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Abstract—We address the kinematics of the redundant N −

1 wire-driven parallel robot, i.e. a robot with N > 3 wires
connected at the same point on the platform. The redundancy
allows one to increase the workspace size. But we show, both
theoretically and experimentally that if the wires are not elastic,
then the redundancy cannot be used to control the wire tensions.
Indeed we show that whatever are the number of wires there
will always be only at most 3 wires in tension, while the other
N − 3 wires will be slack. We then show that if the wires are
elastic, then the platform positioning will be very sensitive to
stiffness identification and wire lengths control. Hence classical
redundant control schemes are difficult to use for such robot
and alternate use of the geometry of redundant wires have to
be considered.

I. INTRODUCTION

Recently wire-driven parallel robots have gained further

interest because of potential new applications such as rescue

crane [1], [2], [3], assistance robots, rehabilitation [4] and

haptic devices [5], [6]. But their kinematics is much more

complex than their rigid legs counterpart, especially as it has

appeared recently that their forward (FK) and inverse (IK)

kinematics are closely connected. Indeed it may be shown

that applying an IK solution for a robot with N wires (i.e.

sending as control input the N wire lengths that theoretically

will allow to reach a pose with the N wires under tension)

is not sufficient to reach the desired pose because the final

pose of the platform my be such that less than N wires are

under tension [7]. Hence applying an IK solution leads to

a pose which maybe any solution of the FK problem with

1 to N wires under tension. Unfortunately solving such FK

problem appears to be extremely complex with no known

solution at this time [8].

In this paper we focus on the 3 dof redundant N − 1
wire-driven robot in a crane configuration (i.e. the only force

applied on the platform is gravity). Such a robot has N > 3
wires connected at the same point on the platform and is

used to control the location of the center of mass of the

platform. The actuating system of this robot allows one to

control the lengths ρ of the wires, i.e the distance between

the output point A of the winch system and the center C
of the platform (for simplification we will assume that the

center of mass of the platform is located at C).

Redundancy may be used for two purposes:

• increasing the workspace size

• optimizing a secondary control criteria. For wire-driven

robot such secondary criteria is typically related to the

distribution of tension among the wires
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Without lack of exhaustivity we will consider here a

specific application of such robot: acting as a lifting crane

to provide mobility assistance for elderly and handicapped

people. The purpose of the robot is to be able to provide

mobility assistance to the end-user in a given room. In that

case the A points of the winch system are all located at

the same altitude in the ceiling of the room. We define the

altitude of the A points as 0 and any pose of the robot in

the room will have a negative altitude. A first limit for the

pose that can be reached by such a robot is imposed by the

effective amount of wire length change that can be coiled by

the winch system. We will assume here that these changes

are such that potentially any pose in the room can be reached.

The second limit on the workspace is imposed by the fact

that a pose can be reached by the robot if and only if a

minimal number of wires are under tension.

Under that constraint the reachable pose can easily be

determined. Indeed consider the plane P with altitude 0 in

which are located all the A points and the convex hull H
of these A points. We will denote by V the volume that is

created by moving H along a vertical downward direction.

It can be shown that if there no limit on the wire tensions,

then for any pose in V there will be a subset of wires with

positive tensions (i.e. all the wires are under tension) [9],

[10]. As a consequence adding a redundant wire to a N − 1
robot will indeed increase the workspace size as soon as

the added AN+1 point lies outside the convex hull of the

A1, . . . AN points.

It is then usually assumed that actuation redundancy will

also allow to manage wire tensions [11], [12] (e.g. will allow

to reduce the maximum of the wire tensions at a given pose).

We will examine this assumption in the following sections.

II. MECHANICAL EQUILIBRIUM

A N − 1 wire driven parallel robot is in mechanical

equilibrium if the wire tension balances the load applied on

the platform, which is in our case the action of gravity at

C. Let m denotes the mass of the platform and τ be the

wire tensions. The force F applied on the platform at C is

(0,0,-mg). Mechanical equilibrium will be obtained if

F = J
−Tτ (1)

where J
−T is the 3 × N transpose of the inverse jacobian

of the robot. Consider all triangles in the P plane whose

vertices are three A points: as soon as the projection of the

pose in the P plane lie inside one of these triangles, then

mechanical equilibrium is obtained with positive tension by

using only the corresponding wires and any other wire is

redundant.



If N > 3 the linear system (1) has an infinity of solution

and hence it may be thought that one can choose a tension

distribution that satisfy (1) and optimize some secondary

criteria, such as the sum of the τ . Unfortunately such control

scheme cannot be used for two reasons:

• a winch system is basically a length generator. Tension

control can be obtained only for elastic wires but only

by modifying the wire lengths, which has an effect on

the positioning of the platform. This influence will be

examined in section IV

• the control scheme assumes that all wires are simultane-

ously under tension: we will show in the next sections

that this assumption does not hold for non-elastic wires

In the next section we will use as example a 4-1 robot

A1(0, 0, 0), A2(400, 0, 0), A3(0, 400, 0), A4(400, 400, 0)
(2)

and a load of 80kg. Units are centimeter and Newton.

III. WIRE TENSION FOR NON-ELASTIC WIRES

In this section we will assume that there is no elasticity in

the wires. We will show both theoretically and experimen-

tally the following theorem:

Theorem A: for a redundant N-1 robot with non elastic

wires it is not possible to use the redundancy to control

the tension in the wires for a given pose and any pose

will be reached with only at most 3 wires under tension

A. Theoretical proof

When moving from its current pose to the desired one the

platform is in equilibrium. At a given time we may assume

that C is in position M with the projection of M in the

P plane lying inside the triangle with vertices A1, A2, A3

while the wires 4 to N have a length that is greater than

the distance between M and their A points. Consequently

the mechanical equilibrium at M is such that the wires 1,

2, 3 are under tension while the other wire tensions are 0.

During the motion toward the desired pose it may happen

that the length of one wire j in [4,N ] became lower than

the distance between M and Aj . We will now prove the

following theorem:

Theorem B: consider a redundant N-1 robot with non

elastic wires that is in equilibrium with 3 wires in tension

while the others N-3 wires have zero tension but have a

length that is exactly equal to the distance between C
and the corresponding Ai. Then any reduction of the

length of any these N-3 wires leads the robot to move to

another pose with still only 3 wires in tension

Proof: For the sake of simplicity we will assume that there

is no triplet of Ai, Aj , Ak that are aligned. Without lack

of exhaustivity we may consider that at M the mechanical

equilibrium of the platform is such that wire 1, 2, 3 are

under tension while the other wire tensions are equal to 0

and we will suppose that the projection of M onto P lies

strictly inside the triangle A1, A2, A3 (the case where M
lies on an edge of this triangle will be treated later on). We

will assume that the length of wire 4 is initially exactly the

distance ||A4M|| and is then decreased by an infinitesimal

amount. We will now determine what will be the new pose

M ′ of the load. The motion from M to M ′ must be valid

i.e. it must satisfy the following validity conditions:

1) in the new pose the distances ||AjM
′||, j ∈ [1, N ]

cannot be greater than ρj

2) the new pose must satisfy the mechanical equilibrium

Let us assume that wires i, j, i, j ∈ [1, 3] remains under

tension during the motion from M to M ′. Let Pij be the

vertical plane that includes Ai, Aj and separates the space

in two half-spaces V, V4, with A4 belonging to V4 (figure 1).
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Fig. 1. The vertical plane P23 that contains A2, A3 split the space in two
half-space V, V4 with A4 belonging to V4

Lemma 1: if there are any wire k, k ∈ [5, N ], k 6= i, j
such that Ak belongs to V and such that the initial length

of wire k is equal to the distance between Ak and M , then

a motion with i, j under tension is not valid

Proof of lemma 1: if i, j remain under tension, then the

load rotates around the line Ai, Aj . If Ak lies in V , then a

change in ρ4 leads to an increase in the distance between

Ak,M and therefore the motion is not valid. In the example

of figure (1) a decrease of ρ4 leads to an increase in the

distance between A1,M .

Lemma 2: if A4 lies inside the convex hull of the Ai’s,

then a decrease of ρ4 leads the robot in a pose with only 3

wires under tension, one of which is wire 4.

Proof of lemma 2: consider first that at least one of Ai, Aj

is included into the convex hull but is not a vertex of the hull.

Then by definition of the convex hull the plane Pij splits the

space into 2 half-spaces that both include some of the Ai’s.

Hence by virtue of lemma 1 a motion from M to M ′ with

i, j under tension is not valid.

Let us not denote by Aj the m A points that are vertices of

the convex hull. These points will be numbered sequentially

so that AjAj+1 is an edge of the convex hull (the fist point

of the list will be numbered A1 or Am+1). The half-space

limited by PAjAj+1 that contains A4 also includes all the

Ai’s and by virtue of lemma 1 any motion will satisfy the

first validity condition. On the other hand the vertical plane

Pml associated to any pair of non successive vertices Am, Al

of the convex hull split the space into two half-spaces that

both includes some Ai’s and therefore a motion with the

associated wires remaining under tension is not valid. Hence

only wires whose A points are successive vertices of the

convex hull may remain rigid during the motion.

The set of triangles AjAj+1A4 with j ∈ [1,m] completely

covers the convex hull and the current pose belongs to one



of these triangles AlAl+1A4 (figure 2).
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Fig. 2. If A4 lies inside in the convex hull of the Ai’s, then a decrease of
ρ4 leads to a pose where only 3 wires are under tension (here wires 2,3,4)

Any motion with the wires connected to Aj , Aj+1, j 6= l
will not satisfy the second validity condition. Hence only the

motion with the wires connected to Al, Al+1 under tension is

valid: the manipulator ends up in the pose where these wires

and wire 4 are under tension. The other wires become slack

because the distance between their A and M ′ has decreased.

Lemma 3: if A4 is a vertex of the convex hull of the Ai’s

then a decrease of ρ4 leads the robot in a pose with only 3

wires under tension, one of which is wire 4.

Proof of lemma 3: as for lemma 2 we cannot consider

as potential wires leading to a valid motion any wire pair

i, j such that Ai or Aj strictly lies inside the convex hull

of the Ai’s. For the same reason any wire pair i, j whose

Ai, Aj are not successive vertices of the convex hull cannot

lead to a valid motion. Hence we consider as potential

wire pair the one having successive vertices Aj , Aj+1 of

the convex hull. For any triplet Aj , Aj+1, Ak that does not

include A4 a decrease of ρ4 with Aj , Aj+1 under tension

leads to a decrease of the distance between Ak and M : wire

k become slack and therefore this motion cannot satisfy the

second validity condition. Thereby we consider the triplet

Aj , Aj+1, A4. For any of these triplets a decrease of ρ4 leads

to a decrease of the distance between Ak and M for any k
different of j, j + 1 and therefore the first validity condition

is satisfied. The second one will be satisfied for any triplet

such that the projection of M in P lies inside the triangle

Aj , Aj+1, A4.

Any such triplet that does not include A2 will not contain

any part of the triangle A1A2A3 and therefore the equilib-

rium cannot be satisfied for an infinitesimal motion from

M to M ′. Hence only the triplets A4, A1, A2 or A4, A2, A3

may satisfy the equilibrium condition. The line going through

A4, A2 splits the triangle A1A2A3 into 2 components, only

one of which will include M (figure 3). Hence the robot will

move in a configuration where either 1,2,4 or 2,3,4 are under

tension while any other wire will become slack.

A special case occurs when M lies on one edge of the

triangle A1, A2, A3. This implies that in this pose only 2

wires are under tension (the one involved in the edge) while

the third one has 0 tension. A decrease of ρ4 will lead
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Fig. 3. If A4 is a vertex of the convex hull of the Ai’s, then a decrease of
ρ4 leads to a pose where only 3 wires are under tension (here wires 2,3,4)

to a pose M ′ whose projection onto P lies in a triangle

Aj , Ak, Al while the distances between M ′ and the A point

of the wires that not involved in the triangle will decrease.

Hence these wires will become slack while wires j, k, l will
ensure the mechanical equilibrium.

The proof of Theorem B is a direct consequence of lemma

2 and 3. During a motion toward the desired pose we will

have a sequence of events in which one (or more) wire

will become shorter than the distance between its A and

the current pose. Hence theorem B applies and the platform

reaches a pose in which 3 wires have exactly the length

corresponding to the distance between their A and the current

pose X , whose projection onto P lies inside the triangle of

the 3 Ai. This proves theorem A.

As an example we consider the 4-1 test robot at the

pose (100, 150, -200) with the wire lengths (269.25824,

390.51248, 335.41, 438.74821). If we impose a length value

of 438.5 for wire 4, then the robot will move to the

pose (100.272188,150,-199.863675) in which only wire 1,3,4

are under tension (at this pose the distance ||A2C|| is

390.2335837301 and wire 2 is no more under tension).

A corollary theorem can be proposed

Theorem C: being given only the coordinates of a pose

X we cannot determine which set of 3 wires are under

tension at this pose

Proof: the projection of X onto P belongs to several

triangles Aj , Ak, Al, each one being a candidate to give the

wire numbers that are under tension at X . During the proof

of theorem B we have seen that the wires that will be under

tension at X depends upon the history of the coiling of the

wires. Hence we cannot determine the wires under tension

if only the coordinates of X are given.

B. Experimental proof

Theorem A may also be illustrated experimentally. For

that purpose we have used our assistance lifting crane

MARIONET-ASSIST, one member of our family of wire-

driven parallel robot MARIONET, that is used in our apart-

ment as an elderly lifting crane and manipulator. We have

attached a load to the 4 wires with low stiffness springs that

connect at the same point, leading to a 4-1 robot. Observation



of these springs allows one to determine if a given wire is

under tension. We start in a pose in which wires (1,2,3) are

under tension while the fourth one is slack (figure 4). We

then start decreasing the length of the fourth wire. At some

point the tension in wire 3 starts decreasing. If we continue

decreasing the length of wire 4 then the tension in wire 3

goes to 0 while wire 4 becomes under tension. A direct

Fig. 4. An experiment with a 4-1 robot: we start in a configuration in
which 3 wires are under tension (1,2,3), the fourth one being slack (top
picture). Then we start decreasing the length of wire 4. At some point the
tension in wire 3 is almost 0 (middle picture). Continuing decreasing the
length of wire 4 leads to a pose in which the tension in wire 3 is 0 while
wire 4 is becomes under tension (bottom picture).

consequence of the theoretical and experimental proofs is

that the use of the pseudo-inverse to calculate the tension in

the wires is not appropriate [13].

IV. ELASTIC WIRES

In this section we consider for the sake of simplicity a 4-1

robot but the result presented in this section can be extended

to any N − 1 robot.. We assume that we have elastic wires

that are supposed to be perfect linear springs. If li is the

length at rest of wire i and ρi its current length we have

τi = k(ρi − li) (3)

where k is the stiffness constant of the wire. We address the

IK problem: the pose is given and we have to determine the

wire lengths li that have to be fed to the winch controller.

For a given pose the length ρ of the wires should be equal to

the distance between C and A and the equilibrium conditions

(1) has to be satisfied. These conditions constitute a linear

system of 3 equations in the 4 unknowns τ . We assume that

this system is not singular and we calculate τ2, τ3τ4 as a

function of τ1. We may choose τ1 to optimize some criteria,

for example for minimizing

H =

j=4∑

j=1

τ2
j

H is a quadratic function in τ1 and it is therefore trivial

to determine τ1 that leads to the minimum of H . Then

equation (3 allows to determine the four lis. However finding
the solution of the IK does not guarantee that the platform

will move at the desired pose as the FK may have several

solutions. Furthermore we have uncertainties both on k and

on the li that will be provided by the control system. Hence

a study of the FK is necessary.

A. Forward kinematics

In the FK problem the li’s are given and we have to

determine the pose of the load. We first solve the equation

(1) to obtain τ2, τ3, τ4 as functions of τ1. The first equation

of (3) allows to determine τ1 as a function of ρ1. The three

remaining equations are linear in x, y, z. After solving this

system, which gives x, y, z as functions of ρ1, ρ2, ρ3, ρ4, we

report the result in the IK equations

||AkC||2 − ρ2
k = 0 (4)

We will denote by 4j this equation applied for wire j. The
above equations constitute a system of 4 equations in the

unknowns ρ1, ρ2, ρ3, ρ4. Equation (42 − 41) is linear in ρ4

and is solved for this variable. The 3 remaining equations,

denoted a1, a2, a3, are of degree (6,6,2), (3,3,3), (9,9,3) in

ρ1, ρ2, ρ3. The four equations a1, ρ3a1, a2, a3 are linear in

the four monomial 1, ρ3, ρ
2
3, ρ

3
3 and hence the determinant of

the matrix of this linear system should be 0, which leads to

a polynomial P1 of degree 15 in ρ1, ρ2. Taking the resultant

of a1, a2 in ρ3 leads to a polynomials P2 in ρ1, ρ2 of degree

18. The resultant of P1, P2 factors out in 2 polynomials of

degree 76 and 96 in ρ1. Theoretically solving this polynomial

will lead to possible values for ρ1, then the common roots

of P1, P2 will give ρ2. Solving a1 will lead to ρ3, which

together with ρ1, ρ2 will allow to determine ρ4. Having

computed the four ρ enable then to obtain x, y, z.
Although this complete the theoretical solution, the degree

of the involved polynomials are too high to be used in

practice and consequently we have to resort to a numerical



procedure. Equations a1, a2, a3 together with (42−41), (43−
41), (44−41), (41) constitutes a system of 7 equations in the

7 unknowns x, y, z, ρ1, ρ2, ρ3, ρ4. It may be shown that all

these unknowns can be bounded and consequently interval

analysis is an appropriate tool for solving these equations,

the solving time being less than one second.

B. Positioning sensitivity

We have investigated the sensitivity of the calculation of

x, y, z with respect to possible uncertainties on k, li. For

that purpose we have considered the 4-1 robot with the

A coordinates (2) and we have used the IK to determine

what should be the li to reach the pose x = 100, y =
200, z = −200 while minimizing

∑j=4

j=1
τ2
i for k = 1000.

The nominal values are l1 = l2 = 299.558, l3 = l4 =
412.1083 which leads to τ1 = τ2 = 441.45, τ3 = τ4 =
202.2383. If we set k to 100 the nominal values are l1 =
l2 = 295.5855, l3 = l4 = 410.288 with wire tensions

441.45, 441.45, 202.23833, 202.23833.
We have then considered 1000 values for the li’s and k

that were randomly perturbed around their nominal values

lnom, knom (by ±3 for the li’s and ±0.1k for k) and we

have used the FK to determine x, y, z. The average values

of x, y, z and their maximal variation around these averages

are presented in table I while table II presents the average

values of the τ and their maximal variation around these

averages. The following results were also obtained:

Average pose (x, y, z)

knom=100 99.633266 200.58488 -198.945539
knom=1000 100.032878 200.22398 -199.629886

Pose error (∆x, ∆y, ∆z)

knom=100 [-7.53, 4.57] [-6.86, 5.75] [-7.60, 2.87]
knom=1000 [-5.48, 4.79] [-4.79, 4.26] [-5.14, 4.24]

TABLE I

VARIATION OF THE POSITIONING WITH A ±3 UNCERTAINTY ON THE li’S

AND ±0.1k UNCERTAINTY ON THE k

knom=100

mean τ1, ∆τ1 mean τ2,∆τ2
470.68, [-184.1, 123.7] 423.2, [-137, 170.7]

mean τ3, ∆τ3 mean τ4,∆τ4
181.42, [-177.5, 230.7] 277.13, [-274.8, 135]

knom=1000

mean τ1, ∆τ1 mean τ2,∆τ2
467.6, [-192, 133.8] 463.06, [-187.45, 138.1]

mean τ3, ∆τ3 mean τ4,∆τ4
278.35, [-274.2, 146.1] 277.13, [-241.7, 168.7]

TABLE II

TENSION AVERAGE AND VARIATIONS AROUND THESE AVERAGES WITH

A ±3 UNCERTAINTY ON THE li’S AND ±0.1k UNCERTAINTY ON k

• in all cases there was only at most a single valid 4-1

solution for the FK

• there was a 4-1 solution (all 4 wires under tension) for

960 cases (k=100) and 160 cases (k=1000) while there

was always a solution in a 3-1 configuration

Using k=1000 we have performed another test for the

nominal pose x = 130, y = 180, z = −200. The mean value

of x, y, z were 128.55, 181.558, -200.789 with a variation

around these values of [-7.833, 5.56], [-8.61, 6.028], [-

6.955, 4.708]. The mean value for τ1, tau2, tau3, τ4 were

434.832, 366.715, 316.01, 332.344 with a variation of [-

176.741, 213.368], [-211.942, 210.86], [-297.098, 175.482],

[-327.109, 183.161].

Another source of error is the uncertainties on the location

of the Ai’s that may be due to a poor calibration or to

deformation of the frame supporting the robot when loaded.

To evaluate this influence we have used the nominal wire

lengths to reach the pose x = 100, y = 200, z = −200 and

we have assumed a perfect knowledge of k and a perfect

wire lengths control, while we have randomly perturbed the

x, y coordinates of the Ai’s with a value in the range [-2,2].

Tables III and IV present the average pose, tensions and their

maximal variations around the averages.

Average pose (x, y, z)

knom=100 97.971473 199.911506 -200.850671
knom=1000 99.678064 200.047538 -199.993619

Pose error (∆x, ∆y, ∆z)

knom=100 [-4.1195, 4.4631] [-4.55, 4.578] [-3.044, 3.055].
knom=1000 [-3.4, 3.446] [-2.923, 2.684] [-2.735, 2.519].

TABLE III

VARIATION OF THE POSITIONING WITH A ±2 UNCERTAINTY ON THE A

knom=100

mean τ1, ∆τ1 mean τ2,∆τ2
452.238063, [-158.657, 136.74] 442.731039, [-147.916, 147.59]

mean τ3, ∆τ3 mean τ4,∆τ4
265.256553, [-147.916, 147.59] 280.263655, [-272.85, 126.315].

knom=1000

mean τ1, ∆τ1 mean τ2,∆τ2
439.025901,[-156.45, 157.649] 441.118404, [-157.12, 156.826]

mean τ3, ∆τ3 mean τ4,∆τ4
272.519396, [-269.671, 147.625] 237.373109,[-231.759, 182.077]

TABLE IV

TENSION AVERAGE AND VARIATIONS AROUND THESE AVERAGES WITH

A ±2 UNCERTAINTY ON THE A

We have then combined the errors on the Ai’s (±2 on the

x, y coordinates), on the li’s (±3) and on k (±10 %) applied

in the configuration corresponding to the pose x = 100, y =
200, z = −200. A random sampling of 3000 measures has

been performed.

• for knom = 100 the mean value of obtained pose is

98.726651, 200.361376, -201.308687 with a variation

of [-9.449, 7.102], [-8.158, 7.217], [-6.337, 6.5]. The

average values of the τ are 440.999788 476.440767

225.695517 188.101464 with a variation of [-164.39,75

158.733], [-197.12,34 123.558], [-225.53,40 199.768],

[-187.458,61 233.732].

• for knom = 1000 the mean value of obtained pose is

100.149153, 199.46656, -200.443448 with a variation

of [-8.575, 6.676], [-5.935, 6.607], [-5.716,6.453]. The

average values of the τ are 439.317306, 496.090587,

188.53118, 276.871677 with a variation of [-173.728,



168.846], [-228.579, 110.658], [-188.125, 248.888], [-

276.619, 160.55].

C. Using tension measurements

We have also investigated the use of wire tension mea-

surements to determine the pose of the platform. For given

τi’s the equations (1) are linear in x, y, z. After solving this

system we report the result in (42−41), (43−41), (44−41).
Together with (42) these equations constitutes a system

of 4 equations in the unknowns ρ1, ρ2, ρ3, ρ4. The second

equation is linear in ρ4 so we may obtain 3 equations

in ρ1, ρ2, ρ3. Successive elimination allows to obtain an

univariate polynomial which factors into 2 polynomials of

degree 144 and 30 in ρ2
1.

Clearly solving such high degree polynomial may be

difficult but as the unknowns can be easily bounded this

system can be solved with interval analysis. Wire ten-

sion measurement are typically noisy and we may won-

der about the sensitivity of the pose determination in the

presence of uncertainties in the measurements. To test this

sensitivity we have chosen a nominal value for the τi’s

(441.45,441.45,202.238331,202.238331) that corresponds to

the pose x = 100, y = 100, z = −200 and we have added

a random perturbation in the range [-20,20] for 1000 sam-

plings. The variation on the x, y, z around their nominal val-

ues were obtained as [-12.2518,12.3812],[-17.258,14.728],[-

19.163,15.1576]. Even with a random error on the τi’s in the

range [-1,1] we get a positioning error in the range [-1,1].

Note that when the perturbation is small we may assume the

ρi’s to be constant and the equation (1) define 3 planes in

the x, y, z space that are parallel to the x, y, z axis. When the

τi’s are changing the planes move along their axis. Hence

the pose of the robot will be obtained as the intersection

of 6 half-planes leading to cube whose edges have a length

2
∑

∆τi/ρi.

Hence even with very accurate force measurement the

error on the pose calculation may be quite large.

D. General summary

All these data show that, although in theory having elastic

wires allows one to manage the wire tensions distribution,

the practical application of such control scheme will be very

difficult. Indeed even if we assume that the wires are perfect

linear springs, a small uncertainties on the wire stiffness

combined with unavoidable uncertainties on the wire lengths

will lead to large positioning errors and very large variations

on the wire tensions. Furthermore positioning based on

tension measurements seems to be also quite difficult. It

remains to determine if alternate sensing methods (such

as the use of vision as proposed in [14]) may improve

redundancy management.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper has shown that the actuation redundancy of a

N − 1 wire-driven parallel robot can be used to increase the

workspace size but cannot be used to optimize tensions in

the wires: for non-elastic wires we have shown theoretically

and experimentally that at all time at most 3 wires will

be simultaneously under tension while for elastic wires

a numerical analysis has shown that the positioning and

tensions in the wires are very sensitive to uncertainties on

the wire lengths and stiffness of the wires.

B. Future Works

One advantage of wire-driven parallel robot is their mod-

ularity: a proper mechanical design allows one to connect

and disconnect the wires at will. We may benefit from this

modularity to use the actuation redundancy for managing

tensions in the wires. For that purpose we have considered

two options:

• connecting counterweights to the platform with redun-

dant wires which is a mean for transforming the wire

from a length-only actuation into a force supplier

• temporary connecting redundant wires not on the plat-

form but a specific point on non redundant wires

Both options will be presented in a companion paper.
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