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Abstract�— This paper addresses the problem of certifying
the performance of a precision exure-base mechanism design
with respect to the given constraints. Due to the stringent
requirements associated with the applications of exure-based
precision mechanisms, it is necessary to be able to evaluate and
certify the performance at the design stage, taking into account
the possible sources of errors: such as fabrication tolerance
and modeling inaccuracies in exure joints. An interval-based
method is proposed to certify whether various constraints are
satised for all points within a required workspace. This paper
presents the interval-based methodology and its implementation
on a planar 3RRR parallel exure-based manipulator.

I. INTRODUCTION

FLEXURE jointed mechanisms [1] are widely utilised in
precision positioning and manipulation devices [2], such

as for pattern alignment in semiconductor fabrication, micro-
assembly, micro-surgery, and various scanning microscopy
techniques [3] [4].

Due to the high precision nature of the applications, there
is a stringent demand on the performance of the manipulator.
Currently, nite element methods are often employed to
simulate the performance of the mechanism design, however
this is limited in the types of criteria and does not allow a
guaranteed solution or handling of uncertainties. It also tends
to be computationally intensive. Topological information of
the mechanism is often not considered and evaluation of
the performance is on point-sampling basis. It is therefore
difcult to guarantee that the robot satises the required
constraints for all poses of its required workspace. There
is also the issue of modeling inaccuracies in exure mech-
anisms. For example, a revolute exure joint is modeled as
an ideal revolute joint. The deformation of the joint during
deection, however, produces residual translational motion.
An attempt to take into account this residual motion was
given in [5], where a revolute exure joint was represented
as a pair of revolute-prismatic joints. However, an accurate
model for such parasitic motion is complex to obtain.

In this paper, an interval-based method is proposed to
evaluate the various constraints and to certify whether or
not they are achieved within the desired workspace of the
exure-based manipulator. As examples, we present the
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cases of certifying two of the most common requirements
in the design of a exure precision mechanisms: (i) the
range of reachable workspace and (ii) the achievable end-
effector motion resolutions given the joint space resolutions.
Furthermore, various uncertainties, including the inaccura-
cies of joint modeling and fabrication tolerances, can be
accommodated as a bounded variations in the kinematic
parameters. When a given workspace is certied as having
satised all constraints, the certication is valid for all the
continuous values within the bounds (as opposed to point-
based sampling), even in the face of the above-mentioned
uncertainties.

The work on obtaining the workspace of a manipulator
has been presented in the past through geometrical approach
[6] [7] and screw theory [8]. These methods dene the
boundaries of the manipulators geometrically and provide
algebraic expressions to the boundary curves. The method
presented in this paper obtains the same results as the
analysis presented in [6] through interval methods. It is a
constraint satisfaction certication technique, and as such, it
is less specic to the manipulator. Through its generality,
it is able to provide not only the boundary of reachable
workspace, but is also useful in obtaining the workspace of
the manipulator that satises other criteria, such as singular-
ity free workspace and achievable motion resolution. It is,
however, more computationally expensive.

The rst part of the paper presents the interval-based
method of certifying the solutions to each constraints in
the exure jointed mechanism. The second part presents the
implementation results of the algorithm on a planar 3RRR
parallel exure-jointed mechanism.

II. FLEXURE MECHANISMS

Flexure mechanism [1] is formed by signicantly reducing
the cross sectional area of a member at a particular point so
that deection through elastic deformation can be induced
about that point while treating the rest of the member as ideal
rigid bodies. As such, exure joints do not suffer from any
nonlinearities commonly associated with conventional joints
such as friction, stiction, and backlash. They do, however,
provide a much smaller range of displacement compared to
conventional joints. Hence, they are suitable for precision
manipulation.

The range of deection that a exure joint can undergo
depends on the shear modulus of material and the design
of the joint [9]. This range of deection provides a natural
bound to the joint displacement variables which then acts as
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a constraint in determining the achievable workspace of the
end-effector in interval analysis method.

In this paper, we focus on the notch type joints [1],
which (in ideal case) produce a one DOF revolute joint
motion, without loss of generality in the algorithm presented
for performance evaluation and the guarantee of constraint
satisfaction. It is often modelled as a revolute joint, however
it has been shown to display parasitic translational motion
[5]. Other types of potential errors in the fabrication and
assembly of a exure jointed mechanism are outlined in [10].

III. INTERVAL-BASED KINEMATICS METHOD

The goal of the algorithm is to evaluate the constraints
placed on a given mechanism and to certify that they are
satised for the associated end-effector workspace. In the
notation, x is a vector containing the task space variables
and h is a vector containing the design parameters of the
mechanism (such as link lengths). The problem can therefore
be formulated such that:

{∀x ∈ [x,x], ∀h ∈ [h,h]; C(x,h) ≤ 0} (1)

where C(x,h) ≤ 0 are the constraints to be satised, x,x
and h,h are the lower and upper bounds of the range
of values in x and h, respectively. Generally, constraints
in kinematic workspace problems can be formulated as
inequalities C(x,h) ≤ 0, such as in (1), which are easier
to solve than equality constraints.

As an overview, the interval analysis method involves
several main components:

• interval extension or evaluation of functions,
• testing against the constraints and obtaining the inner,

outer, or boundary boxes,
• ltering, to obtain a sharper solution,
• branch-and-bound loop.
The goal of the strategy is to certify whether a particular

range of workspace [x,x] and design parameters [h,h]
constitute an inner or outer set of boxes to constraints
C(x,h). If the range of the solution is too wide, often it is
not possible to obtain a decision, in which case, ltering and
branch-and-bound procedures are utilised. Filtering process
sharpens the result of constraint evaluation while the branch-
and-bound process splits the variables into smaller ranges
and evaluates the constraints as a function of each subset of
variable individually. The details of each component is given
in the following sub-sections.

A. Interval Extension

The interval extension of variable x is dened as X ,
bounded within its lower and upper bound [x, x], where
x ≤ x ≤ x. The interval extension of a function is the
evaluation of the function with interval variables. There are
two major classes of interval extension: natural extension,
where evaluation is done by substituting real variables with
interval variables [11], and Taylor-form extension [12], which
utilises the partial derivative of the function f(x). Interval
methods can be used conveniently to bound the remainder of
truncated Taylor series. A common variation of the rst order

Taylor-form is the centered-form extension, which evaluates
f(x) around the centre point of X . In interval evaluation of
a function, as numerical values are substituted into a func-
tion, relationship between variables are lost. Overestimation
happens when multiple occurrences of the same variables
within the function are regarded as independent variables.
The evaluation of a function where all variables involved
only appear once is sharp (within rounding errors), meaning
it is bounded within the smallest possible �“box�”. A good
introduction to the interval arithmetics can be found in [12].

B. Testing Against Constraints and Types of Solutions

After the evaluation, it is necessary to test whether a
required constraint is satised in the system. In our problem,
it is desired to verify whether the required performance
constraint C(X,H) of the mechanism is true for the set of
given workspace pose (variables) of interest x ∈ X and
mechanism parameters (link lengths) h ∈ H, as presented
in (1). In the case of an inequality constraint, for example,
a set of boxes (x,h) is said to be:

• an inner box or inner solution of the constraint when
{∀x ∈ X, ∀h ∈ H; CR ≤ C(X,H) ≤ CR}, where
CR and CR are the lower and upper bounds of the
requirements for the constraints.

• an outer box is obtained when {∀x ∈ X, ∀h ∈
H; (C(X,H) ≤ CR) or (CR ≤ C(X,H))},

• (x,h) is a boundary box if it cannot be decided whether
it is an inner or outer box.

C. Filtering

Filtering process enforces the consistency in the variables
involved in a set of constraints. It is done by removing the
segments in the interval variables involved that do not hold
within the constraints. The ltering process is used to reduce
the effect of overestimation on the interval extensions of
functions.

Overestimation of an interval function makes it difcult to
decide whether or not a set of interval variables satises the
given constraints. Consistency ltering is therefore required
to sharpen the resulting boxes. The process utilises the
additional information contained within the mathematical
equations or the physical constraints. In this paper, for
example, a parallel mechanism is constructed out of several
articulation chains that connect the base platform to the com-
mon moving platform, whose forward kinematics provides
additional constraints that can be used to reduce the effect
of overestimation. This is done, for example, by iteratively
enforcing that the RHS and LHS (right and left hand side) of
an equality evaluated to the same interval. This is termed the
2B consistency ltering [13] [14]. Other ltering techniques
are available such as 3B and interval Newton [15] [12] [16].

D. Branch-and-Bound

It is often difcult to conclude whether a given box (X,H)
constitute an inner or outer box when it is evaluated as
a function of interval variables with large width. While
ltering process contracts the box and attempts to obtain
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TABLE I

SUMMARY OF ALGORITHM FOR WORKSPACE CONSTRAINT ANALYSIS

WITH INTERVAL ANALYSIS.

1 Initialise empty lists LIN , LOUT , and LB .
2 Initialise list L containing initial task space intervals (boxes)

to be analysed.
3 While (L not empty)

(a) Extract manipulator pose Xi from list L.
(b) Evaluate constraints C(X, H)
(c) Test C(X, H) against the required performance [CR, CR].
(d) Filtering process is carried out if necessary.
(e) Return whether X constitutes an inner, outer, or boundary box.
(f) Case result is inner, outer, or boundary box:

(i) Case 1: The solution lies within the ALL constraints
C(X, H)

Remove Xi from L and add to list LIN
(ii) Case 2: The solution lies outside ANY of the constraints

in C(X, H)
Remove Xi from L and add to list LOUT

(iii) Case 3: If Xi is a boundary solution
If (dimension of box Xi) > ε)

Bisect Xi into Xi1 and Xi2
Remove Xi from L and add Xi1 and Xi2

into the list L.
Else If (threshold dimension ε has been reached)

Remove Xi from L and add to list LB
End If

(g) End Case
4 End While

a sharp solution, it can only return the sharpest box that
would contain the solution. Within the box, the solution often
occupies only a portion of the bounded space. The branch-
and-bound strategy is therefore utilised to automate the
solution search of the algorithm such that a better denition
of the solution may be found. The strategy splits (bisects) the
box into smaller boxes, essential performing the evaluation
of the constraints on a sub-division of the original box.
Bisection is iteratively performed until an inner or outer box
is found, or until a threshold dimension of the variable boxes
ε is reached. Boxes that remain as boundary solution at this
point will form the boundary solutions of the system. In this
paper, to evaluate the performance of a mechanism within
the specied workspace X with a specic design parameters
H, bisection is performed on the M dimensional interval box
X, where M is the number of the task space pose variables.
Bisection process is performed across all the pose variables
in different order, depending on the bisection algorithms.
Several possible bisection algorithms are available [17].

E. Summary of Algorithm

The main skeleton of the proposed algorithm is housed in a
branch-and-bound strategy summarised in Table I. List L IN

contains the inner solutions that satisfy all the constraints in
C(X,H) ≤ 0 or C(X,H) = 0 while LOUT contains outer
boxes, i.e. when a box fails to satisfy one or more of the
constraints in C. The boundary boxes are given in list LB .

IV. INTERVAL ANALYSIS ON 3RRR PLANAR PARALLEL

FLEXURE MECHANISM

In this section, the workspace verication problem of a
3RRR planar exure mechanism with respect to the given
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Fig. 1. A 3RRR planar parallel mechanism

constraints relevant to the functionality of a precision ma-
nipulator is carried out using the interval based techniques
presented in Section III. The problem is to evaluate the
performance of the manipulator C(X,H), dened by the
design parameters H, at the required workspace pose X
and to certify whether X is a solution to the performance
constraint. The planar workspace of the manipulator is de-
ned as (xe, ye)T for the translational motion and (θ) for
the orientation (see Fig. 1).

The performance criteria of the planar manipulator that
are considered essential to the functionality of the precision
manipulator are (i) the reachable workspace within the allow-
able deection of the exure joints and (ii) the workspace
that yields the required motion resolution given the resolution
of the joint space motion. Within the algorithm, uncertainties
in the fabrication tolerance and the un-modelled kinematics
of the exure joints are taken into account in obtaining the
solution. The 3RRR planar parallel mechanism, with the
denitions of the variables and frame assignments, is given
in Fig. 1.
In this paper, it is assumed without loss of generality that
the positions of the revolute joints on the base (O1,O2,O3)
and the moving platforms (B1, B2, B3) form equilateral
triangles. Joint space variables are the (αi, βi, γi), where
i = 1, 2, 3 representing each of the three serial chains
connecting the base and moving platforms. It is assumed
that only joints α1, α2, α3 are actuated (RRR chains) and
displacement feedbacks are only available on these joints.

The manipulator in Fig. 1 was selected as an example
in the following sub-sections to better illustrate the concept.
The various link lengths of the selected 3RRR planar parallel
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TABLE II

PARAMETERS OF THE CASE STUDY 3RRR PLANAR PARALLEL

FLEXURE-BASED MECHANISM.

Parameters Values
Origin of O1 (0, 0)T mm
Origin of O2 (167.27, 0)T mm
Origin of O3 (83.64, 144.86)T mm
|di|, ri, li 10mm, 66mm, 46mm

(xem, yem, θem)T (83.64, 48.29,−10.3o)T

mechanism are summarised in Table II. The pose of the
end-effector when the 3RRR mechanism is symmetrical is
dened as (pem)T = (xem, yem, θem)T , where the subscript
m denotes the �‘middle�’ real value the in the interval vari-
ables. This is also assumed to be the pose when the exure
joints are at rest, i.e. when they undergo zero deections.

A. Workspace by Joint Limits

It is important that the displacement of a exure joint takes
place only within the linear deformation of the joint. The
selected values of the maximum allowable joint deection
used in the interval analysis of the exure mechanism
workspace should constitute a bound within which the joints
behave linearly within the elastic region.

To obtain the joint displacement of the mechanism for
a given end-effector pose, inverse kinematics is carried out
on the desired end-effector workspace (X), with the given
interval link length parameters (H). The inverse kinematics
of planar parallel mechanisms was discussed in the literature
[18] [19]. The inverse kinematic solution can be obtained
by rst calculating the angle βi, which has two possible
solutions within [0, 2π], corresponding to elbow up or elbow
down conguration of the chains. Due to the small range of
joint motion in exure mechanisms, it is only possible for it
to cover one of the two solutions in its workspace. Therefore,
a unique inverse kinematic solution for β i can be pre-selected
according to the corresponding design of the mechanism.
The closed-form solution of the inverse kinematics is given
as follows:

cos(βi) = (x2
i + y2

i − (r2
i + l2i ))/(2liri), (2)

cos(αi) = xi(ri+licos(βi))+yilisin(βi)
x2

i +y2
i

sin(αi) = −xilisin(βi)+yi(ri+licos(βi))
x2

i +y2
i

.
(3)

Obtaining the inverse cosine or inverse sine of an interval
variable does not uniquely dene the solution angle as
these trigonometric functions are periodic. To obtain the
unique solutions, both expression for cos(α i) and sin(αi)
are utilised to specify the limit on joint αi. Bounds for
the interval extension of cos(βi), cos(αi) and sin(αi) are
therefore dened to reect the deection limits of the joints.

1) Constraint Denition: Interval variables pe =
(xI

e , yI
e , θI)T were utilised to describe the desired range

of the workspace. Interval variables for the link lengths,
however, were used to express the fabrication tolerances and
other un-modeled sources of errors. With these variables
dened, the constraint for the workspace can be dened as
the reachable workspace when angles αi, βi, γi are all within

81.5 82 82.5 83 83.5 84 84.5 85 85.5 86

46

46.5

47

47.5

48

48.5

49

49.5

50

50.5

 x (mm)

 y
 (m

m
)

Fig. 2. Workspace of the 3RRR planar parallel mechanism, constrained by
joint limits considering fabrication tolerances of ±50µm on link length r
and l, taken atat constant θ = θm = −10.3o, with allowable exure joint
deection of ±3o.

the allowable joint deections. These form the inner boxes of
the workspace, while the complement form the outer boxes.

Consistency ltering is carried out by dening additional
constraints derived from the set of physical constraints which
form the direct kinematics of vector pi:

C1(X,H) = RiCos(αi) + LiCos(αi + βi) − Xi = 0;
C2(X,H) = RiSin(αi) + LiSin(αi + βi) − Yi = 0;
C3(X,H) = (Cos(αi))2 + (Sin(αi))2 − 1 = 0;

(4)
A 2B/3B consistency ltering was implemented and the

results are shown in the following subsection.
2) Results and Discussion: Workspace by Joint Limit:

In this example, the allowable joint deection was set at
±3o. The workspace to be evaluate is selected as a motion
range of ±2.5 mm in x and y direction (xr = yr =
2.5mm) and ±17.5 mrad (θr = 1o) for orientation, about
(xem, yem, θem)T , respectively. The reachable workspace as
the result of the algorithm is shown in Fig. 2. This two
dimensional gure displays the inner and outer boxes of
the manipulator workspace when the exure-joint limits are
imposed, after consistency ltering. It is taken at constant
orientation value θ = θm = −10.3o. It should be mentioned
that when the same algorithm was carried out without
ltering process, it failed to obtain any inner boxes of the
workspace due to overestimation.

It should be noted that a fabrication error and unmodelled
kinematics due to the parasitic translational motion was taken
into account as being bounded within ±50µm for each link
length ri and li. The resulting inner boxes are therefore
the guaranteed reachable workspace, with considerations to
these unmodelled errors.It is therefore demonstrated that
various uncertainties, including fabrication limitations, can
be included in the calculation during the design process to
guarantee the performance of the resulting mechanism to be
within the specied requirements. It is also possible to rene
this result by expressing Li and Ri as parameters within an
inner (nested) loop at the expense of higher computational
time.

Figure 3 demonstrates the workspace of the mechanism
bounded by the allowable joint deection for a range of
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Fig. 3. The inner solution admitted into the workspace of the 3RRR
planar parallel exure mechanism, taking into account the uncertainties
in the kinematic modelling and fabrication tolerances, constrained by the
bounds of the allowable exure joint deections. The orientation range is
θI = θm ± 17.5mrad.

orientation Θ. The orientation variable is represented in
the vertical-axis of the plot. The range of interval Θ is
±17.5mrad.

The workspace evaluated in Fig. 2 were selected so that
it was large enough to demonstrate both the inner and
outer boxes of the joint deection constraints. The available
workspace can be deduced from the results by inspection.
For example, from Fig. 2 and Fig. 3, it can be deduced that
a translational motion of ±1mm in x and y direction can
be achieved throughout an orientation range of ±17.5mrad,
even with a fabrication tolerance of ±50µm.

B. Task Space Motion Resolution

As exure mechanisms are generally employed for preci-
sion manipulation, the resolution of the smallest step possible
in the motion of the end-effector is often an important
performance criterion. Generally, it is possible to directly
establish the bounds of joint space motion resolutions from
the specications of the sensors and actuators used. Incre-
mental step size in task space can therefore be calculated by
the differential kinematic relationship with the incremental
step size in joint space displacement.

J1.∆xe = J2.∆q, (5)

where ∆q is the incremental joint space displacement (or
in this case, resolution). In this example of 3RRR, we
consider the incremental motion of the base joints ∆q =
(∆α1, ∆α2, ∆α3)T . It is then required to solve for ∆xe in
the linear equation (5).

The differential kinematic relationships can be obtained
from [18] as

[fT
i , fT

i d⊥
i ]

[
ṗe

ω

]
= rifT

i

[
−sin(αi)
cos(αi)

]
α̇i, (6)

where fT
i is the unit vector in the direction of the reciprocal

screws passing through the revolute joints at points A and
B:

fT
i =

1
li

[
xi − ricos(αi)
yi − risin(αi)

]
(7)

and d⊥
i is the vector perpendicular to di, or d⊥

i =
(−diy, dix)T . The overall differential kinematics of the

mechanism can be described by:

J1.ẋe = J2.α̇ (8)

where ẋe = (ṗT
e , ω)T = (ẋe, ẏe, θ̇)T and J1, J2 are the

3 × 3 Jacobian matrices, with each row representing the
relationship (6) for individual leg i. Note that J2 is a diagonal
matrix.

1) Constraint Denition: The constraint to be satised is
therefore dened as:

{∀x ∈ X, ∀h ∈ H, |∆Xe| ≤ ∆Xthreshold}, (9)

where ∆Xe is the interval extension of vector xe as de-
ned in (5). Inner solution is obtained when the specied
workspace satises (9) while outer box is obtained when
∆Xe /∈ ∆Xthreshold.

For this example, it is given that joint space displacement
resolution is bounded within 0.06 mrad. The desired reso-
lution (∆Xthreshold) for the task space translational motion
and orientation are set at 0.5µm and 0.5mrad, respectively.
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Fig. 4. Two dimensional workspace at constant θ = θm = −10.3o

that satises the required motion requirement, given the joint space motion
resolution. Solving algorithms were (a) preconditioned Hansen-Bliek and
(b) symbolic preconditioning with Gaussian elimination.

2) Results and Discussion: Task Space Resolution: When
(5)-(9) is evaluated for the workspace of our 3RRR planar
parallel manipulator, the workspace that satises the required
motion resolution is given in Fig. 4(a). The solution was
obtained through the Hansen-Bliek solving algorithm [20],
[21], which is numerically pre-conditioned.

Further improvement can be obtained through symbolic
preconditioning, as proposed in [22]. This approach is pos-
sible when symbolic expressions of the linear system of
equations is given. The idea is to minimise symbolically
the number of multiple occurrences of each variable. This
method is performed by evaluating matrix M but keeping J 1

symbolic. This allows the elements of the resulting matrix to
be rearranged symbolically to minimise the multiple occur-
rences of various interval variables, hence reducing the effect
of dependency. Consistency ltering is also included in the
algorithm to further sharpen the results. The improvement in
the algorithm ability to admit inner solution is demonstrated
in the amount of workspace that can be certied as the inner
solution of the constraint dictated by the desired end-effector
motion resolutions (Fig. 4(b)). The results in Fig. 4 were
obtained with the exact same conditions, taken at constant
θ = θm, with the only difference being the algorithm for
solving the linear equations: (a) the preconditioned Hansen-
Bliek algorithm, and (b) the symbolically preconditioned
Gaussian elimination method.
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Fig. 5. (a) The workspace allowable by limits of joint deection. (b) The workspace that satises the required motion resolution. (c) The intersection of
all given constraints.

C. Overall Available Workspace

The certied available workspace of the planar parallel
mechanism can be evaluated by imposing both the joint
displacement constraint and the motion resolution constraint.
For the desired workspace to satisfy all the performance
required of the manipulator, it is necessary that the procedure
results in inner solutions to all the given constraints. To be
an outer box, however, it needs only to be an outer box to
any of the constraint.

An example of the usable workspace that satises both
the criteria (joint limit and required motion resolution) is
therefore given by Fig. 5. The workspace allowed by the
joint limit is shown in Fig. 5 (a), the workspace that
produces required end-effector motion resolution of 0.5µm
(translation) and 0.5mrad (orientation), given joint motion
resolution (∆αi) of 0.05mrad, is given in Fig. 5(b) and the
resulting intersection, which is the workspace that satises
all the given criteria, is given in Fig. 5(c).

Setting the orientation θ as an interval would evaluate the
constraints for a range of value of orientation. The resulting
workspace is guaranteed to satisfy all the given criteria. To
test a desired workspace X, with a particular manipulator
design and link lengths H, the interval variables of the
workspace can be substituted directly into the algorithm and
certied whether it is an inner solution of the constraints. If
bisection is required in certifying this, then it is necessary
that all the resulting (smaller) interval boxes constituting X
are certied as inner solutions.

V. CONCLUSIONS

A technique to address workspace verication problem
of a precision exure-based mechanism is presented in this
paper. The technique certies whether or not the required
workspace satises certain performance criteria, taking into
account modelling and fabrication uncertainties. Performance
features relevant to a exure-based mechanism were pre-
sented and the efcient interval-based methods in evaluating
and resolving the features were proposed, implemented, and
discussed. Future work is aimed at extending the algorithm
to produce an efcient synthesis algorithm that would enable
the determination of design parameter intervals of a mecha-
nism that satisfy a set of given constraints.
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