difficult to regulate.

Zhuang, Wang, and Roth (1994) also contribute by using
this method.

3.4.3. Tabu

The Tabu search, introduced by Glover (1986), is a method
which seeks to guide the search in an intelligent way through
the solution space. With this intention, it has a memory (the
Tabu list) of the already found solutions to avoid loopings.
The Tabu search can be summarized as follows. We start by
initializing s, using for example a greedy algorithm, and ini-
tializing the memory with vacuum. Then, entering the loop of
the algorithm

• search s̄ ∈ V (s) such that s̄ minimizes E(s̄)3 and then
s̄ (∈ M;

2. It is appropriate that we seek to minimize E(s).
3. Note that E(s̄) can be worse than E(s).

• update the memory M by adding to it s and deleting the
oldest element.

The stop criterion can be the authorized maximum number of
moves, to have reached an acceptable cost, not to have ob-
tained improvement since a certain number of movements;
Tabu research will thus seek the best neighbor not tabu, even
if this degrades the current solution. A solution that was se-
lected will be memorized, and prohibited (tabus) during a
certain general number of iterations. This will avoid loopings
and moreover allow the algorithm to leave the local optimum.
Many parameters will influence the effectiveness of the Tabu
method. The determinant parameters are the size of the Tabu
list, the neighborhood function, the portion of the visiting
neighborhood if it is too large, and the initialization func-
tion. There are many variations of Tabu research. One can,
for example, not memorize the last solutions but the couples
value/variable which changed, one prohibits thus unit of so-
lutions (all those which contain this instantiation). One can
also integrate the random one in the choice of the neighbors,
or set up criteria of aspiration, when the criteria of prohibition
of the list are too demanding. The reader can consult Glover
and Laguna (1997) for a complete description of Tabu search.

We fully explain the application of Tabu search in our al-
gorithm in Section 4.2.

4. Proposed Solutions

In the following subsection we describe the principle of the
IOOPS algorithm. In the next subsections we give precise
details of the algorithm in the basic case. Then we propose
some improvements to take into account the multicriterion
and local convergence problems.

4.1. Iterative One-by-one Pose Search

4.1.1. Measurement Search Area

We have to define the search area where the optimal calibration
poses may be found. We consider two cases of search area
type, as follows.

• Let 'd be a finite set [ζ1, . . . , ζN, . . . , ζW ] of robot con-
figurations (with W > N ).

• Let ' be an infinite set of robot poses but bounded. For
this case, ' is defined by several equalities and inequal-
ities. For example, a robot pose ζ is an element of ' if
the constraints (equalities or inequalities) g1,...,M(ζ ) are
true or equal to zero. In robotics, this area may be de-
fined by some constraints on articulate/generalized co-
ordinates, measurement machinery workspace, and/or
mechanical calibration constraints due to fixture
system.
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4.1.2. Notations

We use the following conventions.

• N is the number of measurement poses used to calibrate
the robot.

• ζi denotes the vector of parameters defining the ith con-
figuration of measurement.

• ϒN = [ζ1, . . . , ζN ] is the set of parameter configura-
tions associated with N configurations of measurement.

• ' is the workspace of all possible configurations of
measurement (two types of search area are defines in
Section 4.1.2).

• Ca and Cr are indices associated with the N (or N +
1) measurement configurations ϒN (or ϒN+1). These
indices will be the observability Ca, Cr = O1, O2, O3 or
O4. PreciselyCa(ϒ) = O(JP(ϒ, η,P) as the definition
given in Section 2. These are the indices that we want
to maximize.

• ζ+ = AddFind(',ϒN ,Ca) returns the configuration ζ+

chosen inside ', which maximize the criterion Ca de-
fined as a function of ϒN .

• ζ− = RemoveFind(ϒN+1,Cr) returns the configuration
ζ−, one component of ϒN+1, which maximize the cri-
terion Cr defined as a function of ϒN+1.

4.1.3. Iterative One-by-one Pose Search Algorithm Frame

The frame of the IOOPS algorithm is shown in Figure 1. For a
given number N of measurement poses, this process is a loop
where each iteration is defined by two steps.

Step 1 Add a new configuration N + 1. Find a vir-
tual new configuration N + 1 denoted ζ+ inside ',
which maximizes the criterion Ca . In the case of calibra-
tion pose search, this consists of adding a new “block"
line to the Jacobian matrix JP and computing the pose
parameters defining this(these) line(s) to maximize one
of the observability indices O1,2,3,4.

Step 2 Remove one of the N+1 configurations.
Remove one of the N + 1 poses denoted ζ− such that
the criterion Cr calculating the set {ϒN+1 − {ζ−}} is
maximized. This consists of removing the new “block"
line to the Jacobian matrix JP such that one of the ob-
servability indices O1,2,3,4, computed for the Jacobian
matrix after removal, is maximized.

4.1.4. Termination Condition

For the basic algorithm, the termination condition is true if
ζ+ = ζ−; i.e. the same “block" lines of the Jacobian are

define N , Ω.
init ΥN ∈ Ω, Ca,Cr.
while (Terminaison Condition) do

ζ+=AddFind(Ω,ΥN ,Ca)
ΥN+1 = ΥN ∪ ζ+

ζ−=RemoveFind(ΥN+1,Cr)
ΥN = ΥN+1 − {ζ−}

end

Fig. 1. IOOPS Algorithm.

for i = 1, . . . , U do
to choose ζi in Ω

end
To select ζ+ such that

max
ζ+=ζi

([Ca(ΥN + {ζ1}), . . . , Ca(ΥN + {ζU )}])

(a) Ω is finite

for i = 1, . . . , U do
to initialize ζi in Ω
Max

ζi

Ca(ζ1, . . . , ζN , {ζi})

Subject to ζi ∈ Ω
gj(ζi) = 0 for j = 1, . . . ,m
gj(ζi) ≤ 0 for j = m + 1, . . . ,M

end
To select ζ+ such that

max
ζ+=ζi

([Ca(ΥN + {ζ1}), . . . , Ca(ΥN + {ζU )}])

(b) Ω is infinite but bounded

Fig. 2. The AddFind algorithm.

“added” and “removed” in one iteration. This condition of
termination is not demonstrated but, experimentally, few it-
erations (around N ) are necessary (see Walter and Pronzato
1997). We never observe the non-termination of this algorithm
and the execution time never exceeds a few minutes.

4.1.5. AddFind Algorithm

The AddFind algorithm is shown in Figure 2. This procedure
is specified as a function of the definition of '.
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To select ζ− such that
max
ζ−=ζ

([Cr(ΥN+1 − {ζ1}), . . . ,

Cr(ΥN+1 − {ζN+1)}])

Fig. 3. The RemoveFind algorithm.

If ' is a finite set of poses (see Figure 2(a)), we first select
U poses inside '. We can select all poses of ' (U = dim('))
or a subset of U poses randomly chosen in '. Then AddFind
consists of checking what pose ζ+ = ζi , i = 1, . . . , U

maximizes the index ! calculated for the N initial poses
ϒN = [ζ1, . . . , ζN ] additionally to ζ+.

If ' is a bounded search area (see Figure 2(b)), the algo-
rithm described in Section 3.2 is used (denoted Max) to find
inside ' a configuration ζ+ which maximizes Ca(ϒ

N +{ζ+}).
The constraints g1,...,M permit us to focus the search algorithm
inside a realistic measurement area. The local convergence
of the SQP method implies that the initial estimation of ζ+

influences the result. To avoid this problem, we process U ex-
ecutions of the SQP algorithm with U initial estimations; the
best result provided by Max is then kept. We have three ver-
sions to initialize ζi (see Figure 2(b)). We can choose the initial
estimation of ζi randomly inside ', inside a subset defined by
uniformly distributed poses in ', inside a list of interesting
configurations (see Section 6).

4.1.6. RemoveFind Algorithm

The RemoveFind algorithm is shown in Figure 3. For the basic
version of IOOPS, the criterion Cr is, in fact, equal to Ca . We
will see in the following section that this is not always the
case.

4.2. Randomization of the Iterative One-by-one Pose Search

The first idea is to introduce a randomization into the IOOPS
algorithm to obtain a better solution by scanning a larger por-
tion of the search space. We can introduce randomization at
several points:

• in the initialization process;

• in the criterion choice;

• in the deleting process.

We see in Section 6.2 the better tuning that we have found.
This randomization allows us to find the best way of IOOPS
for the initialization, the criterion choice, and the deleting
process.

To select ζ− such that
max
ζ−=ζ

([Cr(ΥN+1 − {ζ1}), . . . ,

Cr(ΥN+1 − {ζN+1})]
−{ζ+

i , . . . , ζ+
j })

Fig. 4. The RemoveFind algorithm with the Tabu algorithm.

Mobile
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Fig. 5. The Gough platform.

4.3. Improvement by Applying a Tabu Search

The idea is to benefit from the discretization of the search
space done by the IOOPS algorithm. Introducing a Tabu
search process into the IOOPS can be easily done. We mem-
orize the n last ζ+ in a Tabu list T = {ζ+

i , . . . , ζ+
j } of size n

such that j − i = n. The RemoveFind algorithm is now as in
Figure 4.

Obviously, the termination condition is no longer valid.
The new termination condition is now the number of iterations
allowed. The classical IOOPS stops in a few iterations, but
the Tabu search process allows us to reach a better solution by
locally degrading the current solution and following a better
convergence. Thus, it is necessary to allow a larger number of
iterations to obtain good results.

5. An Example

5.1. Modeling and Kinematics of the Gough Platform

In this section we describe the Gough platform and its kine-
matic models. The manipulator consists of two rigid bodies:
the base and the mobile platform, connected by six legs or seg-
ments. The leg linear actuators provide six degrees of freedom
for the platform pose relative to the base, corresponding to po-
sition P and rotation matrix R. A configuration X = [P, R]
is associated with six length variations Li measured by “in-
ternal” leg sensors, i = 1, . . . , 6.

Each leg is attached to the base by a U-joint and to the
platform by a ball joint, so 23 parameters are required to
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model each leg (Vischer, 1996). However, as shown in Ma-
sory, Wang, and Zhuang (1997), the principal source of error
in positioning is due to limited knowledge of the joint cen-
ters and to the fact that part of the length is not given by the
sensors. We thus use a simpler model with attachment points
ai in the reference frame, bi in the mobile frame, and offset
lengths li . This gives seven parameters per leg, and therefore
42 overall, denoted by P .

Kinematic models are essential for controlling the robots,
and yield the constraints used in calibration. Inverse kinemat-
ics express the length variation for the ith leg as a function
of X :

‖P + Rbi − ai‖2 = Li + li , i = 1 . . . 6. (3)

To describe the rotation matrix, we use the Euler angle pa-
rameters q1, q2, q3. For the Gough platform, the forward kine-
matics model is more difficult to compute, since it consists of
solving (3) for P and R given Li andP . It has been shown how
techniques from computer algebra based on Groebner bases
can be used in principle to solve this problem. From a practi-
cal point of view, this is however much more tricky. Faugère
and co-workers kindly gave us access to the implementation
of their recent work (Rouillier et al., 2005), which addresses
the practical issues and allows one to efficiently solve this
problem.

5.2. Implicit Calibration Method

We test the method of optimal configuration search on the
parameter Jacobian provided by a basic calibration method.
The implicit method (Zhuang, Jiahua, and Masory 1998) (or
inverse method) presents the more popular method to cali-
brate a parallel robot. It consists of estimating the pose error
indirectly through the leg length error. The constraint equa-
tions are directly provided by the implicit inverse kinematic
equations (4)

F IK
i = ‖P + Rbi − ai‖2

2 − (Li + li)
2, i = 1, . . . , 6, (4)

where the unknowns are 7 × 6 kinematic parameters Pi =
[ai, bi, li] with i = 1 . . . 6 the index of the segment, and mea-
surements are Mj = [Pj, Rj , Li,j ] with j = 1, . . . , N the in-
dex of the configuration. Each constraint follows from eq. (4)
and depends only on the seven parameters of the respective
leg. So, we can decouple the robot calibration in six subprob-
lems and take N ≥ 7 measures. In this paper, we use a least-
squares method (using function Leastsq of MATLAB, im-
plementing a Levenberg–Marquart algorithm) to solve these
equations in terms of the parameters. Namely, we solve the
following minimization problem, for each leg i = 1..6:

Minimum
∑N

j=1 Ci,j

Ci,j = [F IK
i,j (Pi ,Xj , Li,j )]T[F IK

i,j (Pj ,Xj , Li,j )].

To find out in which direction we should look for the
minimum, we compute the Jacobian matrices correspond-
ing to the subcalibration of each leg i independently: JPi

=
∂F IK

i,j=1..N/∂Pi . Each line j = 1, . . . , N of this matrix (see
Zhuang, Jiahua, and Masory 1998) is done by
{
−Pj + Rjbi − ai

T,
[
RT

j (Pj + Rjbi − ai)
]T

, −(Li,j + li)
}

.

(5)

The aim of the measurement pose search problem is to find
the configurations which maximize an observability index of
the matrix JPi

for the calibration of one leg i of the Gough
platform. This process is repeated for all legs i = 1 . . . 6. In
this case, we fix the values of the kinematic parameters to a
given value, such as that provided by the robot constructor.
However, to observe the influence of the same set of poses to
calibrate all robot legs in one step, we introduce the Jacobian
JP where the diagonal consists of the parameter Jacobian JPi

of each leg. Each block matrix JPi
is built for each vector

of kinematic parameters Pi but with the same measurement
data, as

JP =




JP1 0 0

0
. . . 0

0 0 JP6





6Nc×42

. (6)

The algorithm IOOPS, applied on the matrix JP , permits
us to improve an associated observability index, and then to
improve the identification of kinematic parameters by mini-
mizing the measurement noise influences. We must warn that,
in this paper, we prefer to search the set of measurement poses
that improve the calibration of all legs and not six indepen-
dent sets of measurement poses that improve the numerical
qualities of each legs calibration (in this case, the algorithm
has been applied on each matrix JPi

; see Daney 2002). This
choice permits us to divide by six the number of poses used
by the experimentation.

5.3. Adaption and Implementation of the Iterative
One-by-one Pose Search Algorithm

In this problem, we consider the hypothesis that the actual
robot kinematic parameters are close to an initial estimation
given by the robot constructor. Then, the optimal configu-
rations that improve the numerical qualities of a calibration
process, and are calculated with the constructor estimation of
the kinematic parameters, are close to the optimal configura-
tion given for the actual parameters.

We formally define the vector of configuration parameters
ζ introduced previously. We could have chosen to use artic-
ular coordinates, but instead we prefer to encode configura-
tion parameters using the position and the orientation (Euler
angles) of the robot ζ = X = [Px, Py, Pz, q1, q2, q3] (see
Section 5.1). The reason is that generalized coordinates are
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well suited for defining the identification Jacobian associated
with the calibration method presented in Section 5.2 to test
this algorithm. In the other case, where one pose is defined
by its articular coordinates, a forward kinematic is needed to
compute the elements of the Jacobian JP . This is costly in
execution time and prone to error if we use a Newton-like al-
gorithm. Then, the parameters that define one pose of the robot
are the generalized coordinates. The other parameters, the leg
length Li,j , are deduced by using the inverse kinematics.

The measurement search area is defined by the articular
workspace Lmin ≤ L ≤ Lmax , the sign of the inverse kine-
matic Jacobian matrix (the assembly mode), and the direction
of vector defining the mobile frame (to obtain several realistic
measurement poses).Additionally, it may be interesting to add
some constraints applying to generalized coordinates as a re-
strictive definition of the robot workspace. These constraints
are modeled by the inequalities gj , j = 1, . . . , M , which are
used by the SQP algorithm Max in the procedure AddFind
(see Figure 2(b)). In another type of calibration method, such
as a self-calibration with mechanical constraints, these ad-
ditional constraints are the means to take into account the
mechanical constraints. Another use of these additional con-
straints is to avoid looking for configurations in the neighbor-
hood of singularities of the robot or of the legs of the robots.
Typically, by excluding parts of the workspace from the search
area through such additional constraints, we are able to handle
the case of a robot with leg singularities, such as Delta robots
(Lintott and Dunlop 1996).

Our algorithm is implemented in MATLAB. The Jacobian
JP is initialized using such N randomly chosen configura-
tions, such N uniformly distributed configurations inside the
measurement workspace (MW) or N configurations chosen
inside a special list; they are denoted by ϒN = [ζ1, . . . , ζN ].
The type of chosen poses and their number N is discussed in
Section 6.

As the same process, the procedure AddFind is executed
U times. For each execution, a pose, denoted ζ U , initializes
the SQP algorithm (see Section 3.2). This pose is chosen ran-
domly inside the workspace, or in a list of poses chosen uni-
formly in the workspace, or in a specific list described below.
Then the U poses determinated by the SQP algorithm, such
that the criterion is maximized, are stocked in a list. As a
result of the local convergence of this algorithm, the U pro-
posed poses are different as a function of the initialization of
SQP. In fact, only the selected pose that maximizes at most
the criterion is kept; the pose is denoted ζ+ and put in place
of ζN+1.

Finally, the procedure RemoveFind consists of construct-
ing i = 1, . . . , N Jacobian matrices {J 1

P , . . . , J N
P as a func-

tion of ζ1, . . . , ζN + 1 less ζi . Then we check the N criterion
values for each matrix {J 1

P , . . . , J N
P . The index i = iu such

as maxi=1,...,N ({O(J 1
P), . . . , O(J N

P )) permits us to identify the
poses ζ− = ζ iu , which have to be removed.

The process is repeated until ζ+ = ζ−.

6. Results

We use the implicit calibration method to identify the kine-
matic parameters of INRIA’s Left-hand Robot given in Table 1
(see Merlet 2000). The leg length Li, j varies between 0 and
3.5 cm.

6.1. Simulation

As a preparation, we apply the algorithm (Section 4.1) to the
Jacobian matrix (5) to find poses that minimize the effect of
measurement noise. First we use the IOOPS (see Section 4.1)
to determine the measurement poses which maximize the
value of the criterion Oi, i = 1, . . . , 4 presented in Section 2.
The parameters of our algorithm are given as follows.

• The initial value of ϒN to initialize the Jacobian values
is chosen randomly inside the MW, which is bounded
by the constraint described in Section 5.3.

• The initial value of ζU is chosen as the same process
inside the MW. These i = 1, . . . , U poses are used to
initialize the U successive executions of the procedure
AddFind.

The values of Oi, i = 1, . . . , 4 given by maximizing the cri-
terion O1 are given by Figure 6 as the function of the number
of IOOPS iteration (number of selected poses N = 18). The
four curves correspond to each criterion Oi, i = 1, . . . , 4.
Note that the process stops after a few iterations, which is
approximatively equal to the number of measurements used
to calibrate the robot. As predicted, the observability indices
associated with the new set of configurations have been in-
creased relative to the old values for all Oi, i = 1, . . . , 4.
Furthermore, the optimal poses obtained from the algorithm
(Section 4.1, Figure 6) for the criterion O1 have the desir-
able property of tending to converge to optimal poses on the
boundary of the articular workspace, where leg lengths are
minimal or maximal. Figure 8 presents these poses in term of
their articular coordinates. In each case, we observe an unde-
sirable tendency among certain configurations to converge at
poses near the initial ones, which we attribute to the presence
of many local maxima. The values obtained for each crite-
rion are lower than the results proved by the experimentation
given in Figure 6. To choose the criterion O1 for improving
JP gives the best measurement poses in term of maximization
of all criterion Oi . We now repeat the above procedure with
O2, O3 and O4, respectively, in place of O1 (see Figure 7).

We want to observe the localization of poses obtained with
IOOPS maximizing the criterion O1 and given at the end of
the process illustrated by Figure 6. Figure 8 plots the values of
the 18 × 6 leg length before and after computing IOOPS. We
observe that the selected poses are localized at the boundary of
the calibration workspace. This remark is important: the natu-
ral way to explain this observation is that these configurations
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Table 1. Theoretical Values of the Kinematic Parameters of INRIA’s Left-hand Robot in cm
Leg ax ay az bx by bz l

1 −9.7 9.1 0 −3 7.3 0 52.2496
2 9.7 9.1 0 3 7.3 0 52.2496
3 12.76 3.9 0 7.822 −1.052 0 52.2568
4 3 −13 0 4.822 −6.248 0 52.2568
5 −3 −13 0 −4.822 −6.248 0 52.2568
6 −12.76 3.9 0 −7.822 −1.052 0 52.2568
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Fig. 6. The values of the criteria O1, O2, O3, O4 as a function
of the iteration number of IOOPS. Here, the chosen optimized
criterion is O1, the number of poses is N = 18, and the
number of executions of AddFind is U = 40.

stimulate at most the variation of pose localization. However,
it is interesting to introduce a specific set of post-selected con-
figurations. For this purpose, we begin by constructing the set
of 26 = 64 articular configurations corresponding to all pos-
sible poses with legs of minimal or maximal length. For each
of these, we then use forward kinematics using interval anal-
ysis to calculate all corresponding poses defined in terms of
generalized coordinates. This problem serves as a benchmark
in Merlet (2004). After eliminating unrealistic configurations
and applying the constraint on the workspace introduced in
Section 5.3, we are left with 44 configurations of measure-
ment expressed in terms of generalized coordinates. The last
line of Table 2 gives the value of the observability indices.

We test the influences of the initial configurations for ϒN

(initializing IOOPS) and ζU (initializing AddFind) on algo-
rithm convergence. We chose to study three cases:

• random poses inside the MW (denoted RR);

• uniformly distributed poses all over the MW (denoted
UU);

• poses localized at the boundary of the MW (denoted
BB).

The results are presented in Figure 9. Whatever the choice of
the index, the best results are obtained by choosing the initial
poses on the boundary of the workspace.

We conclude that the IOOPS algorithm may be
parametrized such that:

• if the index O1 is chosen as the criterion, the results are
good for all cases of initialization;

• if one of the indices O2, O3 or O4 is chosen as the
criterion, the results are good only by an initialization
for measurement poses localized at the boundary of the
workspace.

These parametrizations are adequate for the presented case
of the calibration procedure. However, it is easy to isolate the
boundary workspace poses as an interesting set of solutions.
In general, the localization of a set of significant poses may be
difficult to obtain. We then prefer to improve our algorithm to
find a set of poses that maximize several criteria for an initial
estimation of poses chosen randomly.

6.2. Multicriteria Improvement

The multicriteria optimization is a difficult problem. We de-
cided not to define a weighted criterion mixing the criteria
presented in Section 2.

An observation of the curves in Figures 6 and 7 shows that
the criteria O2, O3 and O4 = O2 × O3 should be linked. As a
result, we chose to restrict ourselves to the study of a primary
O1 and a secondary O4 criterion.

The first tested improvement consists of switching the cri-
teria that have to be maximized during IOOPS processing.
The criterion is chosen alternatively between O1 and O4 with
a given probability. The result obtained in Figure 10 shows the
poor improvement obtained with this procedure compared to
Figure 6. In fact, a relatively small variation of O1, provided
by a particular selection of poses, may change measurably the
value of O4. Then the effect of the randomization is null.
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(b) Maximization of criterion O3
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(c) Maximization of criterion O4

Fig. 7. The IOOPS used the criterion O2, O3 or O4 to select
optimal measurement calibration poses.
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(b) Selected poses by IOOPS
Fig. 8. Leg length of N = 18 poses before and after
processing the IOOPS algorithm.

As regards this remark, we propose a second tested im-
provement. The procedure AddFind is repeated U times and
provides U candidate poses (see Figure 2) which improve one
criterion (named the primary criterion). For the basic version
of AddFind, only the pose, which maximized at most the pri-
mary criterion, is selected. The proposed improvement is to
select the pose with regards to the secondary criterion in place
of the primary. In practice, we do not keep all U candidates
for the selection list, but only a percentage (80%) of the best
on the primary criterion. Figure 11 shows that improvement
provides better values of O2, O3, O4 for the approximatively
equivalent value of O1.
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Fig. 9. Criteria value as a function of the localization of initial
poses (n = 18).
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Fig. 10. Alternative random maximization of the criteria O1

and 04.

6.3. Tabu Improvement

Figure 12 clearly shows the evolution of the best solution dur-
ing the search. There is alternatively degradation and improve-
ment of the best solution during the run until best solutions
are found. The solutions found by the Tabu search by using
the best tuning for the criterion are the best solutions we have
found.

7. Validation

We want to validate the influences of the selected optimal
poses on the calibration process. Only calibration simulations
permit us to compare the values of the kinematic parameters,
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Fig. 11. Maximization of the criterion O1 but the chosen
configuration with criterion O4.
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Fig. 12. Maximization of the criterion O1, but the chosen
configuration with criterion O4 with a size 4 Tabu method.

obtained after a calibration method with or without a selection
of measurement poses, with the actual ones. Then, we use a
simulation of the implicit method described in Section 5.2.

Here, we represent the robot design given by constructor
in terms of the 42 kinematic parameters described in Table 1.
These are denoted by Pe, and serve as initial estimates. They
are then perturbed by 0.5 cm, which is even greater than a
perturbation simulating a realistic robot design. Perturbated
parameters are denoted by P . We now substitute these values
in eq. (3) to determine the articular coordinates Li as functions
of four sets of poses, ϒr , ϒs1 , ϒs4 and ϒb, expressed in terms
of generalized coordinates.
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Table 2. BestValue ofObservability Indices Extracted from
the Experimentation (Figure 12)

O1 O2 O3 04

ϒr 1.7438 0.0011 0.8431 0.0009
ϒs1 7.7177 0.0139 10.3760 0.1446
ϒs4 7.6742 0.0161 12.0471 0.1936
ϒb 7.5388 0.0151 11.1560 0.1687

The three first sets of poses are extracted from the experi-
mentation presented in Figure 12, as follows.

• ϒr consists of 18 randomly generated poses inside the
calibration workspace. This set is used to initialize the
algorithm IOOPS applied with a tabu and a mixed
choice on the optimized criterion (see Section 6.3). It
corresponds to iteration 0 of Figure 12.

• ϒs1 consists of 18 poses that maximize the criterion
O1. This set of poses corresponds to iteration 24 of
Figure 12.

• ϒs4 consists of 18 poses that maximize the criterion O4

(but also O2 and O3). This set of poses corresponds to
iteration 148 of Figure 12 and is represented in Fig-
ure 13.

The last set of poses ϒb consists of 18 configurations cho-
sen on the boundary of the workspace for minimal and/or
maximal leg length. These are computed using an exact for-
ward kinematic (see Section 6.1). Table 2 gives the value of
each criterion.

To each of these sets of poses we now add a uniformly dis-
tributed error on measurement parameters to simulate realistic
sensor noise. The amplitude of error on our measurement pa-
rameters is 0.001 cm for position, 0.01◦ for the Euler angles
defining orientation, and 0.001 cm for leg length. These am-
plitude noises are applied in all presented simulations.

Next we apply four different simulations of the implicit
method to each leg i = 1, . . . , 6. In the first, we use ϒr to
obtain 6×7 = 42 kinematic parameters, which we denote by
Pr .

In the same way, we use ϒs1 , ϒs4 , and ϒb to obtain Ps1 , Ps4 ,
and Pb.

To avoid the problem of a particular direction of the er-
ror on measurement parameter, we repeat 100 times the four
calibration simulations. Discrepancies between the mean of
estimated kinematic parameters and their actual values for our
42 kinematic parameters are listed in Figure 14.

The error |Pe −P| obtained before calibration is in column
1, and the remaining columns give the errors associated with
poses obtained as a result of our calibration procedure. The
mean of post-calibration error |Pr − P| associated with 18

Fig. 13. Representation of the 18 poses of the Gough platform
from the set ϒs4 .

randomly chosen poses is in column 2, while the error |Ps4−P|
associated with 18 poses selected (ϒs4 ) as in Section 6 is in
column 3. The table in Figure 14 presents also the mean and
standard deviation errors of |Ps1 −P| and |Pb −P|. As we see
in Figure 14, selecting poses as in Section 6 leads to kinematic
parameter estimates whose errors are 10–15 times as small as
those obtained from randomly chosen configurations.
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Error on Before After calibration
kinematic calibration using
parameters random poses

Mean
[cm] 0.2512 0.0402

Standard
deviation [cm] 0.1469 0.0383
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Error on After calibration using
kinematic selected poses Boundary
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Mean
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(c) Error before calibration and after obtained by using random
measurement poses

Fig. 14. Comparison of the error (mean and standard devia-
tion) on kinematic parameters before and after calibration for
selected versus random N = 18 measurement poses. Magni-
tude of the error on kinematic parameters estimation is 0.5 cm,
on position/leg lengths measurement, 0.001 cm, and on ori-
entation measurement, 0.01◦.

In practice, increasing the number of poses until a certain
threshold may improve the robustness of calibration with re-
spect measurement noise, but it increases the time needed for
obtaining data necessary for calibration (Nahvi, Hollerbach,
and Hayward 1994). To illustrate the above phenomenon, we
simulate 41−8 successive calibrations under the same exper-
imental conditions presented at the beginning of the section,
while varying the number of measurement poses between 8
and 41. Figure 15 compares mean errors for kinematic param-
eter (on a, b, and l) estimates obtained using configurations
lying on the boundary of the workspace and those randomly
chosen.

Observe that, if the relative errors computed using ran-
domly chosen or selected poses decrease steadily as a function
of the number of configurations, the absolute errors obtained
from a calibration method using carefully chosen configura-
tions are very small, and hence roughly constant for configu-
rations of 18 or more poses.

We may conclude that choosing configurations along the
boundary of our workspace permits a robust calibration of
the Gough platform. Using a few carefully chosen poses is
more effective for calibration than using many random poses.
Moreover, our claims have been tested for a wide variety of
Gough platforms, with the same positive results.

8. Experimentation

The IOOPS method has been used in an experimentation of
calibration of a DeltaLab “Table of Stewart” robot. This robot
is a Gough platform, with a basis of radius 270 mm, a mobile
of radius 195 mm, and six legs of lengths varying between 345
and 485 mm. This robot has been designed for academic pur-
poses with not as good precision and accuracy as an industrial
robot should have.

The robot we are working with is located at LASMEA,
which is the robotic laboratory of University Blaise Pas-
cal in Clermont-Ferrand, France (see http://wwwlasmea.univ-
bpclermont.fr). Practical experimentations have been con-
ducted by N. Andreff and J. M. Lavest.

In order to measure the position/orientation of the end-
effector, we are using a vision system (see Figure 16) which
consists of

• a digital video camera SONY (1024 × 768) with a
4.2 mm focal;

• an asymmetric target.

This system, once calibrated, produces fully automatically the
position/orientation measurements.

An adaptation of the IOOPS method described above has
been used to select 13 measurement configurations optimizing
the O4 criterion, starting from a set of configurations located
at the boundary of the workspace. We denote by ϒES this set
of poses. Values of the criterion are given in Table 3.
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Fig. 15. Comparison of the error (mean and standard devi-
ation) on kinematic parameters before and after calibration
for selected versus random measurement poses. Magnitude
of the error on kinematic parameters estimation is 0.5 cm,
on position/leg lengths measurement, 0.001 cm, and on
orientation measurement, 0.01◦.

Table 3. Observability Indices for the 13 Selected Poses
O1 O2 O3 04

ϒES 43.6805 0.0092 47.04 0.4332

Fig. 16. Table of Stewart (DeltaLab) with vision system.
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Fig. 17. Error in position for the 64 randomly selected poses,
computed for PES .

Calibration of the robot is then performed by using the im-
plicit calibration method proposed in Section 5.2. This pro-
duces the kinematic parameters denoted by PES .

In order to experimentally validate these results of the cal-
ibration, we measure the position and the orientation of the
robot in 64 different totally randomly chosen poses (we de-
note by ϒER the corresponding set). For each of these poses,
we compute the norm of the difference between this mea-
surement and the position/orientation computed by the for-
ward kinematic using PES parameters and the measures of
leg lengths. The root mean square (RMS) error of position is
shown in Figure 17.

Table 4 gives means and standard deviations.
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Table 4. Error in Position and in Orientation for the 64
Randomly Selected Poses, Computed for PES

Error Position (mm) Orientation (◦)
Mean 1.45 0.27

Standard
deviation

0.48 0.27
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Fig. 18. Observability indices for 6000 times randomly
selected poses.

The next step in experimentation consists of comparing
the observability indices computed for IOOPS selected poses
with the indices obtained for randomly selected poses. For
this purpose, we select randomly 13 poses amongst the 64
poses of ϒER, and we calibrate the robot with these poses to
obtain the kinematic parametersPERi

. This process is repeated
6000 times. For each of the 6000 observations, we compute
the indices of observability (see Figure 18). Comparison with
the values computed with the ϒES poses (Table 3) shows how
interesting it is to select the poses.

The last step of experimentation is the validation. For each
of the 6000 observations, we compute the RMS errors in
position and orientation for the 51 (64 − 13) non-selected
configurations. To achieve this, we use a forward kinematic
computed as a function of the kinematic parameters PERi

and
the leg length measurements. Errors in position are given in
Figure 19, and means and standard deviations are given in
Table 5. The results show again the benefit of selecting poses.
However, we were expecting even better results on the mean
of position errors of Table 4, but investigations show a biased
error of 1.29 mm on the z-axis, which is the focal axis of the
camera.
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Fig. 19. Error in position for the 51×6000 randomly selected
poses.

Table 5. Error in Position and in Orientation for the 64
Randomly Selected Poses, Computed for PES

Error Position (mm) Orientation (◦)
Mean 1.55 1.66

Standard
deviation

1.14 0.96

The IOOPS method has been also used to design a cali-
bration experimentation in an industrial context. Results are
presented in Daney (2003).

9. Conclusion

In this paper, we have presented a method to select the cali-
bration poses inside a finite set of measurement data or inside
a continuous area describing a measurement workspace. This
algorithm is based on a local optimization of an observability
index. Additionally, meta-heuristic methods permit us to take
into account local minima and multicriteria problems.

Several results may be emphasized, as follows.

• Our results show that by choosing measurement config-
urations that maximize an observability index, we may
significantly increase the robustness of Gough platform
calibration with respect to measurement noise. Note,
however, that maximization with respect to different in-
dices related to our identification Jacobian has varying
effects on calibration and that the appropriate choice of
index depends on the effects intended, as expressed in
Nahvi and Hollerbach (1996).
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However, we claim that the choice of this index O1

(the product of singular values) is best suited to our
algorithm, because of the following.

– The optimization process is less sensible to local
minima by using this index (O1) in place of O2, O3

or O4 (condition number, smallest singular value
or the product of these).

– All observability indices (O1, O2, O3 or O4) are
maximized or close to being maximized iff the
optimized criterion is O1.

• We can observe that the optimal poses are localized near
the boundary of the workspace. We do not have a for-
mal proof of this observation. However, intuitively, it is
easy to understand that a wide stimulation (in contrast
to local) of a system permits its good observation. This
remark is important: to choose the poses on the bound-
ary provides some interesting approximation of optimal
poses, or a good initial configuration for an algorithm
of experimental design.

• The presented simulation shows the interest of the se-
lection of calibration poses on the identification results.
The error on kinematic parameters due to measurement
noise is largely reduced (divided by 10–15). Moreover,
it is not necessary to multiply the number of measure-
ment poses. We observe that a number of poses greater
than 20 does not improve meaningfully the robustness
of the identification. In comparison, this threshold is
around 40–50, if the poses are not selected by an algo-
rithm. Decreasing the number of measurements is an
interesting result for the practical case.

For future work, it would be interesting to explore fur-
ther the relationship between the geometry of the poses ob-
tained by our algorithm and the numerical properties of our
constraint equations. Among the most intriguing properties
of our poses are that they lie on the boundary of our articu-
lar workspace and that they are highly radially symmetric. It
seems natural to conjecture that the symmetry of our Gough
platform and the configurations we obtained are linked; more
optimistically, we might hope to reduce the number of kine-
matic parameters needed to define a set of poses optimal for
calibration.

Acknowledgments
The author would like to acknowledge the members of the
Coprin team for their various suggestions and their help.

References
Baeck, T., Fogel, D. B., and Michalewicz, Z. editors.

1997. Handbook of Evolutionary Computation. Institute
of Physics Publishing, Bristol, UK.

Borm, J. H., and Menq, C. H. 1991. Determination of op-
timal measurement configurations for robot calibration
based on observabililty measure. Journal of Robotic Sys-
tems 10(1):51–63.

Chiu, Y. J., and Perng, M. H. 2004. Self-calibration of a gen-
eral hexapod manipulator with enhanced precision in 5-dof
motions. Mechanism and Machine Theory 39:1–23.

Daney, D. 2002. Optimal measurement configurations for
Gough platform calibration. Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), Washington, DC, May 11–15, pp. 147–152.

Daney, D. 2003. Kinematic calibration of the Gough platform.
Robotica 21(6):677–690.

Driels, M. R., and Pathre, U. S. 1990. Significance of observa-
tion strategy on the design of robot calibration experiments.
Journal of Robotic Systems 7(2):197–223.

Glover, F. 1986. Future paths for integer programming and
links to artificial intelligence. Computers and Operation
Research 13:533–549.

Glover, F., and Laguna, M. 1997. Tabu Search. Kluwer Aca-
demic, Boston, MA, pp. 408.

Hao, J. K., Galinier, P., and Habib, M. 1999. Métaheuristiques
pour l’optimisation combinatoire et l’affectation sous con-
traintes. Revue d’Intelligence Artificielle 13(2):283–324.

Holland, J. H. 1975. Adaptation in Natural and Artificial Sys-
tems, An Introductory Analysis with Applications to Biol-
ogy, Control and Artificial Intelligence, 1st edition. Uni-
versity of Michigan, MI.

Khalil, W., Gautier, M., and Enguehard, Ch. 1991. Identi-
fiable parameters and optimum configurations for robots
calibration. Robotica 9:63–70.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. 1983. Opti-
mization by simulated annealing. Science 220(4598):671–
680.

Lemaréchal, C., Bonnans, J. F., Gilbert, J. C., and Sagastiza-
bal, C. A. 2003.Numerical Optimization. Springer-Verlag,
Berlin.

Lintott, A., and Dunlop, G. 1996. Calibration of a parallel
topology robot. Proceedings of the 6th International Sym-
posium on Robotics and Manufacturing (ISRAM), Mont-
pellier, France, pp. 429–434.

Masory, O., Wang, J., and Zhuang, H. 1997. Kinematic mod-
eling and calibration of a Stewart platform. Advanced
Robotics 11:519–539.

Merlet, J.-P. 2000. Parallel Robots. Kluwer, Dordrecht.
Merlet, J.-P. 2004. Solving the forward kinematics of a

Gough-type parallel manipulator with interval analysis. In-
ternational Journal of Robotics Research 23(3):221–236.

Mitchell, T. J. 1974. An algorithm for the construction of d-
optimal experimental designs. Techometrics 16:203–210.

Nahvi,A., and Hollerbach, J. M. 1996.The noise amplification
index for optimal pose selection in robot calibration. Pro-
ceedings of the IEEE InternationalConference onRobotics
and Automation (ICRA), Minneapolis, MN, pp. 647–654.



518 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / June 2005

Nahvi, A., Hollerbach, J. M., and Hayward, V. 1994. Calibra-
tion of a parallel robot using multiple kinematics closed
loops. Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), San Diego, CA,
pp. 407–412.

Rouillier, F., Faugère, J. C., Merlet, J. P., and Rolland, L.
2005. Forward position analysis for parallel robots. In
preparation.

Takeda, Y., Shen, G., and Funabashi, H. 2004. A DBB-
based kinematic calibration method for in-parallel actu-
ated mechanisms using a Fourier series. Transactions of
the ASME 126:856–865.

Vischer, P. 1996. Improve the accuracy of parallel robots.
Ph.D. Thesis, École polytechnique fédérale de Lausanne.

Walter, E., and Pronzato, L. 1997. Identification of Parametric

Models. Springer-Verlag, Berlin.
Zhuang, H., Wang, K., and Roth, Z. S. 1994. Optimal selec-

tion of measurement configurations for robot calibration
using simulated annealing. Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA),
San Diego, CA, pp. 393–398.

Zhuang, H., Wu, J., and Huang, W. 1996. Optimal planning of
robot calibration experiments by genetic algorithms. Pro-
ceedings of the IEEE InternationalConference onRobotics
and Automation (ICRA), Minneapolis, MN, pp. 981–986.

Zhuang, H., Jiahua, Y., and Masory, O. 1998. Calibration of
Stewart platforms and other parallel manipulators by min-
imizing inverse kinematic residuals. Journal of Robotic
Systems 15:395–405.


